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Band Systems

Banded Linear Systems

@ Bandwidth (or semibandwidth) of n x n matrix A is
smallest value 3 such that

a;j =0 foral |i—j|>p
@ Matrix is banded if 5 < n

@ If 3 > p, then minor modifications of parallel algorithms for
dense LU or Cholesky factorization are reasonably efficient
for solving banded linear system Ax = b

@ If 8 < p, then standard parallel algorithms for LU or
Cholesky factorization utilize few processors and are very

inefficient 1
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Band Systems

Narrow Banded Linear Systems

@ More efficient parallel algorithms for narrow banded linear
systems are based on divide-and-conquer approach in
which band is partitioned into multiple pieces that are
processed simultaneously

@ Reordering matrix by nested dissection is one example of
this approach

@ Because of fill, such methods generally require more total
work than best serial algorithm for system with dense band

@ We will illustrate for tridiagonal linear systems, for which
B =1, and will assume pivoting is not needed for stability
(e.g., matrix is diagonally dominant or symmetric positive
definite) 1

Michael T. Heath Parallel Numerical Algorithms



Tridiagonal Systems

Tridiagonal Linear System

@ Tridiagonal linear system has form

by T Y1

az by ¢ T2 Y2
pn-1 bp—1 cn—1 Tn—1 Yn—1

L an by, 1 L Tn | L Yn |

@ For tridiagonal system of order n, LU or Cholesky
factorization incurs no fill, but yields serial thread of length
©(n) through task graph, and hence no parallelism

@ Neither cdivs nor cmods can be done simultaneously T
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Tridiagonal Systems

Tridiagonal System, Natural Order

G(A) T(A)
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Tridiagonal Systems

Two-Way Elimination

@ Other orderings may enable some degree of parallelism,
however

@ For example, elimination from both ends (sometimes called
twisted factorization) yields two concurrent threads
(odd-numbered nodes and even-numbered nodes) through
task graph and still incurs no fill

1
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Tridiagonal Systems

Tridiagonal System, Two-Way Elimination

G (A)

x| 1
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Tridiagonal Systems

Odd-Even Ordering

@ Repeating this idea recursively gives odd-even ordering
(variant of nested dissection), which yields even more
parallelism, but incurs some fill

1
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Tridiagonal Systems

Tridiagonal System, Odd-Even Ordering

G (A)

i x x_ ﬂ
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Cyclic Reduction

Cyclic Reduction

@ Recursive nested dissection for tridiagonal system can be
effectively implemented using cyclic reduction (or
odd-even reduction)

@ Linear combinations of adjacent equations in tridiagonal
system are used to eliminate alternate unknowns

@ Adding appropriate multiples of (i — 1)st and (i + 1)st
equations to ith equation eliminates x; _; and z; 1,
respectively, from ith equation

@ Resulting new ith equation involves x; o, x;, and x;, 9, but
not z;_1 Or x;41
T
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Cyclic Reduction

Cyclic Reduction

@ For tridiagonal system, ith equation
a; Ti—1 + b T + ¢ Tip1 = Y
is transformed into
@i Ti—2 + b T + € Tiga = Us
where

ai=0oai-1,  bi=bi+a;ci1+ fiain

G = Biciy1, Y=Y+ yi—1+ BiYit1

with o = —ai/bi_l and ﬁz = _Ci/bi+1
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Cyclic Reduction

Cyclic Reduction

@ After transforming each equation in system (handling first
two and last two equations as special cases), matrix of
resulting new system has form

Michael T. Heath

b1 0 C1
0 62 0 Co
as 0 1_73 0 C3
an—2 0 bn—2 _ 0 Cn—2
Qn—1 0 bnfl 0
i an, 0 by
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Cyclic Reduction

Cyclic Reduction

@ Reordering equations and unknowns to place odd indices
before even indices, matrix then has form

(b1 &
as by
?n—3
Gn—1 bnfl _O
0 b2 C2
as by
5@72
&n bn

1
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Cyclic Reduction

Cyclic Reduction

@ System breaks into two independent tridiagonal systems
that can be solved simultaneously (i.e.,
divide-and-conquer)

@ Each resulting tridiagonal system can in turn be solved
using same technique (i.e., recursively)

@ Thus, there are two distinct sources of potential parallelism
e simultaneous transformation of equations in system
e simultaneous solution of multiple tridiagonal subsystems
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Cyclic Reduction

Cyclic Reduction

@ Cyclic reduction requires log n steps, each of which
requires O©(n) operations, so total work is ©(n logn)

@ Serially, cyclic reduction is therefore inferior to LU or
Cholesky factorization, which require only ©(n) work for
tridiagonal system

@ But in parallel, cyclic reduction can exploit up to n-fold
parallelism and requires only O(logn) time in best case

@ Often matrix becomes approximately diagonal in fewer
than log n steps, in which case reduction can be truncated
and still attain acceptable accuracy

I
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Cyclic Reduction

Cyclic Reduction

@ Cost for solving tridiagonal system by best serial algorithm
is about
T1 ~ 8 ten

where ¢ is time for one addition or multiplication

@ Cost for solving tridiagonal system serially by cyclic
reduction is about

T ~12t.n logn

which means that efficiency is less than 67%, even with
p=1
T

Michael T. Heath Parallel Numerical Algorithms



Cyclic Reduction

Parallel Cyclic Reduction

@ Fartition: task i stores and performs reductions on ith
equation of tridiagonal system, yielding n fine-grain tasks

@ Communicate: data from “adjacent” equations is required
to perform eliminations at each of log n stages

@ Agglomerate: n/p equations assigned to each of p
coarse-grain tasks, thereby limiting communication to only
log p stages

@ Map: Assigning contiguous rows to processes is better
than cyclic mapping in this context

@ “Local” tridiagonal system within each process can be
solved by serial cyclic reduction or by LU or Cholesky

factorization I
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Cyclic Reduction

Parallel Cyclic Reduction

@ Parallel execution time for cyclic reduction is about
T, = 12t.(nlogn)/p+ (ts +4ty,) logp
@ To determine isoefficiency function relative to serial CR, set
12t.nlogn ~ E (12t. (n logn) + (ts + 4 ty) p logp)

which holds for large p if n = ©(p), so isoefficiency function
is at least O(p log p), since 71 = O(n logn)

@ Problem size must grow even faster to maintain constant
efficiency (E < 67%) relative to best serial algorithm

1
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Cyclic Reduction

Block Tridiagonal Systems

@ Relatively fine granularity may make cyclic reduction
impractical for solving single tridiagonal system on some
parallel architectures

@ Efficiency may be much better, however, if there are many
right-hand sides for single tridiagonal system or many
independent tridiagonal systems to solve

@ Cyclic reduction is also applicable to block tridiagonal
systems, which have larger granularity and hence more
favorable ratio of communication to computation and
potentially better efficiency

I
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Cyclic Reduction

lterative Methods

@ Tridiagonal and other banded systems are often amenable
to efficient parallel solution by iterative methods

@ For example, successive diagonal blocks of tridiagonal
system can be assigned to separate tasks, which can
solve “local” tridiagonal system as preconditioner for
iterative method for overall system

1
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Cyclic Reduction

References — Banded Systems

@ J. Dongarra and S. Johnsson, Solving banded systems on
a parallel processor, Parallel Computing 5:219-246, 1987

@ S. L. Johnsson, Solving narrow banded systems on
ensemble architectures, ACM Trans. Math. Software
11:271-288, 1985

@ E. Polizzi and A. H. Sameh, A parallel hybrid banded
system solver: the SPIKE algorithm, Parallel Computing
32:177-194, 2006

@ Y. Saad and M. Schultz, Parallel direct methods for solving
banded linear systems, Linear Algebra Appl. 88:623-650,

1987 1

Michael T. Heath Parallel Numerical Algorithms



Cyclic Reduction
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Cyclic Reduction
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