Parallel Numerical Algorithms

Chapter 16 - Particle Simulations

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

N-Body Model

Newton's Second Law

$$F = m a$$

• Force between particles at positions x_i and x_j

$$f(x_i, x_i)$$

Overall force on ith particle

$$F(x_i) = \sum_{j=1}^{n} f(x_i, x_j)$$

Reducing Cost of Force Evaluation

- Use Newton's Third Law: $f(x_i, x_j) = -f(x_j, x_i)$ to reduce work by essentially half
- ullet Use cutoff radius R and update force due to particles more distant than R less often, thereby reducing cost of force evaluation to $\mathcal{O}(n R^3 + \epsilon n^2)$
- Constrain groups of particles to move together using, e.g., SHAKE algorithm
- Use hierarchical ("tree") or multipole methods to reduce cost to $\mathcal{O}(n\,\log n)$ or even $\mathcal{O}(n),$ but with some sacrifice in accuracy

Parallelizing Particle-Particle Method

- Arrange tasks in 2-D grid, with task (i, j) computing force between particles i and j
- Let diagonal elements be "home" to respective particles
- Each force pair computation is perfectly parallel:

f11 f12 f13 f14 ... f1n f21 f22 f23 f24 ... f2n

fn1 fn2 fn3 fn4 ... fnn

N-Body Problems

- Many physical systems can be modeled as collection of interacting particles
- "Particles" vary from atoms in molecule to planets in solar system or stars in galaxy
- Particles exert mutual forces on each other, such as gravitational or electrostatic forces

System of ODEs

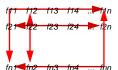
$$F(x_i) = m_i \frac{d^2 x_i}{dt^2}$$

• Verlet time-stepping scheme

$$x_i^{k+1} = 2x_i^k - x_i^{k-1} + (\Delta t)^2 F(x_i^k) / m_i$$

- For long time integration, symplectic integrators are appropriate (preserve geometric properties, such as orbits)
- $\mathcal{O}(n^2)$ cost of evaluating force at each time step dominates overall computational cost

- Straightforward force evaluation naturally parallel but total work prohibitive and memory requirements may be excessive
- Methods for reducing total work also complicate parallel implementation



ullet Broadcast position of particle i to all tasks in same row and column

Particle-Particle Method

- Reduce forces to diagonal along column and perform time integration
- Due to symmetry, could reduce along rows instead

- Simplest approach is to consider this an all-to-all operation: each process sends positions of particles that it owns to all other processes
- Use MPI_Alltoall if each process has same number of particles or MPI_Alltoallv otherwise
- This is very communication-intensive and must be completed before any computation
- In addition, each process must store locations of all n particles
- Is there good alternative?

- This algorithm is sometimes called a digital orrery
- Introduced in 1985 paper in IEEE TOC, 10 SIMD computers, connected in a ring
- GRAPE computers extend approach of using special-purpose hardware, achieving over 2 PetaFLOPS sustained (using N^2 direct algorithm). See <code>nbodylab</code>. interconnect.com/nbl_grape_history.html

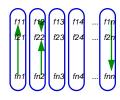
GRAPE-6 board

- Forces have infinite range, but with declining strength
- Three major options

Handling Long Range Forces

- Perform full computation at $\mathcal{O}(n^2)$ cost
- Discard forces from particles beyond certain range. introducing error that is bounded away from zero
- · Approximate long-range forces, exploiting behavior of force and/or features of problem
- Various approaches available for approximating long-range forces

Particle-Particle Method



- If agglomerate by columns, then reduction requires no communication, and broadcast needed only across rows
- Due to symmetry, could agglomerate along rows instead

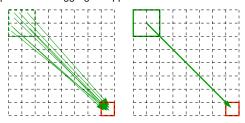
- Rather than perform All-to-all communication as single step, arrange communication in pipeline: in first step, process i sends locations of its particles to process i+1 \pmod{p} and receives from process $i + p - 1 \pmod{p}$
- Each process uses information received in computing force, then can discard the position data
- Computation and communication can be overlapped
- Pipeline requires p-1 steps, however, so algorithm is not scalable

- Simple algorithm has two major drawbacks
 - work is $\mathcal{O}(n^2)$
 - communication is $\mathcal{O}(p)$
- Reducing work may also allow reduction in communication

- Aggregate distant particles into cells and represent effect of all particles in a cell by monopole (first term in multipole expansion) evaluated at center of cell
- Use larger cells at greater distances
- \bullet Leads to $\mathcal{O}(n\log n)$ method
- But approximation is relatively crude
- Early versions of this were shown by Barnes and Hut
- Algorithm often called tree code

Tree Code for N-Body Problems

 Tree code approach replaces influence of each far-away particle with aggregate approximate force



Shown here is replacement of forces from four boxes in upper left with one force used by box in lower right

Fast Multipole Method

Multipole Representation

- To avoid accuracy problem of monopole expansion, use full multipole expansion
- Simple approach yields $\mathcal{O}(n \log n)$ method with controllable accuracy; can be more accurate than direct method for large n due to reduced rounding error
- Additional tricks allow collecting terms, reducing complexity to O(n) (but with substantial constant), giving Fast Multipole Method of Greengard and Rokhlin

Limitations of Particle-in-Cell

- Smoothing out particles introduces significant error
- Error may be reduced (but not eliminated) by spliting force into two parts:

$$F = F_{near} + F_{far}$$

- ullet Compute F_{far} force due to far-away particles using Particle-in-cell; must remove contribution from nearby
- Compute F_{near} force due to near-by particles using simple particle-particle method
- Known as particle-particle-particle-in-mesh, or PPPM,

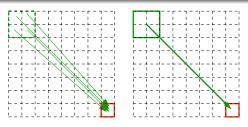
method

Final Remarks

- Methods for n-body problem often trade accuracy for work
- Success often depends critically on time integration scheme and model of forces
- Load balancing can be crucial to achieve scalable performance
- Task or process *virtualization* can help organize code
- Parallel approach may consider decompositions in space (as in tree or multipole methods) or particles (as in digital orrery)

Parallel Particle Simultation

Parallelizing Tree Code



- Divide domain into patches, with each patch assigned to a
- Tree code replaces communication with all processes by communication with fewer processes

 For many n-body calculations, force can be represented as gradient of a potential:

$$F = -\nabla \phi$$

- ullet Potential ϕ related to forces produced by particles through field equation
- For electostatics or gravity,

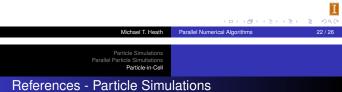
$$\nabla^2 \phi = -c\rho$$

where ρ is charge or mass density

- This suggests simple approach: Define mesh and assign particles to nodes of mesh, preserving charge or mass
- Solve Poisson problem
- Compute force as $F = -\nabla \phi$

Parallelizing Particle in Cell Algorithm

- Already know how to solve Poisson problem in parallel using methods such as FFT or multigrid
- FFT requires significant communication
- Multigrid reduces communication requirements and may scale better
- Load balancing requires more adaptive approach to assignment of particles to processes



- . M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1987
- D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., Academic Press, 2002
- M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications, Springer, 2007
- J. M. Haile, Molecular Dynamics Simulations: Elementary Methods, Wiley, 1992
- E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer, 2006

References - Particle Simulations

- R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Institute of Physics, 1988
- B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, 2005
- J. A. McCammon, B. M. Pettitt, and L. R. Scott, Ordinary differential equations of molecular dynamics, Comput. Math. Appl., 28:319-326, 1994
- S. Pfalzner and P. Gibbon, Many-Body Tree Methods in Physics, Cambridge University Press, 1996
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, 1995
- T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd ed., Springer, 2010

Michael T. Heath Parallel Numerical Algorithms

References - Parallel Particle Simulations

- M. Driscoll et al., A communication-optimal n-body algorithm for direct interactions, IPDPS, Boston, May 2013
- B. A. Hendrickson and S. J. Plimpton, Parallel many-body simulations without all-to-all communication, J. Parallel Distrib. Comput. 27:15-25, 1995
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Physics 117:1-19, 1995
- H. Schreiber, O. Steinhauser, and P. Schuster, Parallel molecular dynamics of biomolecules, Parallel Comput. 18:557-573, 1992
- W. Smith, Molecular dynamics on hypercube parallel computers, Comp. Phys. Comm. 62:229-248, 1991
- . M. Snir, A note on n-body computations with cutoffs, Theory Comput. Sys. 37:295-318, 2004

Michael T. Heath Parallel Numerical Algorithms