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Dependency Parser



Problem Statement

● Conventional feature-based discriminative dependency parsers have great 
success in dependency parsing.

● Limitations
○ Poorly estimated feature weights
○ Rely on a manually designed set of feature templates 
○ Large time cost in the feature extraction step

● Solution
○ Use dense features in place of the sparse indicator features
○ Train a neural network classifier to make parsing decisions in a greedy, 

transition-based dependency parser
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Greedy Transition-based Dependency Parser

● Arc-standard system
● Goal: predict a correct transition from τ, based on one given configuration
● Conventional approaches: extract indicator features
● Problem of those indicator features

○ Sparsity
○ Incompleteness
○ Expensive feature computation



Model Architecture

● Input:
○ Word, POS tags, and arc labels embeddings

● Output:
○ Distribution of the transition



Model Architecture - Input Layer

● Represent each word as a d-dimensional vector 
● Word embedding matrix                   , , where       is the dictionary size
● Map POS tags and arc labels to a d-dimensional vector space 
● POS embedding matrix is                     , where       is the number of distinct POS 

tags
● Label embedding matrix is                     , where      is the number of distinct arc 

labels



Model Architecture - Input Layer

● Chosen set depends on the stack or buffer positions
● Example

○  
○

●   



Model Architecture - Activation Function

● Cube activation function
○  

● Output
○  



Experiments - Accuracy and Speed

● English Penn Treebank(PTB)
● Chinese Penn Treebank(CTB)
● MaltParser: a greedy transition-based dependency parser

○ stackproj(sp) -- arc-standard
○ nivreeager -- arc-eager

● MSTParser: a first-order graph-based parser



Experiments - Cube Activation Function  

● Cube

●  

●  

● Identity (x)



Experiments - POS Tag & Arc Label Embeddings

● POS embeddings yield around
○ 1.7% improvement on PTB
○ 10% improvement on CTB 

● Label embeddings yield around
○ 0.3% improvements on PTB
○ 1.4% improvement on CTB



Examination - POS Tag & Arc Labels Embeddings

● Encode the semantic regularities



Examination - Hidden Layer Weights

● POS tags weights in dependency parsing
● Identify useful information automatically
● Extract features not presented in the indicator feature system (>3) 



Conclusion

● Contribution
○ Introducing dense POS tag and arc label embedding into the input 

layer and show the usefulness within parsing task
○ Developing a NN architecture with good accuracy and speed
○ Cube activation function help capture high-order interaction feature

● Future work
○ Combine this classifier with search-based model
○ Theoretical studies on cube activation function

● Application
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What is CRF?

● Conditional Random Field
○ A class of statistical modeling method used for structured prediction
○ In NLP, it’s major use case is for labeling of sequential data
○ Used to get a posterior probability of a label sequence conditioned on the input observation 

sequence
○ P(Label sequence Y | Observation sequence X)
○ Probability of change in label may depend on past and future observations 

● Baseline CRF model was created by Hall et al. (2014)



Overview

● This paper presents a parsing model which combines the exact dynamic programming of CRF parsing 
with nonlinear featurization of feedforward neural networks. 

● Model -  Decomposes over anchored rules, and it scores each to these with a potential function - 
Nonlinear functions of word embeddings combined with linear functions of sparse indicator features like 
standard CRF



CFG (Rule)

● A context-free grammar (CFG) is a list of rules that define the set of all well-formed sentences in a 
language.

● Example - The rule s --> np vp means that "a sentence is defined as a noun phrase followed by a verb 
phrase."

E.g., a parse of the sentence "the giraffe dreams" is:
s => np vp => det n vp => the n vp => the giraffe vp => the giraffe iv => the giraffe dreams

● np - noun phrase
● vp - verb phrase
● s - sentence
● det - determiner (article)
● n - noun
● tv - transitive verb (takes an object)
● iv - intransitive verb
● prep - preposition
● pp - prepositional phrase
● adj - adjective



Anchored Rule

● It is the fundamental unit that the model considers. A tuple (r,s)
○ r - an indicator of rules identity
○ s - (i, j, k) indicates the span (i, k) and split point j of the rule

● A tree T is simply a collection of anchored rules subject to the constraint that those rules form a tree. 
● All the parsing models are CRF that decompose over anchored rule productions and place a probability 

distribution over trees conditioned on a sentence as follows:

where ɸ is the scoring function



Scoring Anchored Rule 
(Sparse)

● ɸ considers the input sentence and the anchored rule in question. 
● It can be a neural net, a linear function of surface features, or a combination of the two
● Baseline sparse scoring function - 

○ fo(r) ∈ {0, 1}no is a sparse vector of features expressing properties of r (such as the rule’s identity or its parent label) 
○ fs(w, s) ∈ {0, 1}ns is a sparse vector of surface features associated with the words in the sentence and the anchoring
○ W is an ns × no matrix of weights



Scoring Anchored Rule 
(Neural)

● Neural scoring function - 
○ fw(w, s) ∈ Nnw to be a function that produces a fixed-length sequence of word indicators based on the input 

sentence and the anchoring
○ An embedding function v: N → Rne, the dense representations of the words are subsequently concatenated to form 

a vector we denote by v(fw ).
○ A matrix H ∈ Rnh × (nw ne) of real valued parameters
○ An element wise nonlinearity g(·), authors use rectified linear units g(x) = max(x, 0) 



Scoring Anchored Rule 
(Combined)



Features

● Baseline Features (Sparse) fs 
○ Preterminal Layer 

■ Prefixes and suffixes up to length 5 of the current word and neighboring words, as well as the 
words’ identities  

○ Nonterminal Productions 
■ Fire indicators on the words before and after the start, end, and split point of the anchored 

rule
■ Span Properties - Span length + Span shape (an indicator of where capitalized words, 

numbers, and punctuation occur in the span)
● Neural Features 

○ fw - The words surrounding the beginning and end of a span and the split point (2 words in each 
direction)

○ v -  Use pre-trained word vectors from Bansal et al. (do not update these vectors during training)



Learning (Gradient Descent)

● Maximize the conditional log-likelihood of our D training trees T∗

 

● The gradient of W takes the standard form of log-linear models. 

Since h is the output of the neural network, we can first compute the following then apply the chain rule to 
get gradient for H 



Learning parameters

● Momentum term ρ = 0.95 (Zeiler (2012))
● A minibatch size of 200 trees

○ For each treebank, train for either 10 passes through the treebank or 1000 mini-batches, whichever 
is shorter

● Initialize the output weight matrix W to zero
● To break symmetry, the lower level neural network parameters H were initialized with each entry being 

independently sampled from a Gaussian with mean 0 and variance 0.01.
○ Gaussian performed better than uniform initialization, but the variance was not important.



Inference

● Speed up inference by using a coarse pruning pass (Hall et al. (2014))- 
○ Prune according to an X-bar grammar with head outward binarization, ruling out any constituent 

whose max marginal probability is less than e−9

○ Reduces the number of spans and split
● Note that the same word will appear in the same position in a large number of span/split point 

combinations, and cache the contribution to the hidden layer caused by that word (Chen and Manning, 
2014)



Results - System

● Penn Treebank We compare variants of our system along two axes: 
whether they use standard linear sparse features, 
nonlinear dense features from the neural net, or 
both, and whether any word representations (vectors 
or clusters) are used.

● Sparse (a and b) vs Neural (d)
● Wikipedia-trained word embeddings (e) vs 

Vectors (d)
● Continuous word representations (f) vs 

Vectors (d)
● (f) + sparse (h) vs Vectors (d)



Results - Design

● Penn Treebank To analyze the particular design choices we made 
for this system by examining the performance of 
several variants of the neural net architecture used -

● Choice of nonlinearity - Rectified linear units 
perform better than tanh or cubic units

● Depth - a network with one hidden layer 
performs best



Results

● Penn Treebank
When sparse indicators are used in addition, the 
resulting model gets 91.1 F1 on section 23 of 
the Penn Treebank, outperforming the parser of 
Socher et al. (2013) as well as the Berkeley 
Parser (Petrov and Klein, 2007) and matching 
the discriminative parser of Carreras et al. 
(2008), and the single TSG parser of Shindo et 
al. (2012).



Results

● SPMRL (Nine other languages)

Improvements on the performance of the parser from Hall et al. (2014) as well as the top single parser from the 
shared task (Crabbe and Seddah, 2014), with robust improvements on all languages



Conclusion

● Compared to Conventional CRF
○ Scores are non-linear potentials analogous to linear potential in conventional CRFs
○ Computations are factored along the same substructure as in conventional CRFs

● Compared to Prior neural network models
○ Removed the problem of structural prediction by making sequential decisions or by reranking
○ Authors framework allows exact inference via CKY because the potentials are still local to 

anchored rules.
● Shows significant improvement for English and nine other languages
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BKTQ`i�Mi- 2bT2+B�HHv 7Q` `�`2 Q` IlLE= iQF2Mb
>vTQi?2bBb, +?�`�+i2` GahJ H2�`Mb bBKBH�` BM7Q`K�iBQM
1tT2`BK2Mi,

h`2�i QmiTmi Q7 +?�`�+i2` GahJ �b }t2/ rQ`/ 2M+Q/BM;
h`�BM bK�HH 722/7Q`r�`/ M2irQ`F iQ T`2/B+i #BM�`v rQ`/ 72�im`2b

_2bmHi, NNXdYW �++m`�+v BM �HH +�b2b- BKTHvBM; i?�i +?�`�+i2` GahJ
H2�`Mb rQ`/ `QQib- bm{t2b- 2i+X

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

*QMi2ti BM i?2 a2Mi2M+2 GahJ

AKTQ`i�M+2 Q7 +QMi2ti

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

.2`Bp�iBp2 �M�HvbBb

.Q GahJb +�Tim`2 /Bbi�Mi
BM7Q`K�iBQM\
1tT2`BK2Mi, i�F2 ;`�/B2Mi Q7
2�+? +QKTQM2Mi Q7 GahJ
QmiTmi p2+iQ` rX`XiX 2�+? GahJ
BMTmi p2+iQ`
_2bmHi, 2p2M rQ`/b 9y rQ`/b
�r�v �z2+i ;`�/B2Mi

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

h`mM+�iBQM �M�HvbBb

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

h`mM+�iBQM �M�HvbBb
>Qr BKTQ`i�Mi Bb /Bbi�Mi
BM7Q`K�iBQM\
1tT2`BK2Mi,

R _2KQp2 /Bbi�Mi +QMi2ti
BM7Q 7`QK bT�M 2M+Q/BM;

k �// TQbBiBQM@/2T2M/2Mi
+2HH bi�i2 BMBiB�HBx�iBQM

_2bmHi, /Bbi�Mi +QMi2ti
BKT`Qp2b �++m`�+v

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

qQ`/ P`/2`

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

qQ`/ P`/2`

>Qr BKTQ`i�Mi Bb /Bbi�Mi
rQ`/ Q`/2`\
1tT2`BK2Mi, b?m|2 /Bbi�Mi
rQ`/b iQ `2KQp2 Q`/2` BM7Q
_2bmHi, rQ`/ Q`/2`
BKTQ`i�Mi- bQK2 +QMi2ti Bb
#2ii2` i?�M MQ +QMi2ti

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

GahJb pbX 622/7Q`r�`/

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



1tT2`BK2Mib � _2bmHib *QMi2ti BM i?2 a2Mi2M+2 GahJ

GahJb pbX 622/7Q`r�`/
GahJb +�M ?�M/H2 p�`B�#H2 H2M;i? b2[m2M+2b- #mi Bb i?�i i?2B` QMHv
�/p�Mi�;2\
1tT2`BK2Mi,

R _2`mM i`mM+�iBQM �M�HvbBb 2tT2`BK2Mi rBi? 722/7Q`r�`/ M2irQ`F
k 6Q+mb QM +QMi2ti rBM/Qr Q7 bBx2 k = 3

j *QM+�i2M�i2 H2�`M2/ TQbBiBQM 2K#2//BM; iQ BMTmi

622/7Q`r�`/ M2irQ`F 3jXjN 6R
GahJ 3NXNk 6R

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



.Bb+mbbBQM

.Bb+mbbBQM

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



.Bb+mbbBQM

*QMi`B#miBQMb
h?Bb T�T2` T`QpB/2b BKTQ`i�Mi 2pB/2M+2 7Q` K�Mv /Bz2`2Mi ?vTQi?2b2b
�#Qmi M2m`�H +QMbiBim2M+v T�`bBM; U�M/ LGS BM ;2M2`�HV

GahJb �`2 +�T�#H2 Q7 H2�`MBM; T�`2Mi@+?BH/ `2H�iBQMb?BTb �M/ i`22
+QMbi`�BMib
*?�`�+i2` `2T`2b2Mi�iBQMb H2�`M Km+? Q7 i?2 b�K2 BM7Q`K�iBQM i?�i
T�`i@Q7@bT22+? i�;b QM+2 T`QpB/2/
.Bbi�Mi +QMi2ti- �M/ 2p2M rQ`/ Q`/2` Bb BKTQ`i�Mi 7Q` GahJ
T2`7Q`K�M+2
GahJb �`2 bmT2`BQ` iQ JGSb 7Q` LGS

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



.Bb+mbbBQM

*`BiB[m2

aiBHH � HQi r2 /QMǶi FMQr �#Qmi ?Qr GahJb H2�`M �M/ ?Qr FMQrH2/;2 Bb
`2T`2b2Mi2/ rBi?BM i?2 KQ/2H

AM ǳT`2/B+iBM; rQ`/ 72�im`2bǴ 2tT2`BK2Mi- /QMǶi +QKT�`2 �;�BMbi
T2`7Q`K�M+2 Q7 rQ`/ 2K#2//BM;b
AM ǳi`mM+�iBQM �M�HvbBbǴ 2tT2`BK2Mi- /QMǶi mb2 bBx2@/2T2M/2Mi +2HH
bi�i2- �M/ /QMǶi `2imM2 ?vT2`T�`�K2i2`b
PMHv i2bi2/ QM 1M;HBb?

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



Zm2biBQMb\

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



�TT2M/Bt

�TT2M/Bt

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



�TT2M/Bt

�TT2M/Bt

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky



_272`2M+2b

_272`2M+2b

�KB/B- �X � �KB/B- aX _2+m``2Mi M2m`�H M2irQ`Fb +?2�ib?22iX
?iiTb,ffbi�M7Q`/X2/mf�b?2`pBM2fi2�+?BM;f+b@
kjyf+?2�ib?22i@`2+m``2Mi@M2m`�H@M2irQ`FbX kyR3X
:�//v- .X- ai2`M- JX � EH2BM- .X q?�iǶb ;QBM; QM BM M2m`�H
+QMbiBim2M+v T�`b2`b\ �M �M�HvbBbX S`Q+22/BM;b Q7 L��*G@>Gh
kyR3- NNNĜRyRy UkyR3VX
Cm`�7bFv- .X � J�`iBM- CX >X aT22+? �M/ H�M;m�;2 T`Q+2bbBM;X h?B`/
2/BiBQM /`�7i UkyRNVX

�/�K ai2r�`i UlAl*V L2m`�H *QMbiBim2M+v S�`b2` �M�HvbBb J�`+? k8- kyky
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Recurrent Neural Network Grammars
● RNNG defines a joint probability distribution over string terminals and 

phrase-structure nonterminals.
● <N, Σ, ϴ>

○ N: the set of nonterminal symbols (NP,VP, etc.)
○ Σ: the set of all terminal symbols
○ ϴ: the set of all model parameters



Recurrent Neural Network Grammars
● Algorithmic state

○ Stack: partially completed constituents
○ Buffer: already-generated terminal symbols
○ List of past actions

● Phrase-structure tree y, sentence x
○ Top-down
○ Oracle, a=<a1,..., an>

This figure is due to Dyer et al. (2016)



Recurrent Neural Network Grammars
● Actions

○ NT(X): introduces an open nonterminal symbol onto the stack
○ GEN(x): generates a terminal symbol and places it on the stack and buffer
○ REDUCE: indicates a constituent is now complete. (popped→composition 

function→pushed)

This figure is due to Dyer et al. (2016)



Recurrent Neural Network Grammars
● Composition function

○ Computes a vector representation
○ LSTM

● Generative model



Composition is Key
● Crucial role in the generalization success



Composition is Key
● Ablated RNNGs

○ Conjecture: Stack which makes use of the composition function is critical to the performance
○ The stack-only results are the best published PTB results



Gated Attention RNNG
● Linguistic Hypotheses

○ Individual lexical head or multiple heads?
● Gated Attention Composition

○ GA-RNNG: explicit attention mechanism and a sigmoid gate with multiplicative interactions
○ “Attention weight”, weighted sum
○  
○  
○  

● Experimental results:
○ Outperforms the baseline RNNG with all three structures present
○ Achieves competitive performance with the strongest, stack-only, RNNG variant



Headedness in Phrases
● The Heads that GA-RNNG Learns

○ Average perplexity of the attention vectors
○ Resemble the vector of one salient constituent, but not exclusively
○ How attention is distributed for the major nonterminal categories
○ NPs,  VPs and PPs

● Comparison to Existing Head Rules
○ Higher overlap with the conversion using Collins head rules rather than the Stanford head rules
○ GA-RNNG has the power to infer head rules



The Role of Nonterminal Labels
● Whether heads are sufficient to create representations of phrases
● Unlabeled F1 parsing accuracy: U-GA-RNNG 93.5%, GA-RNNG 94.2%
● Visualization
● Analysis of PP and SBAR

○ SBARs (start with “prepositional” words) are similar to PPs
○ The model learns to disregard the word that
○ Certain categories of PPs and SBARs form their own separate clusters



Related Work
● Sequential RNNs (Karpathy et al., 2015; Li et al., 2016). 
● Sequence-to sequence neural translation models capture a certain degree of syntactic knowledge of the 

source language as a by-product of the translation objective (Shi et al., 2016)
● Competitive parsing accuracy without explicit composition (Vinyals et al. ,2015; Wiseman and Rush, 

2016)
● The importance of recursive tree structures in four different tasks (Li et al., 2015)
● The probabilistic context-free grammar formalism, with lexicalized (Collins, 1997) and nonterminal 

(Johnson, 1998; Klein and Manning, 2003) augmentations.
● Fine-grained nonterminal rules and labels can be discovered given weaker bracketing structures 

(Chiang and Bikel, 2002; Klein and Manning, 2002; Petrov et al., 2006)
● Entropy minimization and greedy familiarity maximization techniques to obtain lexical heads from 

labeled phrase-structure trees in an unsupervised manner (Sangati and Zuidema, 2009) 
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 Model

· Use a deep bidirectional LSTM (BiLSTM) to learn a locally decomposed
scoring function conditioned on the input:

· To incorporate additional information (e.g., structural consistency,
syntactic input), we augment the scoring function with penalization terms:



 Model
· Our model computes the distribution over tags us-
ing stacked BiLSTMs, which we define as follows: 

· Finally, the locally normalized distribution over 
output tags is computed via a softmax layer: 

Highway LSTM with four layers. 



 Model
· Highway Connections 

· Recurrent Dropout 

· Constrained A� Decoding 

· BIO Constraints 
These constraints reject any sequence that does not 
produce valid BIO transitions.

· SRL Constraints 
Unique core roles (U)
Continuation roles (C)
Reference roles (R)

· Predicate Detection 
We propose a simple model for end-to-end SRL, where 
the system first predicts a set of predicate words v from 
the input sentence w. Then each predicate in v is used as 
an input to argument prediction. 



� Experiments

· Datasets
CoNLL-2005 & CoNLL-2012
Following the train-development-test split for both
Using the official evaluation script from the CoNLL 2005 shared task for evaluation on
both datasets

·Model Setup
Our network consists of 8 BiLSTM layers (4 forward LSTMs and 4 reversed LSTMs)
with 300-dimensional hidden units, and a softmax layer for predicting the output
distribution.
Initialization - Training - Ensembling - Constrained Decoding



� Experiments

Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of completely correct 
predicates (Comp.). We report results of our best single and ensemble (PoE) model. 

Experimental results on CoNLL 2012 in the same metrics as above. We compare our best single and ensemble (PoE) 
models against Zhou and Xu (2015), FitzGerald et al. (2015), Ta ̈ckstro ̈m et al. (2015) and Pradhan et al. (2013). 



� Experiments

Predicate detection performance and end-to-end SRL results using predicted predicates. ∆ F1 shows the absolute 
performance drop compared to our best ensemble model with gold predicates. 

· Ablations 
Smoothed learning curve of various ablations. The
combination of highway layers, orthonormal parameter
initialization and recurrent dropout is crucial to achieving
strong performance. The numbers shown here are without
constrained decoding.



� Analysis
· Error Types Breakdown
Label Confusion & Attachment Mistakes

Performance after doing each type of oracle transformation
in sequence, compared to two strong non-neural baselines.
The gap is closed after the Add Arg. transformation, showing
how our approach is gaining from predicting more
arguments than traditional systems.

For cases where our model either splits a
gold span into two (Z → XY ) or merges
two gold constituents (XY → Z), we show
the distribution of syntactic labels for the Y
span. Results show the major cause of these
errors is inaccurate prepositional phrase
attachment.



� Analysis
· Error Types Breakdown
Label Confusion & Attachment Mistakes

Oracle transformations paired with the
relative error reduction after each operation.
All the operations are permitted only if they
do not cause any overlapping arguments.

Confusion matrix for labeling errors,
showing the percentage of predicted labels
for each gold label. We only count predicted
arguments that match gold span boundaries.



� Analysis
· Long-range Dependencies

F1 by surface distance between predi- cates and arguments. Performance degrades least rapidly on long-
range arguments for the deeper neural models.



� Analysis
· Structural Consistency
BIO Violations & SRL Structure Violations

Comparison of models with different depths
and decoding constraints (in addition to BIO)
as well as two previous systems.

Comparison of BiLSTM models without BIO decoding.

Example where performance is hurt by enforcing the
constraint that core roles may only occur once (+SRL).



� Analysis
· Can Syntax Still Help SRL?
Constrained Decoding with Syntax

Performance of syntax-constrained decoding as the non-
constituent penalty increases for syntax from two parsers and
gold syntax. The best existing parser gives a small
improvement, but the improvement from gold syntax shows
that there is still potential for syntax to help SRL.

F1 on CoNLL 2005, and the development
set of CoNLL 2012, broken down by genres.
Syntax-constrained decoding (+AutoSyn)
shows bigger improvement on in-domain
data (CoNLL 05 and CoNLL 2012 NW).



� Related Work 
· Traditional approaches to semantic role labeling have used syntactic parsers to
identify constituents and model long-range dependencies, and enforced global
consistency using integer linear programming (Punyakanok et al., 2008) or dynamic
programs (Ta ̈ckstro ̈metal.,2015).

· More recently, neural methods have been employed on top of syntactic features
(FitzGerald et al., 2015; Roth and Lapata, 2016) .

· Our experiments show that off-the-shelf neural methods have a remarkable ability
to learn long-range dependencies, syntactic constituency structure, and global
constraints without coding task-specific mechanisms for doing so.



� Conclusion and Future Work 
· A new deep learning model for span-based semantic role labeling

10% relative error reduction over the previous state of the art
Ensemble of 8 layer BiLSTMs incorporated some of the recent best practices(orthonormal

initialization, RNN-dropout, and highway connections, which are crucial for getting good results
with deep models)

· Extensive error analysis shows the strengths and limitations of our deep SRL
model compared with shallower models and two strong non-neural systems.

Our deep model is better at recovering long-distance predicate-argument relations
Structural inconsistencies(which can be alleviated by constrained decoding)

· The question of whether deep SRL still needs syntactic supervision
Despite recent success without syntactic input, there is still potential for high quality parsers to

further improve deep SRL models.
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