
Chapter 1

NP Completeness I
By Sariel Har-Peled, December 7, 2009¬ Version: 1.04

"Then you must begin a reading program immediately so that you man understand the crises of our age,"
Ignatius said solemnly. "Begin with the late Romans, including Boethius, of course. Then you should
dip rather extensively into early Medieval. You may skip the Renaissance and the Enlightenment. That
is mostly dangerous propaganda. Now, that I think about of it, you had better skip the Romantics and
the Victorians, too. For the contemporary period, you should study some selected comic books."

"You’re fantastic."

"I recommend Batman especially, for he tends to transcend the abysmal society in which he’s found
himself. His morality is rather rigid, also. I rather respect Batman."

– A confederacy of Dunces, John Kennedy Toole

1.1 Introduction
The question governing this course, would be the development of efficient algorithms. Hopefully,
what is an algorithm is a well understood concept. But what is an efficient algorithm? A natural
answer (but not the only one!) is an algorithm that runs quickly.

What do we mean by quickly? Well, we would like our algorithm to:

1. Scale with input size. That is, it should be able to handle large and hopefully huge inputs.

2. Low level implementation details should not matter, since they correspond to small improve-
ments in performance. Since faster CPUs keep appearing it follows that such improvements
would (usually) be taken care of by hardware.

3. What we will really care about are asymptotic running time. Explicitly, polynomial time.

In our discussion, we will consider the input size to be n, and we would like to bound the
overall running time by a function of n which is asymptotically as small as possible. An algorithm
with better asymptotic running time would be considered to be better.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Example 1.1.1 It is illuminating to consider a concrete example. So assume we have an algorithm
for a problem that needs to perform c2n operations to handle an input of size n, where c is a
small constant (say 10). Let assume that we have a CPU that can do 109 operations a second. (A
somewhat conservative assumption, as currently [Jan 2006]­, the blue-gene supercomputer can do
about 3 · 1014 floating-point operations a second. Since this super computer has about 131, 072
CPUs, it is not something you would have on your desktop any time soon.) Since 210 ≈ 103, you
have that our (cheap) computer can solve in (roughly) 10 seconds a problem of size n = 27.

But what if we increase the problem size to n = 54? This would take our computer about 3
million years to solve. (In fact, it is better to just wait for faster computers to show up, and then
try to solve the problem. Although there are good reasons to believe that the exponential growth
in computer performance we saw in the last 40 years is about to end. Thus, unless a substantial
breakthrough in computing happens, it might be that solving problems of size, say, n = 100 for
this problem would forever be outside our reach.)

The situation dramatically change if we consider an algorithm with running time 10n2. Then,
in one second our computer can handle input of size n = 104. Problem of size n = 108 can be
solved in 10n2/109 = 1017−9 = 108 which is about 3 years of computing (but blue-gene might be
able to solve it in less than 20 minutes!).

Thus, algorithms that have asymptotically a polynomial running time (i.e., the algorithms run-
ning time is bounded by O(nc) where c is a constant) are able to solve large instances of the input
and can solve the problem even if the problem size increases dramatically.

Can we solve all problems in polynomial time? The answer to this question is unfortunately
no. There are several synthetic examples of this, but in fact it is believed that a large class of
important problems can not be solved in polynomial time.

Problem: Circuit Satisfiability

Instance: A circuit C with m inputs
Question: Is there an input for C such that C returns true for it.

As a concrete example, consider the circuit depicted on the
right.

Currently, all solutions known to Circuit Satisfiability require
checking all possibilities, requiring (roughly) 2m time. Which
is exponential time and too slow to be useful in solving large
instances of the problem.

This leads us to the most important open question in theoret-
ical computer science:

Question 1.1.2 Can one solve Circuit Satisfiability in polynomial time?

The common belief is that Circuit Satisfiability can NOT be solved in polynomial time.
Circuit Satisfiability has two interesting properties.

­But the recently announced Super Computer that would be completed in 2011 in Urbana, is naturally way faster.
It supposedly would do 1015 operations a second (i.e., petaflop). Blue-gene probably can not sustain its theoretical
speed stated above, which is only slightly slower.

2

1. Given a supposed positive solution, with a detailed assignment (i.e., proof): x1 ← 0, x2 ←

1, ..., xm ← 1 one can verify in polynomial time if this assignment really satisfies C. This
is done by computing what every gate in the circuit what its output is for this input. Thus,
computing the output of C for its input. This requires evaluating the gates of C in the right
order, and there are some technicalities involved, which we are ignoring. (But you should
verify that you know how to write a program that does that efficiently.)

Intuitively, this is the difference in hardness between coming up with a proof (hard), and
checking that a proof is correct (easy).

2. It is a decision problem. For a specific input an algorithm that solves this problem has to
output either TRUE or FALSE.

1.2 Complexity classes
Definition 1.2.1 (P: Polynomial time) Let P denote is the class of all decision problems that can
be solved in polynomial time in the size of the input.

Definition 1.2.2 (NP: Nondeterministic Polynomial time) Let NP be the class of all decision
problems that can be verified in polynomial time. Namely, for an input of size n, if the solu-
tion to the given instance is true, one (i.e., an oracle) can provide you with a proof (of polynomial
length!) that the answer is indeed TRUE for this instance. Furthermore, you can verify this proof
in polynomial time in the length of the proof.

Figure 1.1: The relation be-
tween the different complexity
classes P, NP, co − NP.

Clearly, if a decision problem can be solved in polyno-
mial time, then it can be verified in polynomial time. Thus,
P ⊆ NP.

Remark 1.2.3 The notation NP stands for Non-deterministic
Polynomial. The name come from a formal definition of
this class using Turing machines where the machines first
guesses (i.e., the non-deterministic stage) the proof that the
instance is TRUE, and then the algorithm verifies the proof.

Definition 1.2.4 (-NP) The class -NP is the opposite of NP – if the answer is FALSE, then
there exists a short proof for this negative answer, and this proof can be verified in polynomial
time.

See Figure 1.1 for the currently believed relationship between these classes (of course, as men-
tioned above, P ⊆ NP and P ⊆ -NP is easy to verify). Note, that it is quite possible that
P = NP = -NP, although this would be extremely surprising.

Definition 1.2.5 A problem Π is NP-H, if being able to solve Π in polynomial time implies
that P = NP.

Question 1.2.6 Are there any problems which are NP-H?

3

Intuitively, being NP-H implies that a problem is ridiculously hard. Conceptually, it would
imply that proving and verifying are equally hard - which nobody that did 473g believes is true.

In particular, a problem which is NP-H is at least as hard as ALL the problems in NP, as
such it is safe to assume, based on overwhelming evidence that it can not be solved in polynomial
time.

Theorem 1.2.7 (Cook’s Theorem) Circuit Satisfiability is NP-H.

Definition 1.2.8 A problem Π is NP-C (NPC in short) if it is both NP-H and in NP.

Clearly, Circuit Satisfiability is NP-C, since we can verify a positive solution in poly-
nomial time in the size of the circuit,

NP

co-NP

NP-Hard

P

NP-Complete

Figure 1.2: The relation between the com-
plexity classes.

By now, thousands of problems have been shown
to be NP-C. It is extremely unlikely that any
of them can be solved in polynomial time.

Definition 1.2.9 In the formula satisfiability prob-
lem, (a.k.a. SAT) we are given a formula, for exam-
ple:(

a ∨ b ∨ c ∨ d
)
⇔

(
(b ∧ c) ∨(a⇒ d) ∨ (c , a ∧ b)

)
and the question is whether we can find an assign-
ment to the variables a, b, c, . . . such that the formula
evaluates to TRUE.

It seems that SAT and Circuit Satisfiability are “sim-
ilar” and as such both should be NP-H.

1.2.1 Reductions

Let A and B be two decision problems.
Given an input I for problem A, a reduction is a transformation of the input I into a new input

I′, such that
A(I) is TRUE ⇔ B(I′) is TRUE.

Thus, one can solve A by first transforming and input I into an input I′ of B, and solving B(I′).
This idea of using reductions is omnipresent, and used almost in any program you write.
Let T : I → I′ be the input transformation that maps A into B. How fast is T? Well, for our

nafarious purposes we need polynomial reductions; that is, reductions that take polynomial time.
For example, given an instance of Circuit Satisfiability, we would like to generate an equivalent

formula. We will explicitly write down what the circuit computes in a formula form. To see how
to do this, consider the following example.

4

y1 = x1 ∧ x4 y2 = x4 y3 = y2 ∧ x3

y4 = x2 ∨ y1 y5 = x2 y6 = x5

y7 = y3 ∨ y5 y8 = y4 ∧ y7 ∧ y6 y8

We introduced a variable for each wire in the circuit, and we wrote down explicitly what each
gate computes. Namely, we wrote a formula for each gate, which holds only if the gate computes
correctly the output for its given input.

Input: boolean circuit C
⇓ O(size o f C)

transform C into boolean formula F
⇓

Find SAT assign’ for F using SAT solver

⇓

Return TRUE if F is sat’, otherwise false.

Figure 1.3: Algorithm for solving CSAT using
an algorithm that solves the SAT problem

The circuit is satisfiable if and only if
there is an assignment such that all the above
formulas hold. Alternatively, the circuit is
satisfiable if and only if the following (sin-
gle) formula is satisfiable

(y1 = x1 ∧ x4) ∧(y2 = x4) ∧(y3 = y2 ∧ x3)
∧(y4 = x2 ∨ y1) ∧(y5 = x2)
∧(y6 = x5) ∧(y7 = y3 ∨ y5)
∧(y8 = y4 ∧ y7 ∧ y6) ∧ y8.

It is easy to verify that this transformation
can be done in polynomial time.

The resulting reduction is depicted in Fig-
ure 1.3.

Namely, given a solver for SAT that runs in TSAT(n), we we can solve the CSAT problem in
time

TCS AT (n) ≤ O(n) + TS AT (O(n)),

where n is the size of the input circuit. Namely, if we have polynomial time algorithm that solves
SAT then we can solve CSAT in polynomial time.

Another way of looking at it, is that we believe that solving CSAT requires exponential time;
namely, TCSAT(n) ≥ 2n. Which implies by the above reduction that

2n ≤ TCS AT (n) ≤ O(n) + TS AT (O(n)).

Namely, TSAT(n) ≥ 2n/c − O(n), where c is some positive constant. Namely, if we believe that we
need exponential time to solve CSAT then we need exponential time to solve SAT.

This implies that if SAT ∈ P then CSAT ∈ P.
We just proved that SAT is as hard as CSAT. Clearly, SAT ∈ NP which implies the following

theorem.

Theorem 1.2.10 SAT (formula satisfiability) is NP-C.

5

1.3 More NP-C problems

1.3.1 3SAT

A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (AND) of several
clauses, where a clause is the disjunction (or) of several literals, and a literal is either a variable or
a negation of a variable. For example, the following is a CNF formula:

clause︷ ︸︸ ︷
(a ∨ b ∨ c)∧(a ∨ e) ∧ (c ∨ e).

Definition 1.3.1 3CNF formula is a CNF formula with exactly three literals in each clause.

The problem 3SAT is formula satisfiability when the formula is restricted to be a 3CNF formula.

Theorem 1.3.2 3SAT is NP-C.

Proof: First, it is easy to verify that 3SAT is in NP.
Next, we will show that 3SAT is NP-C by a reduction from CSAT (i.e., Circuit Satis-

fiability). As such, our input is a circuit C of size n. We will transform it into a 3CNF in several
steps:

Input: boolean circuit
⇓ O(n)

3CNF formula
⇓

Decide if sat’ using 3SAT solver

⇓

Return TRUE or False

Figure 1.4: Reduction from CSAT to
3SAT

(i) Make sure every AND/OR gate has only two
inputs. If (say) an AND gate have more inputs, we
replace it by cascaded tree of AND gates, each one
of degree two.

(ii) Write down the circuit as a formula by travers-
ing the circuit, as was done for SAT. Let F be the
resulting formula.

A clause corresponding to a gate in F will be of
the following forms: (i) a = b ∧ c if it corresponds
to an AND gate, (ii) a = b ∨ c if it corresponds
to an OR gate, and (iii) a = b if it corresponds
to a NOT gate. Notice, that except for the single
clause corresponding to the output of the circuit,
all clauses are of this form. The clause that corresponds to the output is just a single variable.

(iii) Change every gate clause into several CNF clauses. For example, an AND gate clause of
the form a = b ∧ c will be translated into(

a ∨ b ∨ c
)
∧(a ∨ b) ∧(a ∨ c) . (1.1)

Note that Eq. (1.1) is true if and only if a = b ∧ c is true. Namely, we can replace the clause
a = b ∧ c in F by Eq. (1.1).

Similarly, an OR gate clause the form a = b ∨ c in F will be transformed into

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c).

Finally, a clause a = b, corresponding to a NOT gate, will be transformed into

(a ∨ b) ∧ (a ∨ b).

6

(iv) Make sure every clause is exactly three literals. Thus, a single variable clause a would be
replaced by

(a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y),

by introducing two new dummy variables x and y. And a two variable clause a ∨ b would be
replaced by

(a ∨ b ∨ y) ∧ (a ∨ b ∨ y),

by introducing the dummy variable y.
This completes the reduction, and results in a new 3CNF formula G which is satisfiable if and

only if the original circuit C is satisfiable. The reduction is depicted in Figure 1.4. Namely, we
generated an equivalent 3CNF to the original circuit. We conclude that if T3SAT(n) is the time
required to solve 3SAT then

TCS AT (n) ≤ O(n) + T3S AT (O(n)),

which implies that if we have a polynomial time algorithm for 3SAT, we would solve CSAT is
polynomial time. Namely, 3SAT is NP-C.

1.4 Bibliographical Notes
Cook’s theorem was proved by Stephen Cook (http://en.wikipedia.org/wiki/Stephen_
Cook). It was proven independently by Leonid Levin (http://en.wikipedia.org/wiki/Leonid_
Levin) more or less in the same time. Thus, this theorem should be referred to as the Cook-Levin
theorem.

The standard text on this topic is [GJ90]. Another useful book is [ACG+99], which is a more
recent and more updated, and contain more advanced stuff.

Bibliography
[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi. Complexity and approximation. Springer-Verlag, Berlin, 1999.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

7

http://en.wikipedia.org/wiki/Stephen_Cook
http://en.wikipedia.org/wiki/Stephen_Cook
http://en.wikipedia.org/wiki/Leonid_Levin
http://en.wikipedia.org/wiki/Leonid_Levin

	NP Completeness I
	Introduction
	Complexity classes
	Reductions

	More NP-Complete problems
	3SAT

	Bibliographical Notes

	Bibliography

