Parallel Numerical Algorithms
Chapter 6 — LU Factorization

Prof. Michael T. Heath

Department of Computer Science
University of lllinois at Urbana-Champaign

CS 554 / CSE 512

1

Michael T. Heath Parallel Numerical Algorithms

Outline

0 LU Factorization
@ Motivation
@ Gaussian Elimination

9 Parallel Algorithms for LU
@ Fine-Grain Algorithm
@ Agglomeration Schemes
@ Scalability

e Partial Pivoting

1

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Motivation

Gaussian Elimination

LU Factorization

@ System of linear algebraic equations has form
Az =0

where A is given n x n matrix, b is given n-vector, and x is
unknown solution n-vector to be computed

@ Direct method for solving general linear system is by
computing LU factorization

A=LU

where L is unit lower triangular and U is upper triangular
I

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Motivation

Gaussian Elimination

LU Factorization

@ System Axz = b then becomes
LUx =b
@ Solve lower triangular system
Ly=5»
by forward-substitution to obtain vector y
@ Finally, solve upper triangular system
Uxz=y

by back-substitution to obtain solution x to original system 1

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Motivation

Gaussian Elimination

Gaussian Elimination Algorithm

LU factorization can be computed by Gaussian elimination as
follows, where U overwrites A

fork=1ton—-1 { loop over columns }
fori=k+1ton { compute multipliers
Ui, = i/ akk for current column }
end
forj=k+1ton
fori=FkFk+1ton { apply transformation to
aij = aij — ligQr;j remaining submatrix }
end
end
end

I

Michael T. Heath Parallel Numerical Algorithms

LUF izati
U Factorization Motivation

Gaussian Elimination

Gaussian Elimination Algorithm

@ In general, row interchanges (pivoting) may be required to
ensure existence of LU factorization and numerical stability
of Gaussian elimination algorithm, but for simplicity we
temporarily ignore this issue

@ Gaussian elimination requires about n3/3 paired additions
and multiplications, so model serial time as

T =t.n3/3
where t. is time required for multiply-add operation

@ About n?/2 divisions also required, but we ignore this
lower-order term 1

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Motivation

Gaussian Elimination

Loop Orderings for Gaussian Elimination

@ Gaussian elimination has general form of triple-nested loop
in which entries of L and U overwrite those of A

for

for

for

aij = aij — (aik/akk) ar;
end
end
end

@ Indices i, 7, and k of for loops can be taken in any order,

for total of 3! = 6 different ways of arranging loops -
n

Michael T. Heath Parallel Numerical Algorithms

LUF izati
U Factorization Motivation

Gaussian Elimination

Loop Orderings for Gaussian Elimination

@ Different loop orders have different memory access
patterns, which may cause their performance to vary
widely, depending on architectural features such as cache,
paging, vector registers, etc.

@ Perhaps most promising for parallel implementation are kij
and kji forms, which differ only in accessing matrix by
rows or columns, respectively

1

Michael T. Heath Parallel Numerical Algorithms

LU Factorization Motivation

Gaussian Elimination

Gaussian Elimination Algorithm

@ kyi form of Gaussian elimination

fork=1ton—-1
fori=%Lk+1ton
Uiy = Qir/ gk
end
forj=k+1ton
fori=k+1ton
A5 = Qj5 — ik Ak
end
end
end

@ Multipliers ¢;; computed outside inner loop for greater .
efficiency 1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

@ Fori,j=1,...,n,fine-grain task (i, j) stores a;; and
computes and stores

uij, ifi<j
Eij’ if >

yielding 2-D array of n? fine-grain tasks
Communicate

@ Broadcast entries of A vertically to tasks below

@ Broadcast entries of L horizontally to tasks to right 1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Fine-Grain Tasks and Communication

OOOPOe
PPLHHS

i

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Fine-Grain Parallel Algorithm

for k = 1 to min(i, j) — 1

recv broadcast of a;; from task (k, j)

recv broadcast of ¢;;, from task (i, k)

a;; = a;j — i ag;j
end
if : < j then

broadcast a;; to tasks (k,j), k=i+1,...,n
else

recv broadcast of a;; from task (7, j)

lij = aij/aj

broadcast /;; to tasks (i,k), k=j+1,...,n
end

Michael T. Heath Parallel Numerical Algorithms

{ vert bcast }
{ horiz bcast }
{ update entry }

{ vert bcast }
{ vert bcast }

{ multiplier }
{ horiz bcast }

1

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Agglomeration

Agglomerate
With n x n array of fine-grain tasks, natural strategies are

@ 2-D: combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

2-D Agglomeration

~
)

N
=

@
~

~)
=
oS OR
ﬁ"‘-ﬁj 5 B

&
)

&

]

N
~

]

2 @3

»

~

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Column Agglomeration

N
2
J
N

ﬂ’u

1 5

/)
D

=
=
53
=
o
=
=
=
&

ﬁé@
Ngng
ElE
= 8
cl
§
¥
|
D
|
3

o
£S)
S
_
8
5 g
2 2
k) =
b3 5
_
3

W s Uy Uy Uss Uz
> | > | >

W Ly ls Uy Uys Uy
651\ as, sy 654\ @ s

ﬁlﬁl\ a62 a63 664\ ﬁl_ﬁ\ a66

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Row Agglomeration

SIOGIGIOIONe)
SIGIGIGIOI6
@ND()CMD()
@MDCDCMDC)
\4>CD<E>@Q<ﬁ>@®
BIGICIOIONE

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Mapping

Map

@ 2-D: assign (n/k)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

2-D Agglomeration with Cyclic Mapping

ﬂ”u ay 4, als\ a3 am\
Uy Uy Up Us Uy Ui
Ay Ay ay, Ays a, [

K[u Uy ly "4y VAJ "4y

: : :
ay Ay ay azs\ Ay azs\
[21 uz4 uzz uzs uzs uzs
a5 as, a5, ass sy Asq

vﬂ b, o ”sy u’ss s

' '

a:u asy a:«s\ 633 aas\

A 2 Uss Uz Uy

a

K[(;l [64 [nz {sy [63 uﬁy

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Coarse-Grain 2-D Parallel Algorithm

fork=1ton—1
broadcast {ax; : j € mycols, j > k} in process column
if & € mycols then
for i € myrows, i > k
Uik, = i/ akk { multipliers }
end
end
broadcast {/;; : i € myrows, i > k} in process row
for j € mycols, j > k
for i € myrows, i > k,
Qij = Qjj — ik ak; { update }
end
end
end il

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Performance Enhancements

@ Each process becomes idle as soon as its last row and
column are completed

@ With block mapping, in which each process holds
contiguous block of rows and columns, some processes
become idle long before overall computation is complete

@ Block mapping also yields unbalanced load, as computing
multipliers and updates requires successively less work
with increasing row and column numbers

@ Cyclic or reflection mapping improves both concurrency
and load balance
I

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Performance Enhancements

Performance can also be enhanced by overlapping
communication and computation

@ At step k, each process completes updating its portion of
remaining unreduced submatrix before moving on to step
k+1

@ Broadcast of each segment of row k& + 1, and computation
and broadcast of each segment of multipliers for step & + 1,
could be initiated as soon as relevant segments of row
k+ 1 and column k + 1 have been updated by their owners,
before completing remainder of their updating for step &

@ This send ahead strategy enables other processes to start
working on next step earlier than they otherwise could
I

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Column Agglomeration with Cyclic Mapping

=
=
-/
<)
5
=
/)
=

&
=

&

=
=
=
=
=
=
o
=
@
=
>

=
o
2
SN

=
w
&

)
=
)
£
)
5
)
&
)
&
)
&

EN
=
£
=\
=
&
SN
=
N
&

P
&N ﬂ&
P~
& 4

*
2
)
2
)
2
)
&
)
2
)
E

ZN
o
2
8
2
a“e
o
2
<
2

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Column Agglomeration

@ Matrix rows need not be broadcast vertically, since any
given column is contained entirely in only one process

@ But there is no parallelism in computing multipliers or
updating any given column

@ Horizontal broadcasts still required to communicate
multipliers for updating

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Coarse-Grain 1-D Column Parallel Algorithm

fork=1ton—-1
if k € mycols then
fori=k+1ton

lik, = Qik/agk { multipliers }
end
end
broadcast {/;; : k < i <n} { broadcast }

for j € mycols, j > k
fori=k+1ton
aij = aij — Lig ag; { update }
end
end
end

Michael T. Heath Parallel Numerical Algorithms

1

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Row Agglomeration with Cyclic Mapping

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

1-D Row Agglomeration

@ Multipliers need not be broadcast horizontally, since any
given matrix row is contained entirely in only one process

@ But there is no parallelism in updating any given row

@ Vertical broadcasts still required to communicate each row
of matrix to processes below it for updating

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Coarse-Grain 1-D Row Parallel Algorithm

fork=1ton—1

broadcast {ay; : k < j<n} { broadcast }
for i € myrows, i > k,

lik, = aig/akk { multipliers }
end

forj=k+1ton
for i € myrows, i > k,
aij = aij — Lig ak; { update }
end
end
end

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Performance Enhancements

@ Same performance enhancements as for 2-D
agglomeration apply to both 1-D column and 1-D row
agglomerations as well, including cyclic mapping and send
ahead strategy

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 2-D Agglomeration

@ Updating by each process at step & requires about
(n — k)?/p operations

@ Summing over n — 1 steps

n—1
Tcomp ~ 75(: Z(n - k)Q/p
k=1

~ ten’/(3p)

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 2-D Agglomeration

@ Similarly, amount of data broadcast at step & along each
process row and column is about (n — k)/,/p, s0 on 2-D
mesh

-1

Teomm =~ »_ 2(ts+tw(n—k)/\/p)

k=1
~ 2t5n+twn2/\/ﬁ

S

where we have allowed for overlap of broadcasts for
successive steps

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 2-D Agglomeration

@ Total execution time is
T, = ten®/(3p) + 2tsn + t,n?//p
@ To determine isoefficiency function, set
ten3/3 = E (t.n®/3+2tsnp+tyn®/p)
which holds for large p if n = ©(,/p), so isoefficiency

function is ©(p,/p), since T} = O(n?)

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 1-D Agglomeration

@ With either 1-D column or 1-D row agglomeration, updating
by each process at step k requires about (n — k)2 /p
operations

@ Summing over n — 1 steps

n—1

Tcomp =t Z(n—k)Z/p

k=1
~ ten®/(3p)

1

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 1-D Agglomeration

@ Amount of data broadcast at step £ is about n — &, so on
1-D mesh

n—1

Teomm =~ (ts+tw(n—k))
k=1

~ tyn+t,n?/2

where we have allowed for overlap of broadcasts for
successive steps

Michael T. Heath Parallel Numerical Algorithms

Fine-Grain Algorithm
Parallel Algorithms for LU Agglomeration Schemes
Scalability

Scalability for 1-D Agglomeration

@ Total execution time is
T, ~ ten®/(3p) + tsn + tyyn?/2
@ To determine isoefficiency function, set
ten®/3 = E (ten®/3 +tsnp+ty,n’p/2)
which holds for large p if n = O(p), so isoefficiency function

is ©(p?), since Ty = O(n?)

1

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Partial Pivoting

@ Row ordering of A is irrelevant in system of linear
equations

@ Partial pivoting takes rows in order of largest entry in
magnitude of leading column of remaining unreduced
matrix

@ This choice ensures that multipliers do not exceed 1 in
magnitude, which reduces amplification of rounding errors

@ In general, partial pivoting is required to ensure existence
and numerical stability of LU factorization

1

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Partial Pivoting

@ Partial pivoting yields factorization of form
PA=LU
where P is permutation matrix
@ If PA = LU, then system Ax = b becomes
PAx=LUx = Pb

which can be solved by forward-substitution in lower
triangular system Ly = Pb, followed by back-substitution
in upper triangular system Ux = y

I

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Parallel Partial Pivoting

@ Partial pivoting complicates parallel implementation of
Gaussian elimination and significantly affects potential
performance

@ With 2-D algorithm, pivot search is parallel but requires
communication within process column and inhibits
overlapping of successive steps

@ With 1-D column algorithm, pivot search requires no
communication but is purely serial

@ Once pivot is found, index of pivot row must be
communicated to other processes, and rows must be

explicitly or implicitly interchanged in each process T

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Parallel Partial Pivoting

@ With 1-D row algorithm, pivot search is parallel but requires
communication among processes and inhibits overlapping
of successive steps

@ If rows are explicitly interchanged, then only two processes
are involved

@ If rows are implicitly interchanged, then mapping of rows to
processes is altered, which may degrade concurrency and
load balance

@ Tradeoff between column and row algorithms with partial
pivoting depends on relative speeds of communication and

computation T

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Alternatives to Partial Pivoting

@ Because of negative effects of partial pivoting on parallel
performance, various alternatives have been proposed that
limit pivot search

e tournament pivoting
e threshold pivoting
e pairwise pivoting

@ Such strategies are not foolproof and may trade off some
degree of stability and accuracy for speed

@ Stability and accuracy may be recovered via iterative
refinement, but this has its own cost

1

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

Communication vs. Memory Tradeoff

@ If explicit replication of storage is allowed, then lower
communication volume is possible

@ As with matrix multiplication, “2.5-D” algorithms have
recently been developed that use partial storage
replication to reduce communication volume to whatever
extent available memory allows

o If sufficient memory is avaiable, then these algorithms can
achieve provably optimal communication

1

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

References

@ J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

@ G. A. Geist and C. H. Romine, LU factorization algorithms
on distributed-memory multiprocessor architectures, SIAM
J. Sci. Stat. Comput. 9:639-649, 1988

@ L. Grigori, J. Demmel, and H. Xiang, CALU: A
communication optimal LU factorization algorithm, SIAM J.
Matrix Anal. Appl. 32:1317-1350, 2011

@ B. A. Hendrickson and D. E. Womble, The torus-wrap
mapping for dense matrix calculations on massively
parallel computers, SIAM J. Sci. Stat. Comput. ,
15:1201-1226, 1994 1

Michael T. Heath Parallel Numerical Algorithms

Partial Pivoting

References

@ J. M. Ortega, Introduction to Parallel and Vector Solution of
Linear Systems, Plenum Press, 1988

@ J. M. Ortega and C. H. Romine, The ijk forms of
factorization methods IlI: parallel systems, Parallel Comput.
7:149-162, 1988

@ Y. Robert, The Impact of Vector and Parallel Architectures
on the Gaussian Elimination Algorithm, Wiley, 1990

@ E. Solomonik and J. Demmel, Communication-optimal
parallel 2.5D matrix multiplication and LU factorization
algorithms, 17th Euro-Par Conf. on Parallel Processing,
LNCS 6853, Springer, 2011

@ S. A. Vavasis, Gaussian elimination with pivoting is
P-complete, SIAM J. Disc. Math. 2:413-423, 1989 I

Michael T. Heath Parallel Numerical Algorithms

	LU Factorization
	Motivation
	Gaussian Elimination

	Parallel Algorithms for LU
	Fine-Grain Algorithm
	Agglomeration Schemes
	Scalability

	Partial Pivoting

