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Numerical Methods for Partial Differential Equations

Partial differential equations are typically solved
numerically by finite difference, finite element, finite
volume, or spectral discretization

Such discretization yields system of linear or nonlinear
algebraic equations whose solution gives approximate
solution to PDE

Solving linear or nonlinear algebraic system is one major
source of parallelism in solving PDEs numerically

We will consider domain decomposition methods that
exploit natural parallelism in PDE and its discretization
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Alternating Schwarz Method

Consider elliptic PDE

Lu = f

on domain Ω = Ω1 ∪ Ω2, with boundary condition

u = g

on ∂ Ω

Ω1 Ω2

Γ1

Γ2
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Alternating Schwarz Method

Given initial guess u
(0)
2 on Ω2, for k = 0, 1, . . .

On Ω1, solve
Lu

(k+1)
1 = f

with boundary conditions

u
(k+1)
1 = g on ∂ Ω1 \ Γ1

u
(k+1)
1 = u

(k)
2 on Γ1

On Ω2, solve
Lu

(k+1)
2 = f

with boundary conditions

u
(k+1)
2 = g on ∂ Ω2 \ Γ2

u
(k+1)
2 = u

(k+1)
1 on Γ2
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Alternating Schwarz Method

Alternating iterations continue until convergence to solution
u on entire domain Ω

Schwarz proposed this method in 1870 to deal with regions
for which analytical solutions are not known

Today it is of interest, in discretized form, for suggesting
one of two major paradigms for solving PDEs numerically
by domain decomposition

Overlapping subdomains (Schwarz)
Non-overlapping subdomains (Schur)

Michael T. Heath Parallel Numerical Algorithms 6 / 66



Domain Decomposition
Computation with Grids

Scalability and Fault Tolerance

Overlapping Subdomains
Non-Overlapping Subdomains

Discretized Schwarz Method

Discretization yields n× n symmetric positive definite
linear algebraic system

Ax = b

For i = 1, 2, let Si be set of ni indices of grid points in
interior of Ωi, where ni = |Si|

Because subdomains overlap, S1 ∩ S2 6= ∅ and
n1 + n2 > n

For i = 1, 2, let Ri be ni × n Boolean restriction matrix
such that for any n-vector v, vi = Riv contains precisely
those components of v corresponding to indices in Si (i.e.,
nodes in Ωi)
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Discretized Schwarz Method

Conversely, n× ni extension matrix RT
i expands ni-vector

vi to n-vector v whose components corresponding to
indices in Si are same as those of vi, and whose
remaining components are all zero

Principal submatrices of A of order n1 and n2

corresponding to two subdomains are given by

A1 = R1ART
1

A2 = R2ART
2

A1

A2

O

O
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Discretized Schwarz Method

For discretized problem, alternating Schwarz iteration
takes form

x
k+ 1

2
= xk + RT

1 A
−1
1 R1(b−Axk)

xk+1 = x
k+ 1

2
+ RT

2 A
−1
2 R2(b−Ax

k+ 1
2
)

This method is analogous to block Gauss-Seidel, but with
overlapping blocks

Overall iteration matrix has form

(I −RT
1 A

−1
1 R1A)(I −RT

2 A
−1
2 R2A)

so this is known as multiplicative Schwarz method
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Discretized Schwarz Method

We have as yet achieved no parallelism, since two
subproblems must be solved sequentially for each
iteration, but instead of Gauss-Seidel, we can use block
Jacobi approach

x
k+ 1

2
= xk + RT

1 A
−1
1 R1(b−Axk)

xk+1 = x
k+ 1

2
+ RT

2 A
−1
2 R2(b−Axk)

whose subproblems can be solved simultaneously

With either Gauss-Seidel or Jacobi version, it can be
shown that iteration converges at rate independent of
mesh size, provided overlap between subdomains is
sufficiently large (and independent of mesh size)
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Discretized Schwarz Method

Eliminating x
k+ 1

2
in Jacobi version, we obtain

xk+1 = xk + (RT
1 A

−1
1 R1 + RT

2 A
−1
2 R2)(b−Axk)

which is just Richardson iteration with additive Schwarz
preconditioner

RT
1 A

−1
1 R1 + RT

2 A
−1
2 R2

Symmetry of preconditioned system means it can be used
in conjunction with conjugate gradient method to
accelerate convergence
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Discretized Schwarz Method

Multiplicative Schwarz iteration matrix is not symmetric, but
can be made symmetric by additional step with A−1

1 each
iteration

xk+ 1
3

= xk + RT
1 A

−1
1 R1(b−Axk)

xk+ 2
3

= xk+ 1
3

+ RT
2 A

−1
2 R2(b−Axk+ 1

3
)

xk+1 = xk+ 2
3

+ RT
1 A

−1
1 R1(b−Axk+ 2

3
)

which yields symmetric preconditioner that can be used in
conjunction with conjugate gradient method to accelerate
convergence
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To achieve higher degree of parallelism with Schwarz
method, we can apply two-domain algorithm recursively or
use many subdomains

If there are p overlapping subdomains, then define
matrices Ri and Ai as before, i = 1, . . . , p

Additive Schwarz preconditioner then takes form

p∑
i=1

RT
i A

−1
i Ri
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Resulting generalization of block-Jacobi iteration is highly
parallel, but not algorithmically scalable because
convergence rate degrades as p grows

Convergence rate can be restored by using coarse grid
correction to provide global coupling

If R0 and RT
0 are restriction and interpolation matrices

between coarse and fine grids, and A0 = R0ART
0 , then

additive Schwarz preconditioner becomes

p∑
i=0

RT
i A

−1
i Ri
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Multiplicative Schwarz iteration for p domains is defined
analogously

As with classical Gauss-Seidel vs. Jacobi, multiplicative
Schwarz has faster convergence rate than corresponding
additive Schwarz (though it still requires coarse grid
correction to remain scalable)

But unfortunately, multiplicative Schwarz appears to
provide no parallelism, as p subproblems per iteration must
be solved sequentially

As with classical Gauss-Seidel, parallelism can be
introduced by coloring subdomains to identify independent
subproblems that can be solved simultaneously
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12Ω

13Ω 14Ω15Ω 16Ω

7Ω

Ω11 Ω10Ω9

Ω8Ω6Ω5

ΩΩ3 Ω2Ω1 4
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Coarse Grid Correction

Coarse grid correction is necessary to retain algorithmic
scalability as number of subdomains grows

Reasonable choice for resolution of coarse grid is
√
h,

where h is mesh size of underlying fine grid
Options for solving coarse grid problem include

Partition coarse grid problem across processors in same
manner as fine grid problem
Solve coarse grid problem serially on one processor and
broadcast results
Solve entire coarse grid problem redundantly in parallel on
each processor

Choice among these depends on relative size of coarse
grid problem and relative speeds of communication and
computation
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Non-Overlapping Subdomains

We now consider adjacent subdomains whose only points
in common are along their mutual boundary

Ω1 Ω2

Γ

We partition indices of unknowns in corresponding discrete
linear system into three sets, S1 and S2 corresponding to
interior nodes in Ω1 and Ω2, respectively, and S3

corresponding to interface nodes in Γ
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Non-Overlapping Subdomains

Partitioning matrix and right-hand-side vector accordingly,
we obtain symmetric block linear systemA11 O A13

O A22 A23

AT
13 AT

23 A33

x1

x2

x3

 =

b1b2
b3



Zero blocks result from assumption that nodes in Ω1 are
not directly connected to nodes in Ω2, but only through
interface nodes in Γ
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Schur Complement

Block LU factorization of matrix A yields

A =

 I O O
O I O

AT
13A

−1
11 AT

23A
−1
22 I

A11 O A13

O A22 A23

O O S


where Schur complement matrix S is given by

S = A33 −AT
13A

−1
11 A13 −AT

23A
−1
22 A23
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Schur Complement

We can now determine interface unknowns x3 by solving
system

Sx3 = b̂3

where
b̂3 = b3 −AT

13A
−1
11 b1 −AT

23A
−1
22 b2

Remaining unknowns are then given by

x1 = A−1
11 (b1 −A13x3)

x2 = A−1
22 (b2 −A23x3)

which can be computed simultaneously
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Schur Complement

Schur complement matrix S is expensive to compute and
is generally dense even if A is sparse

But if Schur complement system Sx3 = b̂3 is solved
iteratively, then S need not be formed explicity

Matrix-vector multiplication by S requires solution in each
subdomain, implicitly involving A−1

11 and A−1
22 , which can be

done independently in parallel

Conditioning of S is generally better than that of A,
typically O(h−1) instead of O(h−2) for mesh size h, but
interface preconditioner is still needed to accelerate
convergence
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To achieve higher degree of parallelism with Schur method,
we can apply two-domain algorithm recursively or use
many subdomains

If there are p non-overlapping subdomains, let I be set of
indices of interior nodes of subdomains and B be set of
indices of interface nodes separating subdomains

Then discrete linear system has block form[
AII AIB

AT
IB ABB

] [
xI

xB

]
=

[
bI
bB

]
where AII = diag(A11, . . . ,App) is block diagonal
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Block LU factorization of matrix A yields system

SxB = b̂B

where Schur complement matrix S is given by

S = ABB −AT
IBA

−1
II AIB

and b̂B = bB −AT
IBA

−1
II bI

As before, this system can be solved iteratively without
forming S explicitly, and interface preconditioner is used to
accelerate convergence
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Interior unknowns are then given by

xI = A−1
II (bI −AIBxB)

All solves involving A−1
II , both in iterative phase for

computing interface unknowns and subsequent
computation of interior unknowns, can be performed on all
subdomains in parallel because AII is block diagonal
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Parallel Computation with Grids

Two basic approaches to parallel numerical solution of
PDEs

Domain decomposition based on original PDE, which yields
multiple problems to be solved in parallel, each on different
subdomain
Parallel implementation of serial algorithm for solving
discretized version of original problem

Either approach ultimately leads to distribution of discrete
mesh or grid across processors

Communication between processors required to provide
interface between subdomains or for parallel solution of
discrete problem (e.g., matrix-vector multiplication for
iterative methods)
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Parallel Computation with Grids

We will now consider some practical issues in
implementing such grid-based computations in parallel

For simplicity, we focus on regular finite difference grids in
2-D; unstructured meshes (e.g., finite element) and 3-D
are slightly more complicated but issues are similar

Communication is required whenever stencil for given point
includes points on another processor

For greater efficiency in message passing, all such
communications for given step (iteration or time step) are
bundled together by maintaining “ghost ” points,
overlapping between two subgrids

Michael T. Heath Parallel Numerical Algorithms 27 / 66



Domain Decomposition
Computation with Grids

Scalability and Fault Tolerance

Parallel Computation with Grids
Ghost Points
Multigrid

Ghost Points

grid points ghost points
stencil
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Ghost Points

For simple five-point stencil, single layer of ghost points
suffices

For higher-order approximation with larger stencil, more
layers of ghost points may be needed for wider overlap

Wider overlap may also benefit some algorithms, such as
Gauss-Seidel with red-black ordering

For standard nine-point stencil, corner ghost points are
required, but communication between “diagonal”
processors can be avoided by properly synchronizing
successive horizontal and vertical communications
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Diagonal Trick

In nine-point stencil, there are two types of ghost point
communication: edges must be exchanged with
North/South/East/West neighbors, and corners must be
exchanged with NE/SE/NW/SW neighbors
Why not simply perform eight communication steps?
Time to exchange ghost points can be estimated as
Tcomm = 4(ts + ntw) + 4(ts + tw)

Recall that ts � tw, so time becomes Tcomm ≈ 8ts + 4ntw

Can we avoid ts part of cost of moving corner points?
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Diagonal Trick
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Diagonal Trick
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Diagonal Trick
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Taking Multiple Time Steps

In explicit methods for time-dependent PDEs,
communication of ghost points can be significant cost
We saw that diagonal trick reduces number of separate
messages, improving parallel performance
In time-dependent problems, there is one exchange per
time step; for 2-D problem, each time step takes
communication time

Tcomm = 4(ts + ntw)

using diagonal trick if necessary
Can do better if willing to perform redundant computation
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Parallel Iterative Methods

For some iterative solvers, such as Jacobi and red-black
Gauss-Seidel, serial and parallel versions are equivalent
and produce same results

In parallel setting, with grid partitioned across processors,
additional options arise that are not relevant in serial
context, such as using standard Gauss-Seidel within each
processor and Jacobi between processors

Although iterative methods such as Jacobi and red-black
Gauss-Seidel often yield good parallel efficiency, their
relatively slow asymptotic convergence rate limits their
usefulness in practice
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Smoothers

Stationary iterative methods, such as Jacobi and
Gauss-Seidel, usually make fairly rapid initial progress in
reducing error before settling into slow asymptotic phase

In particular, they reduce high-frequency (i.e., oscillatory)
components of error rapidly, but reduce low-frequency (i.e.,
smooth) components of error much more slowly

For this reason, such methods are sometimes called
smoothers
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Smoothers

Smooth or oscillatory components of error are relative to
grid on which solution is defined

Component that appears smooth on fine grid may appear
oscillatory when sampled on coarser grid

If we apply smoother on coarser grid, then we may make
rapid progress in reducing this (now oscillatory) component
of error

After few iterations of smoother, results can then be
interpolated back to fine grid to produce solution that has
both higher-frequency and lower-frequency components of
error reduced
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Multigrid

This idea can be extended to multiple levels of grids, so
that error components of various frequencies can be
reduced rapidly, each at appropriate level

Transition from finer grid to coarser grid involves restriction
or injection

Transition from coarser grid to finer grid involves
interpolation or prolongation
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Residual Equation

If x̂ is approximate solution to Ax = b, with residual
r = b−Ax̂, then error e = x− x̂ satisfies residual
equation

Ae = r

Thus, in improving approximate solution we can work with
just this residual equation involving error and residual,
rather than solution and original right-hand side

One advantage of residual equation is that zero is
reasonable starting guess for its solution
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Two-Grid Algorithm

1 On fine grid, use few iterations of smoother to compute
approximate solution x̂ for system Ax = b

2 Compute residual r = b−Ax̂

3 Restrict residual to coarse grid

4 On coarse grid, use few iterations of smoother on residual
equation to obtain coarse-grid approximation to error

5 Interpolate coarse-grid correction to fine grid to obtain
improved approximate solution on fine grid

6 Apply few iterations of smoother to corrected solution on
fine grid
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Multigrid Algorithm

Multigrid method results from recursion in Step 4: coarse
grid correction is itself improved by using still coarser grid,
and so on down to some bottom level

Computations become progressively cheaper on coarser
and coarser grids because systems become successively
smaller

In particular, direct method may be feasible on coarsest
grid if system is small enough

There are many possible strategies for cycling through
various grid levels
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Multigrid Cycles

V-cycle goes from finest grid
goes down through successive
levels to coarsest grid and then
back up to finest grid

W-cycle zig-zags among lower
level (and cheaper) grids before
going back up to finest grid

Full multigrid bootstraps coarse
solution up through grid levels,
ultimately reaching finest grid

fine

coarse
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Multigrid

By exploiting strengths of underlying iterative smoothers
and avoiding their weaknesses, multigrid methods are
capable of extraordinarily good performance

At each level, smoother reduces oscillatory component of
error rapidly, at rate independent of mesh size h, since few
iterations of smoother, often only one, are performed at
each level

Since all components of error appear oscillatory at some
level, convergence rate of entire multigrid scheme should
be rapid and independent of mesh size, in contrast to most
other iterative methods
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Multigrid

Moreover, cost of entire cycle of multigrid is only modest
multiple of cost of single sweep on finest grid

As result, multigrid methods are among most powerful
methods available for solving sparse linear systems arising
from PDEs

In many cases, they are capable of converging to within
truncation error of discretization at cost proportional to
number of grid points, which is much faster than most other
methods
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Parallel Multigrid

Many aspects of multigrid algorithms are readily
implemented in parallel

Point smoothers, such as Jacobi and multi-color
Gauss-Seidel
Residual computation
Restriction (fine-to-coarse)
Interpolation (coarse-to-fine)

Other aspects are more problematic

Sequential cycling through grids
Parallel efficiency for coarse grids
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Parallel Multigrid

Compared with fine grids, coarse grids

Inherently allow less parallelism
Incur higher communication cost relative to computation
Risk poor load balance (some processors may even be idle
for coarsest grids)
Do not necessarily grow as overall problem grows

For these reasons, parallel implementations of multigrid try
to minimize time spent on coarse grids
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Parallel Multigrid

For model problem with n grid points on finest grid, complexity
of parallel multigrid is

Θ(log n) for V-cycle

Θ(log2 n) for FMG

Θ(
√
n ) for W-cycle
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Parallel Multigrid

For coarse grids, communication/computation ratio could
be improved by using fewer processors, and load balance
could be improved by redistributing work across
processors

However, such measures affect other aspects of algorithm
negatively; for example, restriction and interpolation would
no longer be local operations within individual processors
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Parallel Multigrid

Because of parallel inefficiencies associated with coarse
grids, alternatives have been proposed to enhance
parallelism in multigrid

Additive multigrid performs smoothing on all grid levels
simultaneously, but convergence is not guaranteed, so it is
used as preconditioner

Parallel superconvergent multigrid performs smoothing on
multiple grids at each level simultaneously, thereby
(hopefully) accelerating convergence
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Parallel Multigrid

Such variants of multigrid motivated by parallelism are not
equivalent to serial multigrid and sacrifice some of its serial
efficiency to gain greater parallelism

Whether such strategies actually reduce overall time to
solution depends on specific problem and parallel system

Even with “classical” multigrid, serial superiority of FMG
over V-cycle may outweigh parallel superiority of V-cycle
over FMG
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Multigrid and Domain Decomposition

Domain decomposition with coarse problem can be viewed
as two-level multigrid

As with domain decomposition, restriction operator should
often be transpose of interpolation operator, whose choice
is critical for success of both methods

Parallel solution of coarse problem is same

Domain decomposition involves less communication per
iteration than parallel multigrid but may require (a constant
factor) more iterations
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Scalability in Solving PDEs

How scalable are numerical methods for solving PDEs?

Consider 3-D Poisson equation, discretized with finite
differences or low-order finite elements on n× n× n grid

Decompose in three dimensions, yielding cubes of size
n/p1/3 × n/p1/3 × n/p1/3

Method involves one ghost cell exchange, one dot product
(e.g., for CG), and local evaluation of matrix-vector product
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Cost Model

Per iteration cost is

T =
n3

p
tc + 6

(
ts + tw

(
n

p1/3

))
+ 2(ts + tw) log p

If used as preconditioner or as part of parallel multigrid or
domain decomposition, cost is similar and number of
iterations can be independent of p

Consider two systems: one with fast network (low tw) and
one with fast network for reduction operation (replaces
log p term)
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Scaling for 3-D Poisson
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Scaling Details
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Comparing Systems

What is best way to compare two systems?
Previous graphs have compared with respect to processors
What if processors are multicore, or have special thread or
vector processors (e.g., Cray MTA or Cray X1), or have
different costs?
What if processor clock rates are very different?

e.g., Blue Gene uses relatively slow clock, but can pack
many more processors into same cabinet than system with
faster (but larger and hotter) processors

Possible ways to normalize include
Cost/processor
Electric power/processor
Machine room area/processor
Achieved performance/processor
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3-D Poisson Scaled by Performance
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Fault Detection and Fault Tolerance

We have assumed that software and hardware that
execute algorithm are infallible

At scales of 100,000 processors, errors may happen once
every few days (more often with commodity hardware)

What is role for numerical algorithm in managing faults?
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Fault Detection

Numerical algorithms often include additional properties
that are not explicitly used in computation

Conservation is one example: many hyperbolic equations
express conservation laws, in which some quantity is
constant

Another example is maximum principle, which holds for
class of elliptic PDEs

Checking that such properties are preserved by
computation provides check on presence of fault
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Fault Tolerance and Recovery

Fault tolerance and recovery—ability to continue an
accurate computation after fault—is more difficult

For many PDE problems, easiest approach is
checkpoint-restart

It is sometimes possible, with small loss of accuracy, to
regenerate lost data using other available data (by using
Green’s theorem for elliptic problems, for example)

For time-dependent problems, it may be possible to
regenerate just missing data from prior checkpoint

At large scale, numerical algorithms must address issues
of fault detection and tolerance
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Summary and Suggestions

Use redundant computation to reduce communication,
increasing parallel efficiency

Limits maximum efficiency

Consider alternate approximation or solution methods to
improve concurency

E.g., domain decomposition; some block decompositions

Parallelize best methods
E.g., multigrid, Krylov methods with high-quality
preconditioners, not block Jacobi
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