
BI-DIRECTIONAL ATTENTION
FLOW FOR MACHINE

COMPREHENSION
Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, Hannaneh Hajishirzi

Presenter: Wenda Qiu

04/01/2020

Machine Comprehension

• Question Answering:
• Answer a query about a given context paragraph

• In this paper:
• Bi-Directional Attention Flow (BIDAF) network

• Query-aware context representation without early summarization

• Achieve SOTA (when published) in SQuAD and CNN/DailyMail Cloze Test

2

Previous works

Why are we using attention?
• Allows model to focus on a small portion of the context, shown to be effective

• Dynamic attention (Bahdanau et al., 2015)
• Attention weights updated dynamically, given the query, the context and

previous attention
• BIDAF uses a memory-less attention mechanism

• Attention calculated only once (Kadlec et al., 2016)
• Summarize context and query with fixed-size vectors in the attention layer
• BIDAF does not make a summarization
• BIDAF lets the attention vectors flow into the modeling (RNN) layer

• Multi-hop attention (Sordoni et al., 2016; Dhingra et al., 2016)

3

Bi-Directional Attention Flow Model

4

1. - 3. Three Embedding Layers

• Character Embedding Layer
• Character-level CNNs

• Word Embedding Layer
• Pre-trained word embedding model (GloVe)

• Contextual Embedding Layer
• LSTMs in both directions

Applied to both context and query

Computing features at different levels of granularity

5

4. Attention Flow Layer

Linking and fusing the information from the context
and the query words

Attention flow: embeddings from previous layers are
allowed to flow through

• Similarity Matrix

• Context-to-query Attention: signifies which query
words are most relevant to each context word

6

4. Attention Flow Layer

Linking and fusing the information from the context
and the query words

Attention flow: embeddings from previous layers are
allowed to flow through

• Similarity Matrix

• Query-to-context Attention: signifies which context
words have the closest similarity to one of the
query words

7

4. Attention Flow Layer

• Layer output: query-aware representation of each
context word

• Simple concatenation shows a good result

8

5. Modeling Layer

• Capture the interaction among the context words conditioned on the
query

• 2-layer Bi-Directional LSTM

9

6. Output Layer

• Application-specific

• For QA: the answer phrase is derived by predicting the start and the
end indices of the phrase in the paragraph
• Probability distribution of the start index

• Probability distribution of the end index: M2 obtained by another
bidirectional LSTM layer

• Loss function:
• Negative log loss:

10

Experiments – QA

• Dataset: SQuAD
• Wikipedia articles with more than 100,000 questions

• The answer to each question is always a span in the context (i.e. start/end
index pair)

• Evaluation metrics:
• Exact Match (EM)

• softer metric, character level F1 score

11

Experiments – QA Results

• Outperforms all previous methods when ensemble learning is applied

12

Experiments – QA Ablation Study

• Both char-level and word-level
embeddings contribute

• Both directions of attention (C2Q
& Q2C) are needed

• Attention flow introduced this
paper is better than dynamic
attention (previous works,
attention is dynamically
computed in modeling layer)

13

Visualization – QA attention similarities

• “Where” matches locations

• “many” matches quantities
and numerical symbols

• Entities in the question attend
to the same entities in the
context

14

Experiments – Cloze Test

Cloze: fill in words that have been removed from a passage

• Dataset: CNN and DailyMail
• Each example has a news article and an incomplete sentence extracted from

the human-written summary of the article

• Output Layer:
• The answer is always a single word, end index is not needed

• p2 term is omitted in the loss function

15

Experiments – Cloze Test

• BIDAF outperforms
previous single-run models
on both datasets for both
val and test data

• On DailyMail, BIDAF single-
run model even
outperforms the best
ensemble method

16

Conclusion

• Bi-Directional Attention Flow (BIDAF) network is proposed

• BIDAF has:
• Multi-stage hierarchical process

• The 6 layers with different functions

• Context representation at different levels of granularity
• Character level, word level, contextualized level

• Bi-directional attention flow mechanism
• Context2Query, Query2Context

• Query aware context representation without early summarization
• Both attention and embeddings are fed into the modeling layer

17

Making Neural QA as
Simple as Possible but
not Simpler
DIRK WEISSENBORN, GEORG WIESE, AND LAURA SEIFFE 2017

PRESENTED BY KEVIN PEI

Outline
1. Motivation and Background

2. Baseline BoW Neural QA Model

3. FastQA

4. FastQA Extended

5. Results

6. Discussion

7. Conclusion

1. Motivation and Background
Current QA models are too complex
◦ Contain layers that measure word-to-word interactions

◦ Much of the current work in neural QA focuses on this interaction layer (attention, co-attention, etc.)

◦ No good baseline for QA

Question type intuition
◦ The answer type should match the type specified by the question (e.g. time for “when”)

Context intuition
◦ The words surrounding the answer should be words that

appear in the question

2. Baseline BoW Neural QA Model
Previous basic model baseline for SQuAD was logistic regression

This new baseline uses the Question type intuition and Context intuition in a neural model

Embeddings = word embeddings concatenated with character embeddings (Seo et. al 2017)

Question type intuition is captured by comparing the Lexical Answer Type (LAT) of the question
to a candidate answer span

◦ LAT is expected type of the answer – Who, Where, When, etc. or noun phrase after What or Which
◦ Candidate answer spans are all word spans below a max length (10 in this paper)

When did building activity occur on St. Kazimierz Church?

What building activity occurred at St. Kazimierz Church on 1688?

2. Baseline BoW Neural QA Model
LAT encoding for question = concatenation of embeddings of first token, average embeddings of
all tokens, and embeddings of last token

◦ LAT encoding is further transformed with fully connected layer and tanh non-linearity into

Span encoding = concatenation of average embeddings of context tokens to the left of the span,
embeddings of first token, average embeddings of all tokens, embeddings of last token, and
average embeddings of context tokens to the right of the span

◦ Window size = 5
◦ Span encoding is further transformed with fully connected layer and tanh non-linearity into

Final type score is derived from feeding into a feedforward network with one
hidden layer

When did building activity occur on St. Kazimierz Church?

What building activity occurred at St. Kazimierz Church on 1688?
… Krasinski Palace (1677-1683), Wilanow Palace
(1677-1696) and St. Kazimierz Church (1688-1692).

2. Baseline BoW Neural QA Model
Context matching intuition is captured by word-in-question (wiq) features

◦ Binary wiq (wiqb) – Only checks for presence of question words q in the context x

◦ Weighted wiq (wiqw) – Allows for matching of synonyms and different morphological forms while also
emphasizing rare tokens in the context (rare tokens are probably more informative)

◦ Softmax emphasizes rare tokens because tokens in the context more similar to a question token and less
similar to all other tokens in the context get higher softmax scores

wiq features are calculated for the left and right contexts for spans 5, 10, and 20 (12 total features)

A scalar weight for each wiq feature is learned (no method specified) and they’re summed to obtain a
context-matching score for a candidate answer span

Final score for a span is sum of type and context matching score

When did building activity occur on St. Kazimierz Church?

What building activity occurred at St. Kazimierz Church on 1688?
… Krasinski Palace (1677-1683), Wilanow Palace
(1677-1696) and St. Kazimierz Church (1688-1692).

3. FastQA
BoW is insufficient – RNN-based networks can
better capture syntax and semantics

FastQA consists of an embedding, encoding,
and answer layer

Embeddings are handled similar to Seo et. al
(2017) – word and character embeddings are
jointly projected to n-dimensional
representation and transformed by a single-
layer highway network

3. FastQA
Encoding layer input consists of
concatenation of embeddings and wiq
features

The encoding layer is a BiLSTM

The same encoder parameters are used for
context and question words, except with
different B and wiq features of 1 for question
words

H is encoded context, Z is encoded question

3. FastQA
The answer layer calculates probability distributions
for the start and end locations of the answer span

ps is the probability distribution of the start location

pe is the probability distribution of the end location – it’s conditioned on the start location

Overall probability of predicting an answer span with start location s and end location e
p(s, e) = ps(s) * pe(e|s)

Beam-search is used to find the answer span with highest probability

4. FastQA Extended
FastQA omits the interaction layer typical of
neural QA systems
◦ Previous works have used attention, co-attention, bi-

directional attention flow, multi-perspective context
matching, or fine-grained gating

FastQA is extended with representation fusion

Each state representation has a weighted sum
with co-representations retrieved via
attention
◦ Intra-fusion for other passages in the context
◦ Inter-fusion for the question

5. Results
SQuAD (12/29/2016) NewsQA Dataset

FastQAExt achieves state of the art performance (as of 12/29/16)

FastQAExt takes 2x as long to run and 2x more memory than FastQA

SQuAD Ablation Studies

5. Results
Ex. 1 Failure: Lack of fine-grained understanding of answer
types

Ex. 2 Failure: Lack of co-reference resolution

Ex. 3 Failure: Nested syntactic structures, ignoring
punctuations and conjunctions

Manual examination
◦ 35/55 mistakes can be attributed to the context and type

matching heuristics
◦ 44/50 correct answers can be solved using the heuristics
◦ FastQA extended is not systematically better than FastQA, the

questions it can answer that FastQA can’t are varied
◦ Similarly, compared to the Dynamic Coattention Network (Xiong

et. al 2017), DCN has slightly better performance but not in any
specific way

6. Discussion
This paper claims that previous work is created top-down
◦ Interaction layer’s complexity is justified post-hoc

This paper is built on intuitions about the problem

Features used resemble attention, and attention has same goals as intuitions
◦ Features are more transparent attention mechanism

More in-depth study of time and space requirements would be appreciated
◦ Make the tradeoff between models more clear

7. Conclusion
This paper introduces two new baseline neural QA models based on intuitions
about QA
◦ Neural BoW model
◦ FastQA

Compared to more complex previous methods, FastQA is relatively simple
◦ Extending FastQA with a complex interaction layer similar to previous work gives it state-of-

the-art performance

This paper identifies which parts of neural QA systems lead to the most gain
◦ Question awareness
◦ More complex models than BoW

Questions?

Gated Self-Matching Networks for
Reading Comprehension and Question

Answering

Zhouxiang Cai

Introduction

2

— Reading comprehension style question answering

● Passage P and question Q are given
● Predict an answer A (WHO, WHEN WHY) to question Q based on P.

— Main Contirbution

● Gate-attention: add an additional gate to the model, to account for the words in a passage are of
different importance to answer a particular question.

● Self-matching: effectively aggregate evidence from the whole passage to infer the answer

Model Structure:
● Question and Passage Encoder

● Gated Attention-based Recurrent Networks

● Self-Matching Attention

● Output Layer

3

Model Structure:

4

1: Question and Passage Encoder

● Convert the words to word-level embeddings character-level embeddings.

● Use a bi-directional RNN to produce new representation

5

2: Gated Attention-based Recurrent
Networks
 ● Incorporate question information into passage representation

● Addtional gate

6

3: Self-Matching Attention

● One problem with attention representation is that it has very limited knowledge of context.

● One answer candidate is often oblivious in the passage outside its surrounding window

● Add a self-matching layer to solve this problem

7

4: Output Layer

● Predict the start and end position of the answer.

● Use an attention-pooling over the question representation to generate the initial hidden vector for the
pointer network

8

Result
Database: Stanford Question
Answering Dataset (SQuAD)
(Rajpurkar et al., 2016)

a large scale dataset for reading
comprehension and question
answering which is manually
created through crowdsourcing.

9

Result
Database: Stanford Question
Answering Dataset (SQuAD)
(Rajpurkar et al., 2016)

a large scale dataset for reading
comprehension and question
answering which is manually
created through crowdsourcing.

10

Disscuss
Advatange:

Use gate to link question to the message

Use self-matching to find evidence from the message

Shortcoming:

Perform bad in long question

Perform bad in why question

11

Future Woek
As for future work, authors are applying the gated self-matching networks to other
reading comprehension and question answering datasets, such as the MS MARCO
dataset.

12

Thank You

13

Memory Networks
Jason Weston, Sumit Chopra & Antoine Bordes

Facebook AI Research

Presented by Xiaoyan Wang (xiaoyan5@Illinois.edu)

Motivation

• Previous models tend to have small memory
• RNNs can process a sequence but cannot accurately remembering

things from the past (i.e. without compressing information into dense
vectors)
• Therefore:
• The author introduces memory network, which has a long-term memory
component that can be read and written to
• The network is good on tasks that required long sequence memorization (e.g.
question answering with long text)

Outline

Motivation

What is a Memory Network

MemNN: A special type Memory Network for text-based input

Experiments

Memory Networks

• A memory network is a type of network consists of
• 𝒎: the memory

• Represented as an array of “objects”
• 𝐼: the input feature map

• Converts the input to internal feature representation
• 𝐺: generalization

• Updates old memories given the new input
• 𝑂: the output feature map

• Produces the new output (in the feature representation space)
• 𝑅: response

• Converts the output into the response format

Memory Networks

• Given an input 𝑥, the flow of a memory network is as follows:
1. Convert 𝑥 to an internal feature representation 𝐼(𝑥)
2. Updates each entry of 𝒎, given the new input: 𝑚! ≔
𝐺 𝑚! , 𝐼 𝑥 ,𝒎 ∀𝑖

3. Compute output feature 𝑜 given the new input and the memory:
𝑜 = 𝑂(𝐼 𝑥 ,𝒎)

4. Decode 𝑜, the output features, to produce the final response 𝑟 =
𝑅 𝑜

Memory Networks

• The 𝑰 component: Preprocessing (parsing/entity resolution),
embeddings, etc.
• The 𝑮 component: Decide which memories to update. The simplest

form of 𝐺 could be implemented as 𝑚" # = 𝐼 𝑥 , where 𝐻 selects
an index for a given input.
• The 𝑶 component: Read from memory and perform inference (e.g. by

retrieving relevant memories from the list)
• The 𝑹 component: Produce the final response given 𝑂 (e.g.,

generating answers based on the retrieved texts).

Memory Neural Networks (MemNN) for text

• A special type of memory network where the components are neural
networks
• The basic version:
• Assumes that the inputs are sentences
• The text is stored in its original form in the next available memory slot
• The Omodule retrieves k supporting memories:

Published as a conference paper at ICLR 2015

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
word-based input sequences). The text is stored in the next available memory slot in its original
form2, i.e., S(x) returns the next empty memory slot N : mN = x, N = N + 1. The G module
is thus only used to store this new memory, so old memories are not updated. More sophisticated
models are described in subsequent sections.

The core of inference lies in the O and R modules. The O module produces output features by
finding k supporting memories given x. We use k up to 2, but the procedure is generalizable to
larger k. For k = 1 the highest scoring supporting memory is retrieved with:

o1 = O1(x,m) = argmax
i=1,...,N

sO(x,mi) (2)

where sO is a function that scores the match between the pair of sentences x andmi. For the case
k = 2 we then find a second supporting memory given the first found in the previous iteration:

o2 = O2(x,m) = argmax
i=1,...,N

sO([x,mo1],mi) (3)

where the candidate supporting memory mi is now scored with respect to both the original in-
put and the first supporting memory, where square brackets denote a list3. The final output o is
[x,mo1 ,mo2], which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
"U"UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.4 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3As we will use a bag-of-words model where both x andmo1 are represented in the bag (but with two differ-
ent dictionaries) this is equivalent to using the sum sO(x,mi) + sO(mo1 ,mi), however a more sophisticated
modeling of the inputs (e.g., with nonlinearities) may not separate into a sum.

4Experiments with only a single dictionary and linear embeddings performed worse (not shown). In order
to model with only a single dictionary, one could consider deeper networks that transform the words dependent
on their context. We leave this to future work.

3

Published as a conference paper at ICLR 2015

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
word-based input sequences). The text is stored in the next available memory slot in its original
form2, i.e., S(x) returns the next empty memory slot N : mN = x, N = N + 1. The G module
is thus only used to store this new memory, so old memories are not updated. More sophisticated
models are described in subsequent sections.

The core of inference lies in the O and R modules. The O module produces output features by
finding k supporting memories given x. We use k up to 2, but the procedure is generalizable to
larger k. For k = 1 the highest scoring supporting memory is retrieved with:

o1 = O1(x,m) = argmax
i=1,...,N

sO(x,mi) (2)

where sO is a function that scores the match between the pair of sentences x andmi. For the case
k = 2 we then find a second supporting memory given the first found in the previous iteration:

o2 = O2(x,m) = argmax
i=1,...,N

sO([x,mo1],mi) (3)

where the candidate supporting memory mi is now scored with respect to both the original in-
put and the first supporting memory, where square brackets denote a list3. The final output o is
[x,mo1 ,mo2], which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
"U"UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.4 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3As we will use a bag-of-words model where both x andmo1 are represented in the bag (but with two differ-
ent dictionaries) this is equivalent to using the sum sO(x,mi) + sO(mo1 ,mi), however a more sophisticated
modeling of the inputs (e.g., with nonlinearities) may not separate into a sum.

4Experiments with only a single dictionary and linear embeddings performed worse (not shown). In order
to model with only a single dictionary, one could consider deeper networks that transform the words dependent
on their context. We leave this to future work.

3

Memory Neural Networks (MemNN) for text

• The basic version:
• Assumes that the inputs are sentences
• The text is stored in its original form in the next available memory slot
• The Omodule retrieves k supporting memories
• The Rmodule produce the textual response, e.g. if the answer is a single word:

Published as a conference paper at ICLR 2015

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
word-based input sequences). The text is stored in the next available memory slot in its original
form2, i.e., S(x) returns the next empty memory slot N : mN = x, N = N + 1. The G module
is thus only used to store this new memory, so old memories are not updated. More sophisticated
models are described in subsequent sections.

The core of inference lies in the O and R modules. The O module produces output features by
finding k supporting memories given x. We use k up to 2, but the procedure is generalizable to
larger k. For k = 1 the highest scoring supporting memory is retrieved with:

o1 = O1(x,m) = argmax
i=1,...,N

sO(x,mi) (2)

where sO is a function that scores the match between the pair of sentences x andmi. For the case
k = 2 we then find a second supporting memory given the first found in the previous iteration:

o2 = O2(x,m) = argmax
i=1,...,N

sO([x,mo1],mi) (3)

where the candidate supporting memory mi is now scored with respect to both the original in-
put and the first supporting memory, where square brackets denote a list3. The final output o is
[x,mo1 ,mo2], which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
"U"UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.4 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3As we will use a bag-of-words model where both x andmo1 are represented in the bag (but with two differ-
ent dictionaries) this is equivalent to using the sum sO(x,mi) + sO(mo1 ,mi), however a more sophisticated
modeling of the inputs (e.g., with nonlinearities) may not separate into a sum.

4Experiments with only a single dictionary and linear embeddings performed worse (not shown). In order
to model with only a single dictionary, one could consider deeper networks that transform the words dependent
on their context. We leave this to future work.

3

Published as a conference paper at ICLR 2015

3.1 BASIC MODEL

In our basic architecture, the I module takes an input text. Let us first assume this to be a sentence:
either the statement of a fact, or a question to be answered by the system (later we will consider
word-based input sequences). The text is stored in the next available memory slot in its original
form2, i.e., S(x) returns the next empty memory slot N : mN = x, N = N + 1. The G module
is thus only used to store this new memory, so old memories are not updated. More sophisticated
models are described in subsequent sections.

The core of inference lies in the O and R modules. The O module produces output features by
finding k supporting memories given x. We use k up to 2, but the procedure is generalizable to
larger k. For k = 1 the highest scoring supporting memory is retrieved with:

o1 = O1(x,m) = argmax
i=1,...,N

sO(x,mi) (2)

where sO is a function that scores the match between the pair of sentences x andmi. For the case
k = 2 we then find a second supporting memory given the first found in the previous iteration:

o2 = O2(x,m) = argmax
i=1,...,N

sO([x,mo1],mi) (3)

where the candidate supporting memory mi is now scored with respect to both the original in-
put and the first supporting memory, where square brackets denote a list3. The final output o is
[x,mo1 ,mo2], which is input to the module R.

Finally, R needs to produce a textual response r. The simplest response is to return mok , i.e.,
to output the previously uttered sentence we retrieved. To perform true sentence generation, one
can instead employ an RNN. In our experiments we also consider an easy to evaluate compromise
approach where we limit textual responses to be a single word (out of all the words seen by the
model) by ranking them:

r = argmaxw∈W sR([x,mo1 ,mo2], w) (4)
whereW is the set of all words in the dictionary, and sR is a function that scores the match.

An example task is given in Figure 1. In order to answer the question x = “Where is the milk now?”,
the O module first scores all memories, i.e., all previously seen sentences, against x to retrieve the
most relevant fact,mo1 = “Joe left the milk” in this case. Then, it would search the memory again
to find the second relevant fact given [x,mo1], that is mo2 = “Joe travelled to the office” (the last
place Joe went before dropping the milk). Finally, the R module using eq. (4) would score words
given [x,mo1 ,mo2] to output r = “office”.

In our experiments, the scoring functions sO and sR have the same form, that of an embedding
model:

s(x, y) = Φx(x)
"U"UΦy(y). (5)

where U is a n ×D matrix where D is the number of features and n is the embedding dimension.
The role of Φx and Φy is to map the original text to the D-dimensional feature space. The simplest
feature space to choose is a bag of words representation, we choose D = 3|W | for sO , i.e., every
word in the dictionary has three different representations: one forΦy(.) and two forΦx(.) depending
on whether the words of the input arguments are from the actual input x or from the supporting
memories so that they can be modeled differently.4 Similarly, we used D = 3|W | for sR as well.
sO and sR use different weight matrices UO and UR.

2Technically, we will be using an embedding model to represent text, so we could store the incoming input
using its learned embedding vector in memory instead. The downside of such a choice is that during learning
the embedding parameters are changing, and hence the stored vectors would go stale. However, at test time
(where the parameters are not changing) storing as embedding vectors could make sense, as this is faster than
reading the original words and then embedding them repeatedly.

3As we will use a bag-of-words model where both x andmo1 are represented in the bag (but with two differ-
ent dictionaries) this is equivalent to using the sum sO(x,mi) + sO(mo1 ,mi), however a more sophisticated
modeling of the inputs (e.g., with nonlinearities) may not separate into a sum.

4Experiments with only a single dictionary and linear embeddings performed worse (not shown). In order
to model with only a single dictionary, one could consider deeper networks that transform the words dependent
on their context. We leave this to future work.

3

where 𝜙(⋅) computes the mapping from the original text to the feature space, and 𝑈 is a
𝑛×𝐷 matrix (𝑛 is the embedding dimension and 𝐷 is the number of features)

Memory Neural Networks (MemNN) for text

• The basic version:
• Assumes that the inputs are sentences
• The text is stored in its original form in the next available memory slot
• The Omodule retrieves k supporting memories
• The Rmodule produce the textual response
• During training time, try minimize the loss:

Published as a conference paper at ICLR 2015

Figure 1: Example “story” statements, questions and answers generated by a simple simulation.
Answering the question about the location of the milk requires comprehension of the actions “picked
up” and “left”. The questions also require comprehension of the time elements of the story, e.g., to
answer “where was Joe before the office?”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office
Where is Joe? A: bathroom
Where was Joe before the office? A: kitchen

Training We train in a fully supervised setting where we are given desired inputs and responses,
and the supporting sentences are labeled as such in the training data (but not in the test data, where
we are given only the inputs). That is, during training we know the best choice of both max functions
in eq. (2) and (3)5. Training is then performed with a margin ranking loss and stochastic gradient
descent (SGD). Specifically, for a given question x with true response r and supporting sentences
mo1 andmo2 (when k = 2), we minimize over model parameters UO and UR:

∑

f̄ !=mo1

max(0, γ − sO(x,mo1) + sO(x, f̄)) + (6)

∑

f̄ ′ !=mo2

max(0, γ − sO([x,mo1],mo2]) + sO([x,mo1], f̄ ′])) + (7)

∑

r̄ !=r

max(0, γ − sR([x,mo1 ,mo2], r) + sR([x,mo1 ,mo2], r̄])) (8)

where f̄ , f̄ ′ and r̄ are all other choices than the correct labels, and γ is the margin. At every step
of SGD we sample f̄ , f̄ ′, r̄ rather than compute the whole sum for each training example, following
e.g., Weston et al. (2011).

In the case of employing an RNN for the R component of our MemNN (instead of using a single
word response as above) we replace the last term with the standard log likelihood used in a language
modeling task, where the RNN is fed the sequence [x, o1, o2, r]. At test time we output its prediction
r given [x, o1, o2]. In contrast the absolute simplest model, that of using k = 1 and outputting the
located memorymo1 as response r, would only use the first term to train.

In the following subsections we consider some extensions of our basic model.

3.2 WORD SEQUENCES AS INPUT

If input is at the word rather than sentence level, that is words arrive in a stream (as is often done, e.g.,
with RNNs) and not already segmented as statements and questions, we need to modify the approach
we have so far described. We hence add a “segmentation” function, to be learned, which takes as in-
put the last sequence of words that have so far not been segmented and looks for breakpoints. When
the segmenter fires (indicates the current sequence is a segment) we write that sequence to memory,
and can then proceed as before. The segmenter is modeled similarly to our other components, as an
embedding model of the form:

seg(c) = W#
segUSΦseg(c) (9)

whereWseg is a vector (effectively the parameters of a linear classifier in embedding space), and c is
the sequence of input words represented as bag of words using a separate dictionary. If seg(c) > γ,
where γ is the margin, then this sequence is recognised as a segment. In this way, our MemNN has
a learning component in its write operation. We consider this segmenter a first proof of concept:
of course, one could design something much more sophisticated. Further details on the training
mechanism are given in Appendix B.

5 However, note that methods like RNNs and LSTMs cannot easily use this information.

4

where ̅𝑓, #𝑓′ and 𝑟̅ are all other choices than the correct labels

Memory Neural Networks (MemNN) for text

• For word sequences as input: learn a segmentation function

• To take into account when a memory slot was written to:

• the dimensionality of 𝜙&(𝑥, 𝑦, 𝑦′) is extended by 3 to include three binary
features: whether x is older than y, x is older than y’, and y older than y’

• To handle previously unseen words: for each word we see, we store a
bag of words it has co-occurred with, and do the matching by

Published as a conference paper at ICLR 2015

Figure 1: Example “story” statements, questions and answers generated by a simple simulation.
Answering the question about the location of the milk requires comprehension of the actions “picked
up” and “left”. The questions also require comprehension of the time elements of the story, e.g., to
answer “where was Joe before the office?”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office
Where is Joe? A: bathroom
Where was Joe before the office? A: kitchen

Training We train in a fully supervised setting where we are given desired inputs and responses,
and the supporting sentences are labeled as such in the training data (but not in the test data, where
we are given only the inputs). That is, during training we know the best choice of both max functions
in eq. (2) and (3)5. Training is then performed with a margin ranking loss and stochastic gradient
descent (SGD). Specifically, for a given question x with true response r and supporting sentences
mo1 andmo2 (when k = 2), we minimize over model parameters UO and UR:

∑

f̄ !=mo1

max(0, γ − sO(x,mo1) + sO(x, f̄)) + (6)

∑

f̄ ′ !=mo2

max(0, γ − sO([x,mo1],mo2]) + sO([x,mo1], f̄ ′])) + (7)

∑

r̄ !=r

max(0, γ − sR([x,mo1 ,mo2], r) + sR([x,mo1 ,mo2], r̄])) (8)

where f̄ , f̄ ′ and r̄ are all other choices than the correct labels, and γ is the margin. At every step
of SGD we sample f̄ , f̄ ′, r̄ rather than compute the whole sum for each training example, following
e.g., Weston et al. (2011).

In the case of employing an RNN for the R component of our MemNN (instead of using a single
word response as above) we replace the last term with the standard log likelihood used in a language
modeling task, where the RNN is fed the sequence [x, o1, o2, r]. At test time we output its prediction
r given [x, o1, o2]. In contrast the absolute simplest model, that of using k = 1 and outputting the
located memorymo1 as response r, would only use the first term to train.

In the following subsections we consider some extensions of our basic model.

3.2 WORD SEQUENCES AS INPUT

If input is at the word rather than sentence level, that is words arrive in a stream (as is often done, e.g.,
with RNNs) and not already segmented as statements and questions, we need to modify the approach
we have so far described. We hence add a “segmentation” function, to be learned, which takes as in-
put the last sequence of words that have so far not been segmented and looks for breakpoints. When
the segmenter fires (indicates the current sequence is a segment) we write that sequence to memory,
and can then proceed as before. The segmenter is modeled similarly to our other components, as an
embedding model of the form:

seg(c) = W#
segUSΦseg(c) (9)

whereWseg is a vector (effectively the parameters of a linear classifier in embedding space), and c is
the sequence of input words represented as bag of words using a separate dictionary. If seg(c) > γ,
where γ is the margin, then this sequence is recognised as a segment. In this way, our MemNN has
a learning component in its write operation. We consider this segmenter a first proof of concept:
of course, one could design something much more sophisticated. Further details on the training
mechanism are given in Appendix B.

5 However, note that methods like RNNs and LSTMs cannot easily use this information.

4

Published as a conference paper at ICLR 2015

3.3 EFFICIENT MEMORY VIA HASHING

If the set of stored memories is very large it is prohibitively expensive to score all of them as in
equations (2) and (3). Instead we explore hashing tricks to speed up lookup: hash the input I(x) into
one or more buckets and then only score memoriesmi that are in the same buckets. We investigated
two ways of doing hashing: (i) via hashing words; and (ii) via clustering word embeddings. For (i)
we construct as many buckets as there are words in the dictionary, then for a given sentence we hash
it into all the buckets corresponding to its words. The problem with (i) is that a memorymi will
only be considered if it shares at least one word with the input I(x). Method (ii) tries to solve this
by clustering instead. After training the embedding matrix UO, we run K-means to cluster word
vectors (UO)i, thus giving K buckets. We then hash a given sentence into all the buckets that its
individual words fall into. As word vectors tend to be close to their synonyms, they cluster together
and we thus also will score those similar memories as well. Exact word matches between input and
memory will still be scored by definition. ChoosingK controls the speed-accuracy trade-off.

3.4 MODELING WRITE TIME

We can extend our model to take into account when a memory slot was written to. This is not
important when answering questions about fixed facts (“What is the capital of France?”) but is
important when answering questions about a story, see e.g., Figure 1. One obviousway to implement
this is to add extra features to the representations Φx and Φy that encode the index j of a given
memory mj , assuming that j follows write time (i.e., no memory slot rewriting). However, that
requires dealing with absolute rather than relative time. We had more success empirically with the
following procedure: instead of scoring input, candidate pairs with s as above, learn a function on
triples sOt

(x, y, y′):

sOt
(x, y, y′) = Φx(x)

"UOt

"UOt

(

Φy(y)− Φy(y
′) + Φt(x, y, y

′)
)

. (10)

Φt(x, y, y′) uses three new features which take on the value 0 or 1: whether x is older than y, x is
older than y′, and y older than y′. (That is, we extended the dimensionality of all the Φ embeddings
by 3, and set these three dimensions to zero when not used.) Now, if sOt

(x, y, y′) > 0 the model
prefers y over y′, and if sOt

(x, y, y′) < 0 it prefers y′. The argmax of eq. (2) and (3) are replaced by
a loop over memories i = 1, . . . , N , keeping the winning memory (y or y′) at each step, and always
comparing the current winner to the next memorymi. This procedure is equivalent to the argmax
before if the time features are removed. More details are given in Appendix C.

3.5 MODELING PREVIOUSLY UNSEEN WORDS

Even for humans who have read a lot of text, new words are continuously introduced. For example,
the first time the word “Boromir” appears in Lord of The Rings (Tolkien, 1954). How should a
machine learning model deal with this? Ideally it should work having seen only one example. A
possible way would be to use a language model: given the neighboringwords, predict what the word
should be, and assume the new word is similar to that. Our proposed approach takes this idea, but
incorporates it into our networks sO and sR, rather than as a separate step.

Concretely, for each word we see, we store a bag of words it has co-occurred with, one bag for the
left context, and one for the right. Any unknownword can be represented with such features. Hence,
we increase our feature representationD from 3|W | to 5|W | to model these contexts (|W | features
for each bag). Our model learns to deal with new words during training using a kind of “dropout”
technique: d% of the time we pretend we have not seen a word before, and hence do not have a
n-dimensional embedding for that word, and represent it with the context instead.

3.6 EXACT MATCHES AND UNSEEN WORDS

Embedding models cannot efficiently use exact word matches due to the low dimensionality n. One
solution is to score a pair x, y with

Φx(x)
"U"UΦy(y) + λΦx(x)

"Φy(y) (11)
instead. That is, add the “bag of words” matching score to the learned embedding score (with a
mixing parameter λ). Another, related way, that we propose is to stay in the n-dimensional em-
bedding space, but to extend the feature representation D with matching features, e.g., one per

5

Published as a conference paper at ICLR 2015

3.3 EFFICIENT MEMORY VIA HASHING

If the set of stored memories is very large it is prohibitively expensive to score all of them as in
equations (2) and (3). Instead we explore hashing tricks to speed up lookup: hash the input I(x) into
one or more buckets and then only score memoriesmi that are in the same buckets. We investigated
two ways of doing hashing: (i) via hashing words; and (ii) via clustering word embeddings. For (i)
we construct as many buckets as there are words in the dictionary, then for a given sentence we hash
it into all the buckets corresponding to its words. The problem with (i) is that a memorymi will
only be considered if it shares at least one word with the input I(x). Method (ii) tries to solve this
by clustering instead. After training the embedding matrix UO, we run K-means to cluster word
vectors (UO)i, thus giving K buckets. We then hash a given sentence into all the buckets that its
individual words fall into. As word vectors tend to be close to their synonyms, they cluster together
and we thus also will score those similar memories as well. Exact word matches between input and
memory will still be scored by definition. ChoosingK controls the speed-accuracy trade-off.

3.4 MODELING WRITE TIME

We can extend our model to take into account when a memory slot was written to. This is not
important when answering questions about fixed facts (“What is the capital of France?”) but is
important when answering questions about a story, see e.g., Figure 1. One obviousway to implement
this is to add extra features to the representations Φx and Φy that encode the index j of a given
memory mj , assuming that j follows write time (i.e., no memory slot rewriting). However, that
requires dealing with absolute rather than relative time. We had more success empirically with the
following procedure: instead of scoring input, candidate pairs with s as above, learn a function on
triples sOt

(x, y, y′):

sOt
(x, y, y′) = Φx(x)

"UOt

"UOt

(

Φy(y)− Φy(y
′) + Φt(x, y, y

′)
)

. (10)

Φt(x, y, y′) uses three new features which take on the value 0 or 1: whether x is older than y, x is
older than y′, and y older than y′. (That is, we extended the dimensionality of all the Φ embeddings
by 3, and set these three dimensions to zero when not used.) Now, if sOt

(x, y, y′) > 0 the model
prefers y over y′, and if sOt

(x, y, y′) < 0 it prefers y′. The argmax of eq. (2) and (3) are replaced by
a loop over memories i = 1, . . . , N , keeping the winning memory (y or y′) at each step, and always
comparing the current winner to the next memorymi. This procedure is equivalent to the argmax
before if the time features are removed. More details are given in Appendix C.

3.5 MODELING PREVIOUSLY UNSEEN WORDS

Even for humans who have read a lot of text, new words are continuously introduced. For example,
the first time the word “Boromir” appears in Lord of The Rings (Tolkien, 1954). How should a
machine learning model deal with this? Ideally it should work having seen only one example. A
possible way would be to use a language model: given the neighboringwords, predict what the word
should be, and assume the new word is similar to that. Our proposed approach takes this idea, but
incorporates it into our networks sO and sR, rather than as a separate step.

Concretely, for each word we see, we store a bag of words it has co-occurred with, one bag for the
left context, and one for the right. Any unknownword can be represented with such features. Hence,
we increase our feature representationD from 3|W | to 5|W | to model these contexts (|W | features
for each bag). Our model learns to deal with new words during training using a kind of “dropout”
technique: d% of the time we pretend we have not seen a word before, and hence do not have a
n-dimensional embedding for that word, and represent it with the context instead.

3.6 EXACT MATCHES AND UNSEEN WORDS

Embedding models cannot efficiently use exact word matches due to the low dimensionality n. One
solution is to score a pair x, y with

Φx(x)
"U"UΦy(y) + λΦx(x)

"Φy(y) (11)
instead. That is, add the “bag of words” matching score to the learned embedding score (with a
mixing parameter λ). Another, related way, that we propose is to stay in the n-dimensional em-
bedding space, but to extend the feature representation D with matching features, e.g., one per

5

Experiments: Large-scale QA task (Fader et al, 2013)

• 14M Statements stored as (subject, relation, object) triples
• A MemNN with k = 1 supporting memory is used

Published as a conference paper at ICLR 2015

Table 1: Results on the large-scale QA task of (Fader et al., 2013).
Method F1
(Fader et al., 2013) 0.54
(Bordes et al., 2014b) 0.73
MemNN (embedding only) 0.72
MemNN (with BoW features) 0.82

Table 2: Memory hashing results on the large-scale QA task of (Fader et al., 2013).
Method Embedding F1 Embedding + BoW F1 Candidates (speedup)
MemNN (no hashing) 0.72 0.82 14M (0x)
MemNN (word hash) 0.63 0.68 13k (1000x)
MemNN (cluster hash) 0.71 0.80 177k (80x)

5 EXPERIMENTS

5.1 LARGE-SCALE QA

We perform experiments on the QA dataset introduced in Fader et al. (2013). It consists of 14M
statements, stored as (subject, relation, object) triples, which are stored as memories in the MemNN
model. The triples are REVERB extractions mined from the ClueWeb09 corpus and cover di-
verse topics such as (milne, authored, winnie-the-pooh) and (sheep, be-afraid-of, wolf). Following
Fader et al. (2013) and Bordes et al. (2014b), training combines pseudo-labeled QA pairs made of a
question and an associated triple, and 35M pairs of paraphrased questions from WikiAnswers like
“Who wrote the Winnie the Pooh books?” and “Who is poohs creator?”.

We performed experiments in the framework of re-ranking the top returned candidate answers by
several systems measuring F1 score over the test set, following Bordes et al. (2014b). These answers
have been annotated as right or wrong by humans, whereas other answers are ignored at test time as
we do not know their label. We used a MemNNmodel of Section 3 with a k = 1 supportingmemory,
which ends up being similar to the approach of Bordes et al. (2014b).6 We also tried adding the bag
of words features of Section 3.6 as well. Time and unseen word modeling were not used. Results
are given in Table 1. The results show that MemNNs are a viable approach for large scale QA in
terms of performance. However, lookup is linear in the size of the memory, which with 14M facts is
slow. We therefore implemented the memory hashing techniques of Section 3.3 using both hashing
of words and clustered embeddings. For the latter we tried K = 1000 clusters. The results given in
Table 2 show that one can get significant speedups (∼80x) while maintaining similar performance
using the cluster-based hash. The string hash on the other hand loses performance (whilst being a
lot faster) because answers which share no words are now no longer matched.

5.2 SIMULATED WORLD QA

Similar to the approach of Bordes et al. (2010) we also built a simple simulation of 4 characters, 3
objects and 5 rooms – with characters moving around, picking up and dropping objects. The actions
are transcribed into text using a simple automated grammar, and labeled questions are generated in
a similar way. This gives a QA task on simple “stories” such as in Figure 1. The overall difficulty of
the task is that multiple statements have to be used to do inference when asking where an object is,
e.g. to answer where is the milk in Figure 1 one has to understand the meaning of the actions “picked
up” and “left” and the influence of their relative order. We generated 7k statements and 3k questions
from the simulator for training7, and an identical number for testing and compareMemNNs to RNNs
and LSTMs (long short term memory RNNs (Hochreiter & Schmidhuber, 1997)) on this task. To

6We use a larger 128 dimension for embeddings, and no fine tuning, hence the result of MemNN slightly
differs from those reported in Bordes et al. (2014b).

7Learning curves with different numbers of training examples are given in Appendix D.

7

Experiments: Simulated World QA

• A simple simulation of 4 characters, 3 objects and 5 rooms, with
characters moving around, picking up and dropping objects
• Sample predictions on test set:

Published as a conference paper at ICLR 2015

Table 3: Test accuracy on the simulation QA task.
Difficulty 1 Difficulty 5

Method actor w/o before actor actor+object actor actor+object
RNN 100% 60.9% 27.9% 23.8% 17.8%
LSTM 100% 64.8% 49.1% 35.2% 29.0%
MemNN k = 1 97.8% 31.0% 24.0% 21.9% 18.5%
MemNN k = 1 (+time) 99.9% 60.2% 42.5% 60.8% 44.4%
MemNN k = 2 (+time) 100% 100% 100% 100% 99.9%

test with sequences of words as input (Section 3.2) the statements are joined together again with a
simple grammar8, to produce sentences that may contain multiple statements, see e.g., Figure 2.

We control the complexity of the task by setting a limit on the number of time steps in the past the
entity we ask the question about was last mentioned. We try two experiments: using a limit of 1, and
of 5, i.e., if the limit is 5 then we pick a random sentence between 1-5 time steps in the past. If this
chosen sentence only mentions an actor, e.g., “Bill is in the kitchen” then we generate the question
“where is Bill?” or “where was Bill before the kitchen?”. If the sentence mentions an object, e.g.,
“Bill dropped the football” then we ask the question “where is the football?”. For the answers we
consider two options: (i) single word answers; and (ii) a simple grammar for generating true answers
in sentence form, e.g., “kitchen” for (i) and “He is in the kitchen I believe” (and other variants) for
(ii). More details on the dataset generation are given in Appendix A. Note that in the object case
the supporting statements necessary to deduce the answer may not lie in the last 5 sentences, e.g.,
in this example the answer depends on other sentences to find out where Bill actually was when he
dropped the football. In fact, in the dataset we generated necessary supporting statements can be
up to 65 sentences before (but are usually closer). For that reason, we also conducted two further
types of experiments: where we only ask questions about actors (easier) and about actors and objects
(harder). We also consider the actor-based questions without the “before” questions for the simplest
possible task (i.e. “where is Bill?” but not “where was Bill before the kitchen?” questions).

Figure 2: Sample test set predictions (in red) for the simulation in the setting of word-based input
and where answers are sentences and an LSTM is used as the R component of the MemNN.

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living room.
Where is Dan? A: living room I believe
Where is Joe? A: the bathroom
Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.
Where is the milk now ? A: the milk is in the kitchen
Where is Dan now? A: I think he is in the bedroom
Joe took the milk there, after that Mike travelled to the office, then Joe went to the living room, next Dan
went back to the kitchen and Joe travelled to the office.
Where is Joe now? A: I think Joe is in the office

For the baseline RNN and LSTM systems we perform language modeling with backpropagation
through time (Mikolov et al., 2010), but where we backprop only on answer words9. We optimized
the hyperparameters: size of the hidden layer, bptt steps, and learning rate for each dataset. For
MemNNs we fixed the embedding dimension to 100, learning rate to 0.01 and margin γ to 0.1 and
10 epochs of training in all experiments.

Results The results for the single word answer setting (i) are given in Table 3. For the actor-only
tasks, RNN and LSTMs solve the simpler difficulty level 1 task without before questions (“w/o

8We also tried the same kind of experiments with sentence-level rather than word-sequence input, without
joining sentences, giving results with similar overall conclusions, see Appendix E.

9We tried using standard language modeling on the questions as well, with slightly worse results.

8

Experiments: Simulated World QA

• Compare to baselines:

Published as a conference paper at ICLR 2015

Table 3: Test accuracy on the simulation QA task.
Difficulty 1 Difficulty 5

Method actor w/o before actor actor+object actor actor+object
RNN 100% 60.9% 27.9% 23.8% 17.8%
LSTM 100% 64.8% 49.1% 35.2% 29.0%
MemNN k = 1 97.8% 31.0% 24.0% 21.9% 18.5%
MemNN k = 1 (+time) 99.9% 60.2% 42.5% 60.8% 44.4%
MemNN k = 2 (+time) 100% 100% 100% 100% 99.9%

test with sequences of words as input (Section 3.2) the statements are joined together again with a
simple grammar8, to produce sentences that may contain multiple statements, see e.g., Figure 2.

We control the complexity of the task by setting a limit on the number of time steps in the past the
entity we ask the question about was last mentioned. We try two experiments: using a limit of 1, and
of 5, i.e., if the limit is 5 then we pick a random sentence between 1-5 time steps in the past. If this
chosen sentence only mentions an actor, e.g., “Bill is in the kitchen” then we generate the question
“where is Bill?” or “where was Bill before the kitchen?”. If the sentence mentions an object, e.g.,
“Bill dropped the football” then we ask the question “where is the football?”. For the answers we
consider two options: (i) single word answers; and (ii) a simple grammar for generating true answers
in sentence form, e.g., “kitchen” for (i) and “He is in the kitchen I believe” (and other variants) for
(ii). More details on the dataset generation are given in Appendix A. Note that in the object case
the supporting statements necessary to deduce the answer may not lie in the last 5 sentences, e.g.,
in this example the answer depends on other sentences to find out where Bill actually was when he
dropped the football. In fact, in the dataset we generated necessary supporting statements can be
up to 65 sentences before (but are usually closer). For that reason, we also conducted two further
types of experiments: where we only ask questions about actors (easier) and about actors and objects
(harder). We also consider the actor-based questions without the “before” questions for the simplest
possible task (i.e. “where is Bill?” but not “where was Bill before the kitchen?” questions).

Figure 2: Sample test set predictions (in red) for the simulation in the setting of word-based input
and where answers are sentences and an LSTM is used as the R component of the MemNN.

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living room.
Where is Dan? A: living room I believe
Where is Joe? A: the bathroom
Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.
Where is the milk now ? A: the milk is in the kitchen
Where is Dan now? A: I think he is in the bedroom
Joe took the milk there, after that Mike travelled to the office, then Joe went to the living room, next Dan
went back to the kitchen and Joe travelled to the office.
Where is Joe now? A: I think Joe is in the office

For the baseline RNN and LSTM systems we perform language modeling with backpropagation
through time (Mikolov et al., 2010), but where we backprop only on answer words9. We optimized
the hyperparameters: size of the hidden layer, bptt steps, and learning rate for each dataset. For
MemNNs we fixed the embedding dimension to 100, learning rate to 0.01 and margin γ to 0.1 and
10 epochs of training in all experiments.

Results The results for the single word answer setting (i) are given in Table 3. For the actor-only
tasks, RNN and LSTMs solve the simpler difficulty level 1 task without before questions (“w/o

8We also tried the same kind of experiments with sentence-level rather than word-sequence input, without
joining sentences, giving results with similar overall conclusions, see Appendix E.

9We tried using standard language modeling on the questions as well, with slightly worse results.

8

• The difficulty is controlled by the number of time steps in the past the
entity being asked the question about was last mentioned.

Experiments: Simulated World QA

• MemNN is able to deal with previously unseen words at the test Tme
by discovering simple linguisTc paUerns such as (X, dropped, Y), (X,
took, Y) or (X, journeyed to, Y)

Published as a conference paper at ICLR 2015

Figure 3: An example story with questions correctly answered by a MemNN. The MemNN was
trained on the simulation described in Section 5.2 and had never seen many of these words before,
e.g., Bilbo, Frodo and Gollum.

Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring.
Bilbo went back to the Shire. Bilbo left the ring there. Frodo got the ring.
Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.
Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

Figure 4: An example dialogue with a MemNN system trained on both the simulation data and
the large-scale QA data. The system is able to (attempt to) answer questions about general world
knowledge and about specific story-based statements in the dialogue.

Fred went to the kitchen. Fred picked up the milk. Fred travelled to the office.
Where is the milk ? A: office
Where does milk come from ? A: milk come from cow
What is a cow a type of ? A: cow be female of cattle
Where are cattle found ? A: cattle farm become widespread in brazil
What does milk taste like ? A: milk taste like milk
What does milk go well with ? A: milk go with coffee
Where was Fred before the office ? A: kitchen

before”), but perform worse with before questions, and even worse on the difficulty 5 tasks. This
demonstrates that the poor performance of the RNN is due to its failure to encode long(er)-term
memory. This would likely deteriorate even further with higher difficulty levels (distances). LSTMs
are however better than RNNs, as expected, as they are designed with a more sophisticated memory
model, but still have trouble remembering sentences too far in the past. MemNNs do not have
this memory limitation and its mistakes are instead due to incorrect usage of its memory, when the
wrong statement is picked by sO. Time features are necessary for good performance on before
questions or difficulty > 1 (i.e., when the answer is not in the last statement), otherwise sO can pick
a statement about a person’s whereabouts but they have since moved. Finally, results on the harder
actor+object task indicate that MemNN also successfully perform 2-stage inference using k = 2,
whereas MemNNs without such inference (with k = 1) and RNNs and LSTMs fail.

We also tested MemNNs in the multi-word answer setting (ii) with similar results, whereby
MemNNs outperformRNNs and LSTMs, which are detailed in Appendix F. Example test prediction
output demonstrating the model in that setting is given in Figure 2.

5.2.1 QA WITH PREVIOUSLY UNSEEN WORDS

We then tested the ability of MemNNs to deal with previously unseen words at test time using the
unseen word modeling approach of Sections 3.5 and 3.6. We trained the MemNN on the same sim-
ulated dataset as before and test on the story given in Figure 3. This story is generated using similar
structures as in the simulation data, except that the nouns are unknowns to the system at training
time. Despite never seeing any of the Lord of The Rings specific words before (e.g., Bilbo, Frodo,
Sauron, Gollum, Shire and Mount-Doom), MemNNs are able to correctly answer the questions.

MemNNs can discover simple linguistic patterns based on verbal forms such as (X, dropped, Y), (X,
took, Y) or (X, journeyed to, Y) and can successfully generalize the meaning of their instantiations
using unknown words to perform 2-stage inference. Without the unseen word modeling described
in Section 3.5, they completely fail on this task.

9

Experiments: Simulated World QA

• Taken a model trained on the Large Scale QA dataset and a model
trained on the simulated world dataset and ensemble the two
• The combined model shows knowledge about the general world

Published as a conference paper at ICLR 2015

Figure 3: An example story with questions correctly answered by a MemNN. The MemNN was
trained on the simulation described in Section 5.2 and had never seen many of these words before,
e.g., Bilbo, Frodo and Gollum.

Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring.
Bilbo went back to the Shire. Bilbo left the ring there. Frodo got the ring.
Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.
Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

Figure 4: An example dialogue with a MemNN system trained on both the simulation data and
the large-scale QA data. The system is able to (attempt to) answer questions about general world
knowledge and about specific story-based statements in the dialogue.

Fred went to the kitchen. Fred picked up the milk. Fred travelled to the office.
Where is the milk ? A: office
Where does milk come from ? A: milk come from cow
What is a cow a type of ? A: cow be female of cattle
Where are cattle found ? A: cattle farm become widespread in brazil
What does milk taste like ? A: milk taste like milk
What does milk go well with ? A: milk go with coffee
Where was Fred before the office ? A: kitchen

before”), but perform worse with before questions, and even worse on the difficulty 5 tasks. This
demonstrates that the poor performance of the RNN is due to its failure to encode long(er)-term
memory. This would likely deteriorate even further with higher difficulty levels (distances). LSTMs
are however better than RNNs, as expected, as they are designed with a more sophisticated memory
model, but still have trouble remembering sentences too far in the past. MemNNs do not have
this memory limitation and its mistakes are instead due to incorrect usage of its memory, when the
wrong statement is picked by sO. Time features are necessary for good performance on before
questions or difficulty > 1 (i.e., when the answer is not in the last statement), otherwise sO can pick
a statement about a person’s whereabouts but they have since moved. Finally, results on the harder
actor+object task indicate that MemNN also successfully perform 2-stage inference using k = 2,
whereas MemNNs without such inference (with k = 1) and RNNs and LSTMs fail.

We also tested MemNNs in the multi-word answer setting (ii) with similar results, whereby
MemNNs outperformRNNs and LSTMs, which are detailed in Appendix F. Example test prediction
output demonstrating the model in that setting is given in Figure 2.

5.2.1 QA WITH PREVIOUSLY UNSEEN WORDS

We then tested the ability of MemNNs to deal with previously unseen words at test time using the
unseen word modeling approach of Sections 3.5 and 3.6. We trained the MemNN on the same sim-
ulated dataset as before and test on the story given in Figure 3. This story is generated using similar
structures as in the simulation data, except that the nouns are unknowns to the system at training
time. Despite never seeing any of the Lord of The Rings specific words before (e.g., Bilbo, Frodo,
Sauron, Gollum, Shire and Mount-Doom), MemNNs are able to correctly answer the questions.

MemNNs can discover simple linguistic patterns based on verbal forms such as (X, dropped, Y), (X,
took, Y) or (X, journeyed to, Y) and can successfully generalize the meaning of their instantiations
using unknown words to perform 2-stage inference. Without the unseen word modeling described
in Section 3.5, they completely fail on this task.

9

Thank you

