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Eigenvalues and Eigenvectors

Given n× n matrix A, find scalar λ and nonzero vector x
such that

Ax = λx

λ is eigenvalue and x is corresponding eigenvector

A always has n eigenvalues, but they may be neither real
nor distinct

May need to compute only one or few eigenvalues, or all n
eigenvalues

May or may not need corresponding eigenvectors
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Problem Transformations

Shift : for scalar σ, eigenvalues of A− σI are eigenvalues
of A shifted by σ, λi − σ

Inversion : for nonsingular A, eigenvalues of A−1 are
reciprocals of eigenvalues of A, 1/λi

Powers : for integer k > 0, eigenvalues of Ak are kth
powers of eigenvalues of A, λki

Polynomial : for polynomial p(t), eigenvalues of p(A) are
values of p evaluated at eigenvalues of A, p(λi)
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Similarity Transformations

B is similar to A if there is nonsingular T such that

B = T−1AT

Then

By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty)

so A and B have same eigenvalues, and if y is
eigenvector of B, then x = Ty is eigenvector of A

Similarity transformations preserve eigenvalues, and
eigenvectors are easily recovered
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Similarity Transformations

Forms attainable by similarity transformation

A T B
distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular (real Schur)
arbitrary unitary upper triangular (Schur)
arbitrary nonsingular almost diagonal (Jordan)
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Preliminary Reduction

Eigenvalues easier to compute if matrix first reduced to
simpler form by similarity transformation

Diagonal or triangular most desirable, but cannot always
be reached in finite number of steps

Preliminary reduction usually to tridiagonal form (for
symmetric matrix) or Hessenberg form (for nonsymmetric
matrix)

Preliminary reduction usually done by orthogonal
transformations, using algorithms similar to QR
factorization, but transformations must be applied from
both sides to maintain similarity
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Parallel Algorithms for Eigenvalues

Algorithms for computing eigenvalues and eigenvectors
employ basic operations such as

vector updates (saxpy)
inner products
matrix-vector and matrix-matrix multiplication
solution of triangular systems
orthogonal (QR) factorization

In many cases, parallel implementations will be based on
parallel algorithms we have already seen for these basic
operations, although there will sometimes be new sources
of parallelism
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Power Iteration

Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which in effect takes
successively higher powers of matrix times initial starting
vector

x0 = arbitrary nonzero vector
for k = 1, 2, . . .

yk = Axk−1
xk = yk/‖yk‖∞

end

If A has unique eigenvalue λ1 of maximum modulus, then
power iteration converges to eigenvector corresponding to
dominant eigenvalue
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Power Iteration

Convergence rate of power iteration depends on ratio
|λ2/λ1|, where λ2 is eigenvalue having second largest
modulus

It may be possible to choose shift, A− σI, so that ratio is
more favorable and yields more rapid convergence

Shift must then be added to result to obtain eigenvalue of
original matrix
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Parallel Power Iteration

Power iteration requires repeated matrix-vector products,
which are easily implemented in parallel for dense or
sparse matrix, as we have seen

Additional communication may be required for
normalization, shifts, convergence test, etc.

Though easily parallelized, power iteration is often too slow
to be useful in this form
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Inverse Iteration

Inverse iteration is power iteration applied to A−1, which
converges to eigenvector corresponding to dominant
eigenvalue of A−1, which is reciprocal of smallest
eigenvalue of A

Inverse of A is not computed explicitly, but only
factorization of A (and only once) to solve system of linear
equations at each iteration

x0 = arbitrary nonzero vector
for k = 1, 2, . . .

Solve Ayk = xk−1 for yk

xk = yk/‖yk‖∞
end
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Inverse Iteration

Shifting strategy can greatly accelerate convergence

Inverse iteration is especially useful for computing
eigenvector corresponding to approximate eigenvalue,
since it converges rapidly when approximate eigenvalue is
used as shift

Inverse iteration also useful for computing eigenvalue
closest to any given value β, since if β is used as shift,
then desired eigenvalue corresponds to smallest
eigenvalue of shifted matrix
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Parallel Inverse Iteration

Inverse iteration requires initial factorization of matrix A
and solution of triangular systems at each iteration, so it
appears to be much less amenable to efficient parallel
implementation than power iteration

However, inverse iteration is often used to compute
eigenvector in situations where

approximate eigenvalue is already known, so using it as
shift yields very rapid convergence
matrix has previously been reduced to simpler form (e.g.,
tridiagonal) for which linear system is easy to solve
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Simultaneous Iteration

To compute many eigenvalue-eigenvector pairs, could
apply power iteration to several starting vectors
simultaneously, giving simultaneous iteration

X0 = arbitrary n× q matrix of rank q
for k = 1, 2, . . .

Xk = AXk−1
end

span(Xk) converges to invariant subspace determined by
q largest eigenvalues of A, provided |λq| > |λq+1|

Normalization is needed at each iteration, and columns of
Xk become increasingly ill-conditioned basis for span(Xk)

Michael T. Heath Parallel Numerical Algorithms 15 / 40

Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

Orthogonal Iteration
QR Iteration

Orthogonal Iteration

Both issues addressed by computing QR factorization at
each iteration, giving orthogonal iteration

X0 = arbitrary n× q matrix of rank q
for k = 1, 2, . . .

Compute reduced QR factorization
Q̂kRk = Xk−1

Xk = AQ̂k

end

Converges to block triangular form, and blocks are
triangular where moduli of consecutive eigenvalues are
distinct
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Parallel Orthogonal Iteration

Orthogonal iteration requires matrix-matrix multiplication
and QR factorization at each iteration, both of which we
know how to implement in parallel with reasonable
efficiency
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QR Iteration

If we take X0 = I, then orthogonal iteration should
produce all eigenvalues and eigenvectors of A

Orthogonal iteration can be reorganized to avoid explicit
formation and factorization of matrices Xk

Instead, sequence of unitarily similar matrices is generated
by computing QR factorization at each iteration and then
forming reverse product, giving QR iteration

A0 = A
for k = 1, 2, . . .

Compute QR factorization
QkRk = Ak−1

Ak = RkQk

end
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QR Iteration

In simple form just given, each iteration of QR method
requires Θ(n3) work

Work per iteration is reduced to Θ(n2) if matrix is in
Hessenberg form, or Θ(n) if symmetric matrix is in
tridiagonal form

Preliminary reduction is usually done by Householder or
Givens transformations

In addition, number of iterations required is reduced by
preliminary reduction of matrix

Convergence rate also enhanced by judicious choice of
shifts
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Parallel QR Iteration

Preliminary reduction can be implemented efficiently in
parallel, using algorithms analogous to parallel QR
factorization for dense matrix

But subsequent QR iteration for reduced matrix is
inherently essentially serial, and yields little parallel
speedup for this portion of algorithm

This may not be of great concern if iterative phase is
relatively small portion of total time, but it does limit
efficiency and scalability
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Krylov Subspace Methods

Krylov subspace methods reduce matrix to Hessenberg
(or tridiagonal) form using only matrix-vector multiplication

For arbitrary starting vector x0, if

Kk =
[
x0 Ax0 · · · Ak−1x0

]
then

K−1n AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)
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Krylov Subspace Methods

To obtain better conditioned basis for span(Kn), compute
QR factorization

QnRn = Kn

so that
QH

n AQn = RnCnR
−1
n ≡H

with H upper Hessenberg
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Krylov Subspace Methods

Equating kth columns on each side of equation
AQn = QnH yields recurrence

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

relating qk+1 to preceding vectors q1, . . . , qk

Premultiplying by qHj and using orthonormality,

hjk = qHj Aqk, j = 1, . . . , k

These relationships yield Arnoldi iteration, which produces
upper Hessenberg matrix column by column using only
matrix-vector multiplication by A and inner products of
vectors

Michael T. Heath Parallel Numerical Algorithms 23 / 40

Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

Krylov Subspaces
Arnoldi Iteration
Lanczos Iteration
Krylov Subspace Methods

Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/‖x0‖2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk

uk = uk − hjkqj
end
hk+1,k = ‖uk‖2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end
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Arnoldi Iteration

If
Qk =

[
q1 · · · qk

]
,

then
Hk = QH

k AQk

is upper Hessenberg matrix

Eigenvalues of Hk, called Ritz values, are approximate
eigenvalues of A, and Ritz vectors given by Qky, where y
is eigenvector of Hk, are corresponding approximate
eigenvectors of A

Eigenvalues of Hk must be computed by another method,
such as QR iteration, but this is easier problem if k � n
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Arnoldi Iteration

Arnoldi iteration expensive in work and storage because
each new vector qk must be orthogonalized against all
previous columns of Qk, which must be stored

So Arnoldi process usually restarted periodically with
carefully chosen starting vector

Ritz values and vectors produced are often good
approximations to eigenvalues and eigenvectors of A after
relatively few iterations

Work and storage costs drop dramatically if matrix
symmetric or Hermitian, since recurrence then has only
three terms and Hk is tridiagonal (so usually denoted Tk),
yielding Lanczos iteration
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Lanczos Iteration

q0 = 0
β0 = 0
x0 = arbitrary nonzero starting vector
q1 = x0/‖x0‖2
for k = 1, 2, . . .

uk = Aqk
αk = qHk uk

uk = uk − βk−1qk−1 − αkqk
βk = ‖uk‖2
if βk = 0 then stop
qk+1 = uk/βk

end
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Lanczos Iteration

αk and βk are diagonal and subdiagonal entries of
symmetric tridiagonal matrix Tk

As with Arnoldi, Lanczos iteration does not produce
eigenvalues and eigenvectors directly, but only tridiagonal
matrix Tk, whose eigenvalues and eigenvectors must be
computed by another method to obtain Ritz values and
vectors

If βk = 0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)
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Lanczos Iteration

In principle, if Lanczos algorithm is run until k = n,
resulting tridiagonal matrix is orthogonally similar to A

In practice, rounding error causes loss of orthogonality,
invalidating this expectation

Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated
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Krylov Subspace Methods

Virtue of Arnoldi and Lanczos iterations is ability to produce
good approximations to extreme eigenvalues for k � n

Moreover, they require only one matrix-vector multiplication
by A per step and little auxiliary storage, so are ideally
suited to large sparse matrices

If eigenvalues are needed in middle of spectrum, say near
σ, then algorithm can be applied to matrix (A− σI)−1,
assuming it is practical to solve systems of form
(A− σI)x = y

Michael T. Heath Parallel Numerical Algorithms 30 / 40

Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

Krylov Subspaces
Arnoldi Iteration
Lanczos Iteration
Krylov Subspace Methods

Parallel Krylov Subspace Methods

Krylov subspace methods composed of

vector updates (saxpy)
inner products
matrix-vector multiplication
computing eigenvalues/eigenvectors of tridiagonal matrices

Parallel implementation requires implementing each of
these in parallel as before

For early iterations, Hessenberg or tridiagonal matrices
generated are too small to benefit from parallel
implementation, but Ritz values and vectors need not be
computed until later
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Jacobi Method

Jacobi method for symmetrix matrix starts with A0 = A
and computes sequence

Ak+1 = JT
k AkJk

where Jk is plane rotation that annihilates symmetric pair
of off-diagonal entries in Ak

Plane rotations are applied repeatedly from both sides in
systematic sweeps through matrix until magnitudes of all
off-diagonal entries are reduced below tolerance

Resulting diagonal matrix is orthogonally similar to original
matrix, so diagonal entries are eigenvalues, and
eigenvectors given by product of plane rotations
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Parallel Jacobi Method

Jacobi method, though slower than QR iteration serially,
parallelizes better

Parallel implementation of Jacobi method performs many
annihilations simultaneously, at locations chosen so that
rotations do not interfere with each other (analogous to
parallel Givens QR factorization)

Computations are still rather fine grained, however, so
effectiveness is limited on parallel computers with
unfavorable ratio of communication to computation speed
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Bisection or Spectrum-Slicing

For real symmetric matrix, can determine how many
eigenvalues are less than given real number σ

By systematically choosing various values for σ (slicing
spectrum at σ) and monitoring resulting count, any
eigenvalue can be isolated as accurately as desired

For example, by computing inertia using A = LDLT

factorization of A− σI for various σ, individual eigenvalues
can be isolated as accurately as desired using interval
bisection technique
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Sturm Sequence

Another spectrum-slicing method for computing individual
eigenvalues is based on Sturm sequence property of
symmetric matrices

Let pr(σ) denote determinant of leading principal minor of
A− σI of order r

Zeros of pr(σ) strictly separate those of pr−1(σ), and
number of agreements in sign of successive members of
sequence pr(σ), for r = 1, . . . , n, gives number of
eigenvalues of A strictly greater than σ

Determinants pr(σ) easy to compute if A transformed to
tridiagonal form before applying Sturm sequence technique
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Parallel Multisection

Spectrum-slicing methods can be implemented in parallel
by assigning disjoint intervals of real line to different tasks,
and then each task carries out bisection process using
serial spectrum-slicing method for its subinterval

Both for efficiency of spectrum-slicing technique and for
storage scalability, matrix is first reduced (in parallel) to
tridiagonal form, so that each task can store entire
(reduced) matrix

Load imbalance is potential problem, since different
subintervals may contain different numbers of eigenvalues
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Parallel Multisection

Clustering of eigenvalues cannot be anticipated in
advance, so dynamic load balancing may be required to
achieve reasonable efficiency

Eigenvectors must still be determined, usually by inverse
iteration

Since each task holds entire (tridiagonal) matrix, each can
in principle carry out inverse iteration for its eigenvalues
without any communication among tasks

Orthogonality of resulting eigenvectors cannot be
guaranteed, however, and thus communication is required
to orthogonalize them
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Divide-and-Conquer Method

Another method for computing eigenvalues and
eigenvectors of real symmetric tridiagonal matrix is based
on divide-and-conquer

Express symmetric tridiagonal matrix T as

T =

[
T1 O
O T2

]
+ β uuT

Can now compute eigenvalues and eigenvectors of smaller
matrices T1 and T2

To relate these back to eigenvalues and eigenvectors of
original matrix requires solution of secular equation, which
can be done reliably and efficiently
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Divide-and-Conquer Method

Applying this approach recursively yields
divide-and-conquer algorithm that is naturally parallel

Parallelism in solving secular equations grows as
parallelism in processing independent tridiagonal matrices
shrinks, and vice versa

Algorithm is complicated to implement and difficult
questions of numerical stability, eigenvector orthogonality,
and load balancing must be addressed
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