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Cholesky Factorization

@ Symmetric positive definite matrix A has Cholesky

factorization
A=LLT

where L is lower triangular matrix with positive diagonal
entries

@ Linear system
Ax=0b

can then be solved by forward-substitution in lower
triangular system Ly = b, followed by back-substitution in
upper triangular system LTz =y
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Computing Cholesky Factorization

@ Algorithm for computing Cholesky factorization can be
derived by equating corresponding entries of A and LL”
and generating them in correct order

@ For example, in 2 x 2 case
air az| _ |l O | [l
a1 G2 lo1 loo| | O lo
so we have

b = ai, o =an/tn, lyn= m

1

Michael T. Heath Parallel Numerical Algorithms



Cholesky Factorization Cholesky Factorization
Computing Cholesky
Cholesky Algorithm

Cholesky Factorization Algorithm

fork=1ton

Qkk = /Qkk
fori=Lk+1ton

Qi = Qi /akk

end
forj=k+1ton
fori=jton
A5 = Qi — Qik Qjk
end
end
end
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Cholesky Factorization Algorithm

@ All n square roots are of positive numbers, so algorithm
well defined

@ Only lower triangle of A is accessed, so strict upper
triangular portion need not be stored

@ Factor L is computed in place, overwriting lower triangle of
A

@ Pivoting is not required for numerical stability

@ About n3/6 multiplications and similar number of additions
are required (about half as many as for LU)
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Parallel Algorithm

Partition

@ Fori,j=1,...,n,fine-grain task (¢, j) stores a;; and
computes and stores

Eji, if i < J
yielding 2-D array of n? fine-grain tasks
@ Zero entries in upper triangle of L need not be computed
or stored, so for convenience in using 2-D mesh network,

¢;; can be redundantly computed as both task (i, j) and
task (j,) fori > j
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Fine-Grain Tasks and Communication
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Fine-Grain Parallel Algorithm

for £k = 1to min(i,j) — 1

recv broadcast of a;; from task (k, j)

recv broadcast of a,;, from task (i, k)

Qij = Qij — Qik Qkj
end
if i = j then

ai; = /i

broadcast a;; to tasks (k,7) and (i, k), k=i +1,...
else if i < j then

recv broadcast of a;; from task (i, 1)

Q5 = aij/aii

broadcast a;; to tasks (k,j), k=i+1,...,n
else

recv broadcast of a;; from task (j, 7)

aij = ij/a;

broadcast a;; to tasks (i,k), k=j5+1,...,n
end
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Agglomeration Schemes

Agglomerate

@ Agglomeration of fine-grain tasks produces
e 2-D
e 1-D column
e 1-D row

parallel algorithms analogous to those for LU factorization,
with similar performance and scalability

@ Rather than repeat analyses for dense matrices, we focus
instead on sparse matrices, for which column-oriented
algorithms are typically used
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Loop Orderings for Cholesky

Each choice of 4, j, or k index in outer loop yields different
Cholesky algorithm, named for portion of matrix updated by
basic operation in inner loops

@ Submatrix-Cholesky: with k in outer loop, inner loops
perform rank-1 update of remaining unreduced submatrix
using current column

@ Column-Cholesky: with j in outer loop, inner loops
compute current column using matrix-vector product that
accumulates effects of previous columns

@ Row-Cholesky : with i in outer loop, inner loops compute
current row by solving triangular system involving previous
rows T
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Memory Access Patterns

Submatrix-Cholesky Column-Cholesky Row-Cholesky

D read only D read and write
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Column-Oriented Cholesky Algorithms

Submatrix-Cholesky Column-Cholesky
fork=1ton forj=1ton
Qg = \/Qkk fork=1toj—1
fori=k+1ton fori=jton
Qi = Qi /A Ajj = Qjj — Ak Ajk
end end
forj=k+1ton end
fori=jton ajj = \/ajj
Ajj = Qjj — Ak Ak fori:j+1t0n
end Qi = aij/ajj
end end
end end
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Column Operations

Column-oriented algorithms can be stated more compactly by
introducing column operations

@ cdiv(j): column j is divided by square root of its diagonal
entry
ajj = \/Aj5
fori=j+1ton
aij = aij/ajj
end

@ cmod( j, k): column j is modified by multiple of column £,

with £ < j
fori=jton
QAij = Qi5 — Qik Ak :
end I
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Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

fork=1ton
cdiv (k)
forj=k+1ton
cmod ( j,k)
end
end

@ right-looking

@ immediate-update
@ data-driven

@ fan-out
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Column-Cholesky

forj=1ton
fork=1to;j—1
cmod ( j, k)
end
cdiv(j)
end

@ left-looking

@ delayed-update

@ demand-driven

@ fan-in 1
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Data Dependences
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Data Dependences

@ cmod (k, ) operations along bottom can be done in any
order, but they all have same target column, so updating
must be coordinated to preserve data integrity

@ cmod (x, k) operations along top can be done in any order,
and they all have different target columns, so updating can
be done simultaneously

@ Performing cmods concurrently is most important source
of parallelism in column-oriented factorization algorithms

@ For dense matrix, each cdiv (k) depends on immediately
preceding column, so cdivs must be done sequentially
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Sparse Matrices

@ Matrix is sparse if most of its entries are zero

@ For efficiency, store and operate on only nonzero entries,
e.g., cmod( j, k) need not be done if aj;, = 0

@ But more complicated data structures required incur extra
overhead in storage and arithmetic operations

@ Matrix is “usefully” sparse if it contains enough zero entries
to be worth taking advantage of them to reduce storage
and work required

@ In practice, sparsity worth exploiting for family of matrices if
there are ©(n) nonzero entries, i.e., (small) constant
number of nonzeros per row or column T
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Sparsity Structure

@ For sparse matrix M, let M;, denote its ith row and M, ;
its jth column

@ Define Struct(M,,) = {k < i | m; # 0}, nonzero structure
of row i of strict lower triangle of M

@ Define Struct(M,;) = {k > j | my; # 0}, nonzero structure
of column j of strict lower triangle of M
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Sparse Cholesky Algorithms

Submatrix-Cholesky

fork=1ton
cdiv(k)
for j € Struct(L,;)
cmod ( j,k)
end
end

@ right-looking

@ immediate-update
@ data-driven

@ fan-out
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Column-Cholesky

forj=1ton
for k € Struct(L,.)
cmod( j, k)
end
cdiv(j)
end

@ left-looking

@ delayed-update

@ demand-driven

@ fan-in 1
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Graph Model

@ Graph G(A) of symmetric n x n matrix A is undirected
graph having n vertices, with edge between vertices i and

j if Qi 7’é 0
@ At each step of Cholesky factorization algorithm,
corresponding vertex is eliminated from graph

@ Neighbors of eliminated vertex in previous graph become
clique (fully connected subgraph) in modified graph

@ Entries of A that were initially zero may become nonzero
entries, called fill

1
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Example: Graph Model of Elimination
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Elimination Tree

@ parent( j) is row index of first offdiagonal nonzero
in column j of L, if any, and j otherwise

@ Elimination tree T(A) is graph having n vertices, with edge
between vertices i and j, for i > j, if
i = parent( j)

@ If matrix is irreducible, then elimination tree is single tree
with root at vertex n; otherwise, it is more accurately
termed elimination forest

@ T'(A) is spanning tree for filled graph F(A), which is G(A)
with all fill edges added

@ Each column of Cholesky factor L depends only on its
descendants in elimination tree
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Example: Elimination Tree
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Effect of Matrix Ordering

@ Amount of fill depends on order in which variables are
eliminated

@ Example: “arrow” matrix — if first row and column are
dense, then factor fills in completely, but if last row and
column are dense, then they cause no fill

XXX XXX XX X
X X
X X
X X
X X
X X
X X
X X
X XX XXX XXX

XXXX XX XXX
XXXXXXXXX
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Ordering Heuristics

General problem of finding ordering that minimizes fill is
NP-complete, but there are relatively cheap heuristics that limit
fill effectively

@ Bandwidth or profile reduction : reduce distance of nonzero
diagonals from main diagonal (e.g., RCM)

@ Minimum degree: eliminate node having fewest neighbors
first

@ Nested dissection: recursively split graph into pieces,
numbering nodes in separators last

1
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Symbolic Factorization

@ For SPD matrices, ordering can be determined in advance
of numeric factorization

@ Only locations of nonzeros matter, not their numerical
values, since pivoting is not required for numerical stability

@ Once ordering is selected, locations of all fill entries in L
can be anticipated and efficient static data structure set up
to accommodate them prior to numeric factorization

@ Structure of column j of L is given by union of structures of
lower triangular portion of column j of A and prior columns
of L whose first nonzero below diagonal is in row j
T
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Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky
factorization

@ Ordering: Symmetrically reorder rows and columns of
matrix so Cholesky factor suffers relatively little fill

© Symbolic factorization: Determine locations of all fill
entries and allocate data structures in advance to
accommodate them

© Numeric factorization : Compute numeric values of entries
of Cholesky factor

© Triangular solution: Compute solution by forward- and
back-substitution 1

Michael T. Heath Parallel Numerical Algorithms



Sparse Elimination
Matrix Orderings
Parallel Sparse Cholesky Parallel Algorithms

Parallel Sparse Cholesky

@ In sparse submatrix- or column-Cholesky, if a;;, = 0, then
cmod ( j, k) is omitted

@ Sparse factorization thus has additional source of
parallelism, since “missing” cmods may permit multiple
cdivs to be done simultaneously

@ Elimination tree shows data dependences among columns
of Cholesky factor L, and hence identifies potential
parallelism

@ At any point in factorization process, all factor columns
corresponding to leaf nodes of elimination tree can be
computed simultaneously T
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Parallel Sparse Cholesky

@ Height of elimination tree determines longest serial path
through computation, and hence parallel execution time

@ Width of elimination tree determines degree of parallelism
available

@ Short, wide, well-balanced elimination tree desirable for
parallel factorization

@ Structure of elimination tree depends on ordering of matrix

@ So ordering should be chosen both to preserve sparsity
and to enhance parallelism

1
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Levels of Parallelism in Sparse Cholesky

@ Fine-grain
e Task is one multiply-add pair
e Available in either dense or sparse case
o Difficult to exploit effectively in practice

@ Medium-grain
e Task is one cmod or cdiv
e Available in either dense or sparse case
e Accounts for most of speedup in dense case

@ Large-grain
e Task computes entire set of columns in subtree of
elimination tree

e Available only in sparse case I
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Example: Band Ordering, 1-D Grid

@ @
O, X X X O,
() XX X X X O
X X X X X
O) X X X X X (@
X X X X X
® X X X X X ©)
@) X X X X @)
) A . @
G (A) T(A)

I
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Example: Minimum Degree, 1-D Grid

CHOHOH D

G(A)

X

X

X

X

X X X

X

X

X

X

>

X X
XXX

Michael T. Heath

X

X X

X
X

X X

X
X

XXX

Parallel Numerical Algorithms

4 O
02020,

(A)

1




Sparse Elimination
Matrix Orderings
Parallel Sparse Cholesky Parallel Algorithms

Example: Nested Dissection, 1-D Grid

@
® X X
() X X x x (7)
X X X X X X
@ X X x 3)  (e)
@ X X X X
X X X X X X OIOXOJO.
®) X X X X+ X+X
> T(A)
A L
G (A)
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Example: Band Ordering, 2-D Grid

®
(8
XX X X

XXX X x X @
XX X X X (&)
X XX X X+ + X ®

X XXX X X +XX
X XX X X+ X X @

X XX X+ + X

X XXX X +X X 3
X XX X+ X X ®
G (A) A L >
T(A)
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Example: Minimum Degree, 2-D Grid

x X X X
X x X x O,
X XX X
X X X x ®
XX X X X (7)
XX X X XX X
X X X x X X ++X% O O
X X X X X X+++Xx 1) @ G (@
X XX XX X XX XX
G (A) A L T (A)
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Example: Nested Dissection, 2-D Grid

X X x
x X x x O,
XX X x XX X ®)
X XX x
XX X x (7)
XXX X XX X
X X XX X +X%X +X (3 (83
X XXXX X XXX 1 @ @ &)
X X XX X+ X++XX
G (A) A L T(A)

I

Michael T. Heath Parallel Numerical Algorithms



Sparse Elimination
Matrix Orderings
Parallel Sparse Cholesky Parallel Algorithms

Mapping

@ Cyclic mapping of columns to processors works well for
dense problems, because it balances load and
communication is global anyway

@ To exploit locality in communication for sparse
factorization, better approach is to map columns in subtree
of elimination tree onto local subset of processors

@ Still use cyclic mapping within dense submatrices
(“supernodes”)

1
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Example: Subtree Mapping
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Fan-Out Sparse Cholesky

for ; € mycols
if j is leaf node in T(A) then
cdiv(j)
send L, to processes in map (Struct(L.;))
mycols = mycols — {j}
end
end
while mycols + @
receive any column of L, say L.
for j € mycols N Struct(L.y)
cmod ( j, k)
if column j requires no more cmods then
cdiv(j)
send L., to processes in map (Struct(L.))
mycols = mycols — {j}
end
end T
end
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Fan-In Sparse Cholesky

forj=1ton
if j € mycols or mycols N Struct(L;,) # @ then
u=20

for k € mycols n Struct(L;.)
u=1u-+ gjk L.,
if j € mycols then
incorporate v into factor column j
while any aggregated update column
for column j remains, receive one
and incorporate it into factor column j
end
cdiv(j)
else
send u to process map ( j)
end
end :
end 1

Michael T. Heath Parallel Numerical Algorithms



Sparse Elimination
Matrix Orderings
Parallel Sparse Cholesky Parallel Algorithms

Multifrontal Sparse Cholesky

@ Multifrontal algorithm operates recursively, starting from
root of elimination tree for A

@ Dense frontal matrix Fj is initialized to have nonzero
entries from corresponding row and column of A as its first
row and column, and zeros elsewhere

@ F} is then updated by extend _add operations with update
matrices from its children in elimination tree

@ extend add operation, denoted by @, merges matrices by
taking union of their subscript sets and summing entries for
any common subscripts

@ After updating of F} is complete, its partial Cholesky
factorization is computed, producing corresponding row

and column of L as well as update matrix U; 1
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Example: extend _add

ail a3 a5 a1 b1 b2 bis bi7
d31 ds3 G35 Osg| ba1 baa bas  bor
asy as3 ass A58 bs1 bs2 bss bs7
agy ag3 ags ags bri b2 brs brr)

[a11 +b11 b1z a3 ais+bis by aig]
ba1 by 0 bas by 0
asy 0 as3 ass 0 ass

as1 +0bs1 bs2 as3 ass+0bss bsr ass
br1 b2 0 brs bz 0
asy 0 as3 ass 0 ass]

1
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Multifrontal Sparse Cholesky

Factor( j)
Let {1,...,4.} = Struct(L.;)
ajyj ajm e ajyiT
iy, 5 0 N 0
Let F; = .
g, j 0 e 0
for each child i of j in elimination tree
Factor(3)
F;,=F;,oU;
end
Perform one step of dense Cholesky:
éil,j 1 0 fj,j Eh,j e Eir,j
F; =
: I'lo wu;||o I
Ci,..j 1
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Advantages of Multifrontal Method

@ Most arithmetic operations performed on dense matrices,
which reduces indexing overhead and indirect addressing

@ Can take advantage of loop unrolling, vectorization, and
optimized BLAS to run at near peak speed on many types
of processors

@ Data locality good for memory hierarchies, such as cache,
virtual memory with paging, or explicit out-of-core solvers

@ Naturally adaptable to parallel implementation by
processing multiple independent fronts simultaneously on
different processors

@ Parallelism can also be exploited in dense matrix .
computations within each front 1
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Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse
Cholesky factorization

@ Reordering matrix to obtain relatively short and well
balanced elimination tree while also limiting fill

@ Multifrontal or supernodal approach to exploit dense
subproblems effectively

@ Subtree mapping to localize communication

@ Cyclic mapping of dense subproblems to achieve good
load balance

@ 2-D algorithm for dense subproblems to enhance

scalability I
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Scalability of Sparse Cholesky

@ Performance and scalability of sparse Cholesky depend on
sparsity structure of particular matrix

@ Sparse factorization requires factorization of dense matrix
of size ©(y/n ) for 2-D grid problem with » grid points, so
isoefficiency function is at least ©(p?) for 1-D algorithm and
O(p,/p) for 2-D algorithm

@ Scalability analysis is difficult for arbitrary sparse problems,
but best current parallel algorithms for sparse factorization
can achieve isoefficienty ©(p,/p ) for important classes of
problems

1
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