
CS 573: Algorithms, Fall 2009
Homework 5, due Thursday, November 19, 23:59:59, 2009

Version 1.12

Name:

Net ID: Alias:

# Score Grader

1.

2.

3.

4.

5.

6.

Total

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your homework. If you are on campus, submit the homework by
submitting it in SC 3306 (or sliding it under the door).

In addition, the sirloin which I threw overboard, instead of drifting off into the void, didn’t seem to want to leave
the rocket and revolved about it, a second artificial satellite, which produced a brief eclipse of the sun every eleven
minutes and four seconds. To calm my nerves I calculated till evening the components of its trajectory, as well as
the orbital perturbation caused by the presence of the lost wrench. I figured out that for the next six million years
the sirloin, rotating about the ship in circular path, would lead the wrench, then catch up with it from behind and
pass it again.

– The Star Diaries, Stanislaw Lem.

Required Problems

1. Slack form
[10 Points]

Let L be a linear program given in slack form, with n nonbasic variables N , and m basic
variables B. Let N ′ and B′ be a different partition of N ∪B, such that |N ′ ∪B′| = |N ∪B|.
Show a polynomial time algorithm that computes an equivalent slack form that has N ′ as the
nonbasic variables and b′ as the basic variables. How fast is your algorithm?

2. Tedious Computations
[20 Points]

Provide detailed solutions for the following problems, showing each pivoting stage separately.
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(A) [5 Points]
maximize 6x1 + 8x2 + 5x3 + 9x4

subject to
2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0.

(B) [5 Points]
maximize 2x1 + x2

subject to
2x1 + x2 ≤ 4
2x1 + 3x2 ≤ 3
4x1 + x2 ≤ 5
x1 + 5x2 ≤ 1
x1, x2 ≥ 0.

(C) [5 Points]
maximize 6x1 + 8x2 + 5x3 + 9x4

subject to
x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0.

(D) [5 Points]
minimize x12 + 8x13 + 9x14 + 2x23 + 7x24 + 3x34

subject to
x12 + x13 + x14 ≥ 1
−x12 + x23 + x24 = 0
−x13 − x23 + x34 = 0
x14 + x24 + x34 ≤ 1
x12, x13, . . . , x34 ≥ 0.

3. Linear Programming for a Graph
[10 Points]

(A) [3 Points] You are given a weighted, directed graph G = (V,E), with weight function
w : E → R mapping edges to real-valued weights, a source vertex s, and a destination
vertex t. Show how to compute the value d[t], which is the weight of the shortest weighted
path from s to t, by using linear programming.

(B) [3 Points]
Given a graph G as in (A), write a single linear program that by solving it you compute
d[v], which is the shortest-path weight from s to v, for ell the vertices v ∈ V .

(C) [4 Points]
In the minimum-cost multicommodity-flow problem, we are given a directed graph G =
(V,E), in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and a cost
α(u, v). As in the multicommodity-flow problem (Chapter 29.2, CLRS), we are given
k different commodities, K1, K2, . . . , Kk, where commodity i is specified by the triple
Ki = (si, ti, di). Here si is the source of commodity i, ti is the sink of commodity i, and
di is the demand, which is the desired flow value for commodity i from si to ti. We define
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a flow for commodity i, denoted by fi, (so that fi(u, v) is the flow of commodity i from
vertex u to vertex v) to be a real-valued function that satisfies the flow-conservation,
skew-symmetry, and capacity constraints. We now define f(u, v), the aggregate flow
to be sum of the various commodity flows, so that f(u, v) =

∑k
i=1 fi(u, v). The aggregate

flow on edge (u, v) must be no more than the capacity of edge (u, v).
The cost of a flow is

∑
u,v∈V f(u, v)α(u, v), and the goal is to find the feasible flow of

minimum cost. Express this problem as a linear program.

4. Linear programming
[20 Points]

(A) [10 Points] Show the following problem in NP-hard.

Problem: Integer Linear Programming

Instance: A linear program in standard form, in which A and B contain
only integers.
Question: Is there a solution for the linear program, in which the x
must take integer values?

(B) [5 Points] A steel company must decide how to allocate next week’s time on a rolling
mill, which is a machine that takes unfinished slabs of steel as input and produce either
of two semi-finished products: bands and coils. The mill’s two products come off the
rolling line at different rates:

Bands 200 tons/hr
Coils 140 tons/hr.

They also produce different profits:

Bands $ 25/ton
Coils $ 30/ton.

Based on current booked orders, the following upper bounds are placed on the amount
of each product to produce:

Bands 6000 tons
Coils 4000 tons.

Given that there are 40 hours of production time available this week, the problem is to
decide how many tons of bands and how many tons of coils should be produced to yield
the greatest profit. Formulate this problem as a linear programming problem. Can you
solve this problem by inspection?

(C) [5 Points] A small airline, Ivy Air, flies between three cities: Ithaca (a small town in
upstate New York), Newark (an eyesore in beautiful New Jersey), and Boston (a yuppie
town in Massachusetts). They offer several flights but, for this problem, let us focus on
the Friday afternoon flight that departs from Ithaca, stops in Newark, and continues to
Boston. There are three types of passengers:

i. Those traveling from Ithaca to Newark (god only knows why).
ii. Those traveling from Newark to Boston (a very good idea).
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iii. Those traveling from Ithaca to Boston (it depends on who you know).

The aircraft is a small commuter plane that seats 30 passengers. The airline offers three
fare classes:

i. Y class: full coach.
ii. B class: nonrefundable.
iii. M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., competitors),
have been set and advertised as follows:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 300 160 360
B 220 130 280
M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined the following
upper bounds on the number of potential customers in each of the 9 possible origin-
destination/fare-class combinations:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 4 8 3
B 8 13 10
M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/fare-class
combinations to sell. The constraints are that the place cannot be overbooked on either
the two legs of the flight and that the number of tickets made available cannot exceed
the forecasted maximum demand. The objective is to maximize the revenue. Formulate
this problem as a linear programming problem.

5. Some duality required.
[20 Points]

(A) [5 Points] What is the dual of the following LP?

maximize x1 − 2x2

subject to x1 + 2x2 − x3 + x4 ≥ 0
4x1 + 3x2 + 4x3 − 2x4 ≤ 3
− x1 − x2 + 2x3 + x4 = 1
x2, x3 ≥ 0

(B) [7 Points] Solve the above LP in detail, providing the state of the LP after each pivot
step. What is the value of the target function of your LP?

(C) [8 Points] Solve the dual of the above LP in detail, providing the state of the LP after
each pivot step.
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6. Strong duality.
[20 Points]

Consider a directed graph G with source vertex s and target vertex t and associated costs
c· ≥ 0 on the edges. Let P denote the set of all the directed (simple) paths from s to t in G.

Consider the following (very large) integer program:

minimize
∑

e∈E(G)

cexe

subject to xe ∈ {0, 1} ∀e ∈ E(G)∑
e∈π

xe ≥ 1 ∀π ∈ P.

(A) [5 Points] What does this IP computes?

(B) [5 Points] Write down the relaxation of this IP into a linear program.

(C) [5 Points] Write down the dual of the LP from (B). What is the interpretation of this
new LP? What is it computing for the graph G (prove your answer)?

(D) [5 Points] The strong duality theorem states the following.
Theorem 0.1 If the primal LP problem has an optimal solution
x∗ = (x∗1, . . . , x

∗
n) then the dual also has an optimal solution, y∗ =

(y∗1, . . . , y
∗
m), such that ∑

j

cjx
∗
j =

∑
i

biy
∗
i .

In the context of (A)-(C) what result is implied by this theorem if we apply it to the
primal LP and its dual above? (For this, you can assume that the optimal solution to
the LP of (B) is integral – which is not quite true – things are slightly more complicated
than that.)
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