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Nonlinear Equations

Potential sources of parallelism in solving nonlinear equation
f(x) = 0 include

Evaluation of function f and its derivatives in parallel

Parallel implementation of linear algebra computations
(e.g., solving linear system in Newton-like methods)

Simultaneous exploration of different regions via multiple
starting points (e.g., if many solutions are sought or
convergence is difficult to achieve)
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Optimization

Sources of parallelism in optimization problems include

Evaluation of objective and constraint functions and their
derivatives in parallel

Parallel implementation of linear algebra computations
(e.g., solving linear system in Newton-like methods)

Simultaneous exploration of different regions via multiple
starting points (e.g., if global optimum is sought or
convergence is difficult to achieve)

Multi-directional searches in direct search methods

Decomposition methods for structured problems, such as
linear, quadratic, or separable programming
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Numerical Integration

Potential sources of parallelism in computing definite integrals
include

Evaluation of integrand function in parallel

Partitioning of domain of integration into subdomains over
which integral is computed separately in parallel

Divide-and-conquer parallelism in adaptive quadrature
(load balancing may be challenging)

Monte Carlo method for higher dimensional integrals, with
multiple random trials in parallel (requires parallel
independent streams of random numbers)
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Ordinary Differential Equations

Minor potential sources of parallelism in solving initial value
problem for system of ODEs y′ = f(t,y) include

For multi-stage methods (e.g., Runge-Kutta), computation
of multiple stages in parallel

For multi-level methods (e.g., extrapolation), computation
of multiple levels (e.g., with different step sizes) in parallel

For multi-rate methods, integration of slowly and rapidly
varying components of solution in parallel
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Ordinary Differential Equations

Major potential sources of parallelism in solving initial value
problem for system of ODEs y′ = f(t,y) include

Evaluation of right-hand-side function f in parallel (e.g.,
evaluation of forces for n-body problems)

Parallel implementation of linear algebra computations
(e.g., solving linear system in Newton’s method for stiff
ODEs)

Partitioning equations in system of ODEs into multiple
tasks (e.g., waveform relaxation, discussed next)
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Picard Iteration

Consider initial value problem for system of n ODEs
y′ = f(t,y), t ≥ t0, with IC y(t0) = y0

Starting with y0(t) ≡ y0, Picard iteration is given by

yk+1(t) = y0 +

∫ t

t0

f(s,yk(s)) ds

If f satisfies Lipschitz condition, then Picard iteration
converges to solution of IVP

Convergence may be slow, but parallelism is excellent, as
problem decouples into n independent 1-D quadratures
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Waveform Relaxation

Picard iteration is simple fixed-point iteration on function
space

Picard iteration is often too slow to be useful, but other
such iterations may be more rapidly convergent

Iterative methods of this type are commonly called
waveform relaxation
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Jacobi Waveform Relaxation

For n = 2, consider iteration[
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System of two independent ODEs can be solved in parallel

Method generalizes in obvious way to arbitrary system of n
ODEs and decouples system into n independent ODEs

Because of its analogy to Jacobi iteration for linear
algebraic systems, method is called Jacobi waveform
relaxation
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Gauss-Seidel Waveform Relaxation

Convergence rate of Jacobi waveform relaxation is
improved by Gauss-Seidel waveform relaxation, illustrated
here for n = 2[
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Unfortunately, system is no longer decoupled, so
parallelism is lost unless components are reordered,
analogous to red-black or multicolor ordering

More generally, multi-splittings can further enhance
parallelism in waveform relaxation methods
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Boundary Value Problems for ODEs

Potential sources of parallelism in solving boundary value
problems for ODEs include

For finite difference and finite element methods, parallel
implementation of resulting linear algebra computations
(e.g., cyclic reduction for tridiagonal systems)

Multi-level methods

Multiple shooting method
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