
Chapter 5

Dynamic programming II - The Recursion
Strikes Back
By Sariel Har-Peled, December 7, 2009¬ Version: 0.4

“No, mademoiselle, I don’t capture elephants. I content myself with living among them. I like them.
I like looking at them, listening to them, watching them on the horizon. To tell you the truth, I’d give
anything to become an elephant myself. That’ll convince you that I’ve nothing against the Germans in
particular: they’re just men to me, and that’s enough.”

– – The roots of heaven, Romain Gary

5.1 Optimal Search Trees
Given a binary search tree T, the time to search for an element x, that is stored in T, is O(1 +

depth(T, x)), where depth(T, x) denotes the depth of x in T (i.e., this is the length of the path
connecting x with the root of T).

Problem 5.1.1 Given a set of n (sorted) keys A[1 . . . n], build the best binary search tree for the
elements of A.

4

12

21

32

45

45

32

12

4 21

Two possible search trees for the set
A = [4, 12, 21, 32, 45].

Note, that we store the values in the internal node of
the binary trees. The figure on the right shows two pos-
sible search trees for the same set of numbers. Clearly, if
we are accessing the number 12 all the time, the tree on
the left would be better to use than the tree on the right.

Usually, we just build a balanced binary tree, and this
is good enough. But assume that we have additional in-
formation about what is the frequency in which we access
the element A[i], for i = 1, . . . , n. Namely, we know that
A[i] is going be accessed f [i] times, for i = 1, . . . , n.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

In this case, we know that the total search time for a tree T is S (T) =

n∑
i=1

(depth(T, i) + 1) f [i],

where depth(T, i) is the depth of the node in T storing the value A[i]. Assume that A[r] is the
value stored in the root of the tree T. Clearly, all the values smaller than A[r] are in the subtree
leftT, and all values larger than r are in rightT. Thus, the total search time, in this case, is

S (T) =

r−1∑
i=1

(depth(leftT, i) + 1) f [i] +

price of access to root︷ ︸︸ ︷
n∑

i=1

f [i] +

n∑
i=r+1

(
depth

(
rightT, i

)
+ 1

)
f [i].

Observe, that if T is the optimal search tree for the access frequencies f [1], . . . , f [n], then the
subtree leftT must be optimal for the elements accessing it (i.e., A[1 . . . r − 1] where r is the root).

Thus, the price of T is

S (T) = S (leftT) + S (rightT) +

n∑
i=1

f [i],

where S (Q) is the price of searching in Q for the frequency of elements stored in Q.

CompBestTreeI
(
A[i . . . j], f

[
i . . . j

])
for r = i . . . j do

Tle f t ← CompBestTreeI(A[i . . . r − 1], f [i . . . r − 1])
Tright ← CompBestTreeI(A[r + 1 . . . j], f

[
r + 1 . . . j

]
)

Tr ← Tree
(
Tle f t , A[r] , Tright

)
Pr ← S (Tr)

return cheapest tree out of Ti, . . . ,T j.

CompBestTree
(
A[1 . . . n], f [1 . . . n]

)
return CompBestTreeI(A[1 . . . n], f [1 . . . n])

This recursive formula nat-
urally gives rise to a recursive
algorithm, which is depicted on
the right. The naive implemen-
tation requires O(n2) time (ig-
noring the recursive call). But
in fact, by a more careful im-
plementation, together with the
tree T, we can also return the
price of searching on this tree
with the given frequencies. Thus,
this modified algorithm. Thus,
the running time for this func-
tion takes O(n) time (ignoring recursive calls). The running time of the resulting algorithm is

α(n) = O(n) +

n−1∑
i=0

(α(i) + α(n − i − 1)) ,

and the solution of this recurrence is O(n3n) .
We can, of course, improve the running time using memoization. There are only O(n2) different

recursive calls, and as such, the running time of CompBestTreeMemoize is O(n2) ·O(n) = O(n3).

Theorem 5.1.2 Can can compute the optimal binary search tree in O
(
n3

)
time using O

(
n2

)
space.

A further improvement raises from the fact that the root location is “monotone”. Formally, if
R[i, j] denotes the location of the element stored in the root for the elements A[i . . . j] then it holds
that R[i, j − 1] ≤ R[i, j] ≤ R[i, j + 1]. This limits the search space, and we can be more efficient in
the search. This leads to O

(
n2

)
algorithm. Details are in Jeff Erickson class notes.

2

Figure 5.1: A polygon and two possible triangulations of the polygon.

5.2 Optimal Triangulations
Given a convex polygon P in the plane, we would like to find the triangulation of P of minimum
total length. Namely, the total length of the diagonals of the triangulation of P, plus the (length of
the) perimeter of P are minimized. See Figure 5.1.

Definition 5.2.1 A set S ⊆ IRd is convex if for any to x, y ∈ S , the segment xy is contained in S .
A convex polygon is a closed cycle of segments, with no vertex pointing inward. Formally, it

is a simple closed polygonal curve which encloses a convex set.
A diagonal is a line segment connecting two vertices of a polygon which are not adjacent. A

triangulation is a partition of a convex polygon into (interior) disjoint triangles using diagonals.

Observation 5.2.2 Any triangulation of a convex polygon with n vertices is made out of exactly
n − 2 triangles.

Our purpose is to find the triangulation of P that has the
minimum total length. Namely, the total length of diagonals
used in the triangulation is minimized. We would like to
compute the optimal triangulation using divide and conquer.
As the figure on the right demonstrate, there is always a tri-
angle in the triangulation, that breaks the polygon into two
polygons. Thus, we can try and guess such a triangle in the
optimal triangulation, and recurse on the two polygons such
created. The only difficulty, is to do this in such a way that
the recursive subproblems can be described in succinct way.

1

2

3

4
5

6

7

8

To this end, we assume that the polygon is specified as list of
vertices 1 . . . n in a clockwise ordering. Namely, the input is a list
of the vertices of the polygon, for every vertex, the two coordinates
are specified. The key observation, is that in any triangulation of
P, there exist a triangle that uses the edge between vertex 1 and n
(red edge in figure on the left).

In particular, removing the triangle using the edge 1− n leaves
us with two polygons which their vertices are consecutive along
the original polygon.

3

Let M[i, j] denote the price of triangulating a polygon starting at vertex i and ending at vertex
j, where every diagonal used contributes its length twice to this quantity, and the perimeter edges
contribute their length exactly once. We have the following “natural” recurrence:

M[i, j] =

0 j ≤ i
0 j = i + 1
mini<k< j(∆(i, j, k) + M[i, k] + M[k, j]) Otherwise

.

Where Dist(i, j) =

√
(x[i] − x[j])2 +(y[i] − y[j])2 and ∆(i, j, k) = Dist(i, j) + Dist(j, k) + Dist(i, k),

where the ith point has coordinates (x[i], y[i]), for i = 1, . . . , n. Note, that the quantity we are
interested in is M[1, n], since it the triangulation of P with minimum total weight.

Using dynamic programming (or just memoization), we get an algorithm that computes optimal
triangulation in O(n3) time using O(n2) space.

5.3 Matrix Multiplication

We are given two matrix: (i) A is a matrix with dimensions p × q (i.e., p rows and q columns) and
(ii) B is a matrix of size q × r. The product matrix AB, with dimensions p × r, can be computed in
O(pqr) time using the standard algorithm.

A 1000 × 2
B 2 × 1000
C 1000 × 2

Things becomes considerably more interesting when we have to multiply a
chain for matrices. Consider for example the three matrices A, B and C with
dimensions as listed on the left. Computing the matrix ABC = A(BC) requires
2 · 1000 · 2 + 1000 · 2 · 2 = 8, 000 operations. On the other hand, computing the

same matrix using (AB)C requires 1000 · 2 · 1000 + 1000 · 1000 · 2 = 4, 000, 000. Note, that matrix
multiplication is associative, and as such (AB)C = A(BC).

Thus, given a chain of matrices that we need to multiply, the exact ordering in which we do the
multiplication matters as far to multiply the order is important as far as efficiency.

Problem 5.3.1 The input is n matrices M1, . . . ,Mn such that Mi is of size D[i − 1] × D[i] (i.e.,
Mi has D[i − 1] rows and D[i] columns), where D[0 . . . n] is array specifying the sizes. Find the
ordering of multiplications to compute M1 · M2 · · ·Mn−1 · Mn most efficiently.

Again, let us define a recurrence for this problem, where M[i, j] is the amount of work involved
in computing the product of the matrices Mi · · ·M j. We have

M[i, j] =

0 j = i
D[i − 1] · D[i] · D[i + 1] j = i + 1
mini≤k< j(M[i, k] + M[k + 1, j] + D[i − 1] · D[k] · D[j]) j > i + 1.

Again, using memoization (or dynamic programming), one can compute M[1, n], in O(n3)
time, using O(n2) space.

4

5.4 Longest Ascending Subsequence
Given an array of numbers A[1 . . . n] we are interested in finding the longest ascending subse-
quence. For example, if A = [6, 3, 2, 5, 1, 12] the longest ascending subsequence is 2, 5, 12. To
this end, let M[i] denote longest increasing subsequence having A[i] as the last element in the
subsequence. The recurrence on the maximum possible length, is

M[n] =

1 n = 1
1 + max

1≤k<n,A[k]<A[n]
M[k] otherwise.

The length of the longest increasing subsequence is maxn
i=1 M[i]. Again, using dynamic pro-

gramming, we get an algorithm with running time O(n2) for this problem. It is also not hard to
modify the algorithm so that it outputs this sequence (you should figure out the details of this
modification). A better O(n log n) solution is possible using some data-structure magic.

5.5 Pattern Matching

Tidbit
Magna Carta or Magna Charta -
the great charter that King John of
England was forced by the English
barons to grant at Runnymede, June
15, 1215, traditionally interpreted
as guaranteeing certain civil and po-
litical liberties.

Assume you have a string S = ”Magna Carta” and a pattern P =

”?ag∗at ∗a∗” where “?” can match a single character, and “*” can match
any substring. You would like to decide if the pattern matches the string.

We are interested in solving this problem using dynamic program-
ming. This is not too hard since this is similar to the edit-distance problem
that was already covered.

IsMatch(S [1 . . . n], P[1 . . .m])
if m = 0 and n = 0 then return TRUE.
if m = 0 then return FALSE.
if n = 0 then

if P[1 . . .m] is all stars then return TRUE
else return FALSE

if (P[m] = ’?’) then
return IsMatch(S [1 . . . n − 1], P[1 . . .m − 1])

if (P[m] , ’*’) then
if P[m] , S [n] then return FALSE
else return IsMatch(S [1 . . . n − 1], P[1 . . .m − 1])

for i = 0 to n do
if IsMatch(S [1 . . . i], P[1 . . .m − 1]) then

return TRUE
return FALSE

The resulting code is depicted
on the left, and as you can see this
is pretty tedious. Now, use memo-
ization together with this recursive
code, and you get an algorithm with
running time O

(
mn2

)
and space O(nm),

where the input string of length n,
and m is the length of the pattern.

Being slightly more clever, one
can get a faster algorithm with run-
ning time O(nm).

BTW, one can do even better.
A O(m + n) time is possible but it
requires Knuth-Morris-Pratt algorithm,
which is a fast string matching al-
gorithm.

5

	Dynamic programming II - The Recursion Strikes Back
	Optimal Search Trees
	Optimal Triangulations
	Matrix Multiplication
	Longest Ascending Subsequence
	Pattern Matching

