
CS 573: Algorithms, Fall 2009
Homework 1, due Monday, September 14, 23:59:59, 2009

Version 1.0

Name:

Net ID: Alias:

Score Grader

1.

2.

3.

4.

Total

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Staple this sheet to the top of your homework. If you are on campus, submit the homework by
submitting it in SC 3306 (or sliding it under the door).

Note: You will be held accountable for the appropriate responses for answers (e.g. give models,
proofs, analysis, etc). For NP-Complete problems you should prove everything rigorously, i.e. for
showing that it is in NP, give a description of a certificate and a polynomial time algorithm to verify
it, and for showing problems are NP-Hard, you must show that your reduction is polynomial time
(by similarly proving something about the algorithm that does the transformation) and proving
both directions of the ‘if and only if’ (a solution of one is a solution of the other) of the many-one
reduction.

This homework should be easier than hw0. You are encouraged to discuss problems in
this homework with people, but should submit your homework on your own.

Only of myself I know how to tell,
my world is as narrow as an ant’s.
like an ant too my burden I carry,
too great and heavy for my frail shoulder.

My way too - like the ant’s to the treetop -
is a way of pain and toil;
a gigantic hand, assured and malicious,
a mocking hand hinders

All my paths are made bleak and tearful
by the constant dread of this giant hand.

Why do you call to me, wondrous shores?
Why do you lie to me, distant lights?

– Only of Myself, Rachel

1

Required Problems

1. Traveling in elephants.
[20 Points]

The TSP faun, the stepfather of the deduction fairy, had visited you before school started and
gave you, as a token of appreciation, a black-box that can solve TSP in polynomial time (note
that this black box solves the decision problem). Let us refer to this black box decider TSP.
Given as input a complete graph G over n vertices, a cost function c(·) over the edges (the
costs are non-negative integers), and a target t, decider TSP can in, say linear time, decide
if G has a TSP tour of cost at most t in it.

Show, how to build a fast algorithm (that uses decider TSP) that given a complete graph
over n vertices and a cost function c(·) computes the cheapest TSP in G; namely, it outputs
the edges used by the shortest TSP. What is the running time of your algorithm as a function
of n, and W = maxe∈E(G) c(e). Naturally, the faster your algorithm the better it is.

(It seems unlikely that there is a polynomial time algorithm for this problem with running
time that is independent of W . Such algorithms are referred to as being strongly polynomial.
Naturally, extra credit would be given to such a solution, or a proof that such an algorithm
does not exist unless P = NP .)

2. NP-Completeness collection
[30 Points]

Prove that the following problems are NP-Complete.

A. [6 Points]

Problem: MINIMUM SET COVER

Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . , Sk in C such that S ⊆ ∪k

i=1Si?

B. [6 Points]

Problem: BIN PACKING

Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U , an
integer bin capacity B, and a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . , UK such
that the sum of the sizes of the items inside each Ui is B or less?

C. [6 Points]

Problem: TILING

Instance: Finite set R of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of R inside R, so
that no pair of the rectangles intersect, and all the rectangles have their
edges parallel of the edges of R?

D. [6 Points]

2

Problem: HITTING SET

Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is,
a subset S′ ⊆ S with |S′| ≤ K and such that S′ contains at least one
element from each subset in C.

E. [6 Points]

Problem: Max Degree Spanning Tree

Instance: Graph G = (V,E) and integer k
Question: Does G contains a spanning tree T where every node in T is
of degree at most k?

3. k-line graph.
[30 Points]

A graph G is a k-line graph if it vertices are

V (G) =
{

i
∣∣∣ i = 1, . . . , n

}
,

and two vertices i and j can be connected only if |i− j| ≤ k. Here n is the number of vertices
of G.

(A) [15 Points] Let k be a constant.
Provide an algorithm (as fast as possible) that in polynomial time computes the maximum
size Independent Set for G, where G is a k-line graph. What is the running time of your
algorithm (explicitly specify the dependency on k)?

(B) [15 Points] Let k be a constant.
Provide an algorithm (as fast as possible) that in polynomial time computes the minimum
COLORING for G. That is, it computes a valid coloring of the vertices of G that uses
the minimum number of colors. What is the running time of your algorithm (explicitly
specify the dependency on k)?

4. Poly time subroutines can lead to exponential algorithms
[20 Points]

Show that an algorithm that makes at most a constant number of calls to polynomial-time
subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-
time subroutines may result in an exponential-time algorithm.

3

