A Fast and Accurate Dependency
Parser using Neural Networks

Dangi Chen, Christopher D. Manning. EMNLP 2014
Presented by Jessie Le (kle11), Spring 2020

Dependency Parser

punct

root obj

ROOT He has good control
PRP VBZ]] NN

Problem Statement

e Conventional feature-based discriminative dependency parsers have great
success in dependency parsing.
e Limitations
o Poorly estimated feature weights
o Rely on a manually designed set of feature templates
o Large time cost in the feature extraction step
e Solution
o Use dense features in place of the sparse indicator features
o Train a neural network classifier to make parsing decisions in a greedy,
transition-based dependency parser

Greedy Transition-based Dependency Parser

e Goal: predict a correct transition from T, based on one given configuration

Greedy Transition-based Dependency Parser

e Goal: predict a correct transition from T, based on one given configuration
e Arc-standard system - one of the most popular transition system

punct

— obj Correct transition: SHIFT
5 . nsubj am a uffer
e LEFT-ARC(!): adds an arc s; — s with /Ff\ 7o G i ... ‘
label [and removes so from the stack. Pre- ROOT He has good control . l_Ff?_O_T__;f;Y'??___E‘??E*:{{E i L L
condition: |s| > 2. RS GRS NE R He_PRP
e RIGHT-ARC(/): adds an arc s — s; with Transition Stack | Buffer g
[ROOT] | [He has good control .]
label [and removes s; from the stack. Pre- SHIFT [ROOT He] | [has goo% control .]
[i SHIFT [ROOT He has] | [good control .]
Condltlon’ |9| Z 2 LEFT-ARC (nsubj) [ROOT has] | [good control .] AU nsubj(has,He)
SHIFT [ROOT has good] | [control .]
" SHIFT [ROOT has good control] | [.]
e SHIFT: moves bl from the buffer to the LEFT-ARC (amod) [ROOT has control] | [.] AUamod(control,good)
stack. Precondition: |b| > 1 BIGHI-ER0db) [ROOT has] | [] AU dobj(has,control)
- RIGHT-ARC (root) [ROOT] | 11’ AU root(ROOT has)

Figure 1: An example of transition-based dependency parsing. Above left: a desired dependency tree,
above right: an intermediate configuration, bottom: a transition sequence of the arc-standard system.

Greedy Transition-based Dependency Parser

Goal: predict a correct transition from T, based on one given configuration

Arc-standard system
Conventional approaches: extract indicator features

Single-word features (9)

S1.w; 81.t; s1.wt; S9.w; S9.1;

So.wt; by.aw; by.t; by.wt

Word-pair features (8)

s1.wt o s9.wt; s1.wt o s9.w; S1.wtSs.t;

S1.w 0 So.wt; $1.1 0 sp. Wi S1.Ww O Sg. W

Sl.t (@) ,Sg.t; 51.73 (e} bl.t

Three-word feaures (8)

sp.t 0 s1.toby.t; sa.tosy.tolei(sy).t;

sa.t o sy.torei(sy).t; sa.tosy.tolei(se).t;
so.tosi.to -rcl(sz).t; so.tosj.wo 7“61(52)1;
sp.tosj.wolei(sy).t; sa.tosj.woby.t

Table 1: The feature templates used for analysis.
lei(s;) and req(s;) denote the leftmost and right-
most children of s;, w denotes word, ¢ denotes
POS tag.

Greedy Transition-based Dependency Parser

Arc-standard system
Goal: predict a correct transition from T, based on one given configuration
Conventional approaches: extract indicator features
Problem of those indicator features
o Sparsity
o Incompleteness
o Expensive feature computation

Model Architecture

e |[nput:
o Word, POS tags, and arc labels embeddings
e QOutput:
o Distribution of the transition
Softmax layer:
p = softmax(Wash) [. ‘ @ .]
Hidden layer: "
h = (Wpa® + Wizt + Wizl + b1)3 [s J
it toer: 5, o) (00 (000 D //// LY
wofds POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ | | control_NN
" nsubj

He_PRP

Model Architecture - Input Layer

Represent each word as a d-dimensional vector €;° € R¢

Word embedding matrix E» € r>M , where N, is the dictionary size

Map POS tags and arc labels to a d-dimensional vector space €:¢; < R¢

POS embedding matrix is Et ¢ R*N:, where N, is the number of distinct POS
tags

Label embedding matrix is E' € RN, where N, is the number of distinct arc
labels

Model Architecture - Input Layer

e Chosen set depends on the stack or buffer positions Sv, St, !
e Example

o St ={lci(s2).t,82.t,7c1(82). t, 81.t}

o PRP,VBZ, NULL, JJ

o { 1 ’ nw} . . p = softmax(Wah) : - i

¥ = [e¥ ;e ;...ew | isadded to the input layer Hidden layeE: ()
. - w W {7 1 tl 3! Tt e
where n,, is the number of chosen elements of the type of word "= (Wie" *WiwitWiriwb)” e
Input layer: [+7,0', '] (@00 (00T _//_/_4_ L 22\
wdrds POS tags arc labels
Stack Buffer
Configuration ROOT has_VBZ good_JJ control.NN ..

<~ nsubj
He PRP

Model Architecture - Activation Function

e Cube activation function
O h=(Wr&z¥ + Wizt + Wizl +b,)3
o Qutput Where Wi € RW(@n) Wi e REXU), i e RA(™), and by € R™ is the bias.

_ Softmax layer:
o p = softmax(Wsyh) [e]
where W, € RITxdn p = softmax(Wph) . . ‘ .
’ 2 Hidden layer: N
h= Wz + Wiz + Wizl + by)3 @ Lo B2 sk]
Input layer: [2%, zt, 2!] E ______ j - O0® '_//_/_4_, '_//_/__/_//_ .__\\]
words POS tags arc labels
g(wi1z1 + ...+ Wnm +b) = Stack Buffer
(w;wjwk)ziz;zr + b(w;wj)x;z;j
zj; ’ i ZJ: ik Configuration ROOT has_VBZ good_JJ | | control NN ...
" nsubj

He_PRP

Experiments - Accuracy and Speed

e English Penn Treebank(PTB)

e Chinese Penn Treebank(CTB)

e MaltParser: a greedy transition-based dependency parser
o stackproj(sp) - arc-standard
o nivreeager -- arc-eager

e MSTParser: a first-order graph-based parser

Dev Test Speed Dev Test Speed
Parser UA];e\LAs UAEeSLAS (gf,f;:) s UAS LAS| UAS LAS (scl,)nt/s) LA UAS LAS| UAS LAS| (sent/s)
standard 89.9 88.7| 89.7 88.3 51 standard 90.2 87.8| 89.4 87.3 26 standard 82.4 80.9| 82.7 81.2 T2
eager 90.3 89.2| 899 886| 63 eager 890.8 87.4|89.6 874 34 eager 211 797|803 787 80
ﬁzi:jzzger g gl [o ﬁ:ﬁfzgcer 222 225 ggz 223 jj‘; Maltsp | 82.4 80.5| 824 80.6| 420
MSTParser [92.1 908|920 905| 12 MSTParser | 914 88.1] 907 §76] 10 —ratoser | 42 73 22 J04, 3
Our parser | 92.2 91.0| 92.0 90.7| 1013 Our parser | 92.0 89.7 [91.8 89.6| 654 i : : :
Our parser | 84.0 82.4| 83.9 824| 936

Table 4: Accuracy and parsing speed on PTB + 56 5. Accuracy and parsing speed on PTB +

CoNLL dependencies. Stanford dependencies. Table 6: Accuracy and parsing speed on CTB.

Experiments - Cube Activation Function

e Cube (@*)
.+ tanh (£557) g =
e’ +e 90 |- - =
1 e

® sigmoid — o

1+e® B
e Identity (x) é 85 |-

:) —

I

| |
PTB:CD PTB:SD CTB

[0 cube [l 0 tanh [0 sigmoid I Bidentity

Experiments - POS Tag & Arc Label Embeddings

e POS embeddings yield around 9B i
o 1.7% improvement on PTB oo - I i
o 10% improvement on CTB

e Label embeddings yield around
o 0.3% improvements on PTB
o 1.4% improvement on CTB

UAS score

I

PTB:CD PTB:SD CTB
[l o word+POS+1abel [l word+POS [l0 word+label | 8 word

Examination - POS Tag & Arc Labels Embeddings

Encode the semantic regularities

600
5 —_—
400~ eor
VBG g .,
WP $
200 &P @re TRP o5 RBRBSRBER
s TR s
“TO _
o «SYM - *ROPE
RP
«CC o
«JJR
-200~ ®
g T i (
«JJS DT
EX
g o ® misc
VBYBD «CD noun
VBP ® punctuation
-600 MD verb
® adverb
e adjective
_800 1 1 | | 1 1
-600 -400 -200 0 200 400 600

Figure 5: t-SNE visualization of POS and label embeddings.

800

600

400

200

-200

-400

-600

-800

-1000

s«advmod
msubj
msubjpagk]
expl amod
num
re:
«ppos . nn Predei
ercmod| sconj SuxXpass poss
. arataxis fossessive
«discourse P quantmod
rt
mark s P.iODj =
?artmﬁnod'root meg P
Prep aumber
«dobj
aux aconﬂ:
ereconj COP| «mod AT advel
eapadvmod ccomp
wmwe
® misc
clausal complement
noun pre-modifier
verbal auxiliaries
® subject
ool ® preposition complement
Teby ® noun post-modifier
1 1 I | i : : i
600 -400 200 0 200 400 600 200

Examination - Hidden Layer Weights

POS tags weights in dependency parsing
|dentify useful information automatically
Extract features not presented in the indicator feature system (>3)

Feature1 Feature2 Feature3

— Feature 1: s1.t, s9.t, lc(s1).1.
— Feautre 2: rc(s1).t, s1.t, by .t.
— Feature 3: s1.t, s1.w,lc(s1).t,le(sy).1.

50 = |]]
word POS label word POS label

Figure 6: Three sampled features. In each feature, each row denotes a dimension of embeddings and
each column denotes a chosen element, e.g., s1.t or le(s1).w, and the parameters are divided into 3
zones, corresponding to W (k,:) (left), W{(k,:) (middle) and Wll (k,:) (right). White and black dots
denote the most positive weights and most negative weights respectively.

Conclusion

e Contribution

o Introducing dense POS tag and arc label embedding into the input

layer and show the usefulness within parsing task

o Developing a NN architecture with good accuracy and speed

o Cube activation function help capture high-order interaction feature
e Future work

o Combine this classifier with search-based model

o Theoretical studies on cube activation function
e Application

Citations

Carpuat, M. (n.d.). PDF.
Chen, D., & Manning, C. (2014). A Fast and Accurate Dependency Parser using Neural Networks. Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). doi:
10.3115/v1/d14-1082

e Hale, R. (2019, February 15). Why we use dependency parsing. Retrieved March 23, 2020, from
https://www.megaputer.com/why-we-use-dependency-parsing/

e Kohorst, L. (2019, December 13). Constituency vs. Dependency Parsing. Retrieved March 23, 2020, from
https://medium.com/@lucaskohorst/constituency-vs-dependency-parsing-8601986e5a52

e Socher, R, Karpathy, A, Le, Q. V., Manning, C. D., & Ng, A. Y. (2014). Grounded Compositional Semantics for
Finding and Describing Images with Sentences. Transactions of the Association for Computational Linguistics,
2,207-218. doi: 10.1162/tacl_a_00177

http://www.cs.umd.edu/class/fall2017/cmsc723/slides/slides_13.pdf
https://www.megaputer.com/why-we-use-dependency-parsing/
https://medium.com/@lucaskohorst/constituency-vs-dependency-parsing-8601986e5a52

Neural CRF Parsing

Authors:
Greg Durrett
Dan Klein

Presenter:
Rishabh Vaish

What is CRF
Overview
Prior work
Model
Features
Learning
Inference
Results
Conclusion

¢/’ Whatis CRF?

e Conditional Random Field
o Aclass of statistical modeling method used for structured prediction
o In NLP, it's major use case is for labeling of sequential data
o Used to get a posterior probability of a label sequence conditioned on the input observation
sequence
o P(Label sequence Y | Observation sequence X)
o Probability of change in label may depend on past and future observations
e Baseline CRF model was created by Hall et al. (2014)

label sequence (activity classes)

observation sequence (feature vectors)

Overview

e This paper presents a parsing model which combines the exact dynamic programming of CRF parsing
with nonlinear featurization of feedforward neural networks.

e Model - Decomposes over anchored rules, and it scores each to these with a potential function -
Nonlinear functions of word embeddings combined with linear functions of sparse indicator features like

standard CRF

T W a— ~

/
(TI () —
T T~
P |_NP VP
w fo
h DT NNP VBZ NP
The Fed issued
V(fw Structured inference
\ fu / (discrete)

Feature extraction (continuous)

CFG (Rule)

e A context-free grammar (CFG) is a list of rules that define the set of all well-formed sentences in a

language.
e Example - The rule s --> np vp means that "a sentence is defined as a noun phrase followed by a verb
phrase.” np - noun phrase
s —> np vp . vp - verb phrase
= ggtng N S - sentence
iv n vp - i i
o de{/ p\n i :(?tnoduer;[ermlner (article)

S I |
the giraffe dreans

tv - transitive verb (takes an object)
iv - intransitive verb

prep - preposition

pp - prepositional phrase

adj - adjective

giraffe
apple

AL L

iv dreans
tv —>» eats
—> dreans

E.g., a parse of the sentence "the giraffe dreams" is:
s => np vp => det n vp => the n vp => the giraffe vp => the giraffe iv => the giraffe dreams

Anchored Rule

e |tis the fundamental unit that the model considers. A tuple (r,s)
o r-an indicator of rules identity
o s ~(i,], k) indicates the span (i, k) and split point j of the rule
e Atree T is simply a collection of anchored rules subject to the constraint that those rules form a tree.
e All the parsing models are CRF that decompose over anchored rule productions and place a probability
distribution over trees conditioned on a sentence as follows:

P(T|w) ocexp(z ¢wrs)
(

r,8)ET

where ¢ is the scoring function

Scoring Anchored Rule

(Sparse)

e ¢ considers the input sentence and the anchored rule in question.

e |t can be a neural net, a linear function of surface features, or a combination of the two

e Baseline sparse scoring function -
o f(r) €{0, 1}"°is a sparse vector of features expressing properties of r (such as the rule’s identity or its parent label)
o f(w,s) € {0, 1} is a sparse vector of surface features associated with the words in the sentence and the anchoring
o Wi is an ns x no matrix of weights

(bsparse(wa TS, W) = fs (W: S)TWfO(T)
2) ¢=f, Wi,

fs

Wij = weight([[fs,i A fo,7]])

f Scoring Anchored Rule

(Neural)

e Neural scoring function -
o f (w,s) € N™to be a function that produces a fixed-length sequence of word indicators based on the input

sentence and the anchoring
o An embedding function v: N — R"®, the dense representations of the words are subsequently concatenated to form

a vector we denote by v(f).
A matrix H € R™* (™€) of real valued parameters
An element wise nonlinearity g(-), authors use rectified linear units g(x) = max(x, 0)

h(w,s; H) = g(Hv(fu(W,5)) ¢ (W, m, 8, H W) = h(w, s; H) W fo(r)

b) ¢ = g(Ho(fu)) W fo

Scoring Anchored Rule

(Combined)

¢(Wa r,s; W1, H, W2) = ¢sparse(wa r,S; Wl)
+ (bneural(wa r, s, H, W2)

a) ¢ =fJ W, b) ¢ = g(Hv(fw)) W
14 fo w fo
fs h
Wiy = woight([[fos A fosl]) o S G)
| 7 v(fu)

f Features

e Baseline Features (Sparse) f;
o Preterminal Layer
m Prefixes and suffixes up to length 5 of the current word and neighboring words, as well as the
words’ identities
o Nonterminal Productions
m Fire indicators on the words before and after the start, end, and split point of the anchored
rule
m Span Properties - Span length + Span shape (an indicator of where capitalized words,
numbers, and punctuation occur in the span)
e Neural Features
o f_-The words surrounding the beginning and end of a span and the split point (2 words in each
direction)
o v- Use pre-trained word vectors from Bansal et al. (do not update these vectors during training)

f Learning (Gradient Descent)

e Maximize the conditional log-likelihood of our D training trees T*

D
L(H,W) =" log P(T;|wi; H,W)
g=1

e The gradient of W takes the standard form of log-linear models.

oL
aw = (> w, S;H)fo(r)T> -

(r,s)€T™*

(ZP(T|W;H,W) > h(w,s;H)fo(r)T>
T

(r,s)eT
Since h is the output of the neural network, we can first compute the following then apply the chain rule to

get gradient for H
” - (> Wfo(r)) -
(r,s)eT™

(Z P(Tw; H,W) > Wfo(r))
T

(r,s)eT

Learning parameters

e Momentum term p = 0.95 (Zeiler (2012))
e A minibatch size of 200 trees
o For each treebank, train for either 10 passes through the treebank or 1000 mini-batches, whichever
is shorter
e |Initialize the output weight matrix W to zero
e To break symmetry, the lower level neural network parameters H were initialized with each entry being
independently sampled from a Gaussian with mean 0 and variance 0.01.
o Gaussian performed better than uniform initialization, but the variance was not important.

f Inference

e Speed up inference by using a coarse pruning pass (Hall et al. (2014))-
o Prune according to an X-bar grammar with head outward binarization, ruling out any constituent
whose max marginal probability is less than e™®
o Reduces the number of spans and split
e Note that the same word will appear in the same position in a large number of span/split point
combinations, and cache the contribution to the hidden layer caused by that word (Chen and Manning,
2014)

f Results - System

e Penn Treebank We compare variants of our system along two axes:
whether they use standard linear sparse features,
nonlinear dense features from the neural net, or

Sparse Neural V' Word Reps F; len <40 F; all

Hall et al. (2014),V =1 0.5 .
el LI, v 4 both, and whether any word representations (vectors
a v 0 89.89 89.22
by 1 90.82 90.13 or clusters) are used.
c v 1 Brown 90.80 90.17 e Sparse (a and b) vs Neural (d)
d v 0 Bansal 90.97 90.44 e Wikipedia-trained word embeddings (e) vs
é v 0 Collobert 90.25 89.63 Vectors (d)
f v 0 PTB 89.34 88.99))
e Continuous word representations (f) vs
g Vv v 0 Bansal 92.04 91.34
h v v 0 PIB 9139 90.91 Vectors (d)

e (f) + sparse (h) vs Vectors (d)

f Results - Design

e Penn Treebank To analyze the particular design choices we made
for this system by examining the performance of
Filen < 40 A several variants of the neural net architecture used -
Neural CRF 90.97 L e Choice of nonlinearity - Rectified linear units

perform better than tanh or cubic units

o ReLU 90.97 — e Depth - a network with one hidden layer
Nonlinearity = Tanh 90.74 —0.23 performs best
Cube 89.94 —1.03
0 HL 90.54 —0.43
Depth 1 HL 90.97 —
2 HL 90.58 —0.39

Embed output 88.81 —2.16

f Results

° Penn Treebank . . oy
When sparse indicators are used in addition, the

Fy all resulting model gets 91.1 F1 on section 23 of
the Penn Treebank, outperforming the parser of
Socher et al. (2013) as well as the Berkeley

Single model, PTB only
Hall et al. (2014) 89.2

Berkele Parser (Petrov and Klein, 2007) and matching
y 90.1 AT
Carreras et al. (2008) 91.1 the discriminative parser of Carreras et al.
Shindo et al. (2012) single ~ 91.1 (2008), and the single TSG parser of Shindo et
Single model, PTB + vectors/clusters al. (201 2).

Zhu et al. (2013) 91.3
This work* 91.1

Extended conditions

Charniak and Johnson (2005) 91.5
Socher et al. (2013) 904

Vinyals et al. (2014) single 90.5
Vinyals et al. (2014) ensemble 91.6
Shindo et al. (2012) ensemble 92.4

f Results

e SPMRL (Nine other languages)

Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg
Dey, all lengths

Hall et al. (2014) 78.89 83.74 7940 83.28 88.06 87.44 81.85 91.10 7595 83.30
This work* 80.68 84.37 80.65 8525 89.37 89.46 8235 9210 7793 84.68

Test, all lengths

Berkeley 79.19 7050 80.38 78.30 86.96 81.62 7142 7923 79.18 78.53

Berkeley-Tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89

Crabbé and Seddah (2014) 77.66 8535 79.68 77.15 86.19 87.51 79.35 91.60 8272 83.02
Hall et al. (2014) 78.75 8339 79.70 7843 87.18 88.25 80.18 90.66 82.00 83.17

This work* 80.24 8541 81.25 80.95 88.61 90.66 82.23 9297 8345 85.08

Reranked ensemble
2014 Best 81.32 88.24 82.53 81.66 89.80 91.72 8381 9050 85.50 86.12

Improvements on the performance of the parser from Hall et al. (2014) as well as the top single parser from the
shared task (Crabbe and Seddah, 2014), with robust improvements on all languages

f Conclusion

e Compared to Conventional CRF
o Scores are non-linear potentials analogous to linear potential in conventional CRFs
o Computations are factored along the same substructure as in conventional CRFs
e Compared to Prior neural network models
o Removed the problem of structural prediction by making sequential decisions or by reranking
o Authors framework allows exact inference via CKY because the potentials are still local to
anchored rules.
e Shows significant improvement for English and nine other languages

Thank You

Adam J. Stewart

Department of Computer Science
University of Illinois at Urbana-Champaign

March 25, 2020

T S (S C Newnl Constituency Parser Aralysis D S

Il Motivation
B Background
B Model & Data

B Experiments & Results
m Output Correlations
m Lexical Representation
m Context in the Sentence LSTM

Il Discussion

T S (S C Newnl Constituency Parser Aralysis D S

Adam Stewart (UIUC) " Neural Constituency Parser Analysis [\Viareh 25,2020

Motivation

Classic NLP (explicit)

Lexicon

Det — that | this | the | a
| G rammars S — Aux NP VP Noun — book | flight | meal | money
R h | § — VP Verb — book | include | prefer
| IC exicons NP — Pronoun Pronoun — 1| she | me
NP — Proper-Noun Proper-Noun — Houston | NWA
. NP — Det Nominal Aux — does
| H a nCICrafteCI |eXIC3| featu res Nominal — Noun Preposition — from | to | on| near| through

Nominal — Nominal Noun
Nominal — Nominal PP
— Verb

— Verb NP
— Verb NP PP
— Verb PP
— VPPP

N

Preposition NP

Adam Stewart (UIUC) Neural Constituency Parser Analysis _

Motivation

Modern NLP (implicit)
m Machine Learning
m RNNs, LSTMs, and GRUs
m Transformers

Adam Stewart (UIUC) Neural Constituency Parser Analysis _

Motivation _

m To what extent is information provided directly by the model

structure in classical systems still being captured by neural
methods?

m How do RNNs compensate for the removal of the structures used in
past models?

m What information do RNNs capture, and what is important for
strong performance?

T S (S C Newnl Constituency Parser Aralysis D S

Adam Stewart (UIUC) " Neural Constituency Parser Analysis [\Viareh 25,2020

Background

S S

TN T T

NP VP NP VP

Pronoun Verb NP Pronoun

\\/\\/\A

1 shot Det Nominal Verb

N | A

an Nominal PP shot Det Nominal

N |

Noun in my pajamas an Noun

elephant elephant

Adam Stewart (UIUC) Neural Constituency Parser Analysis

Background _

Scoring function s(i, j,[) that assigns a real-valued score to every label [
for each span (i, j)

Score of tree T is given by:

Z s(, j, 1)

(i,5,)€T

Parsing problem is to find optimal tree:

T = arg max s(T)
T

Adam Stewart (UIUC)

Adam Stewart (UIUC) " Neural Constituency Parser Analysis [\Viareh 25,2020

Model & Data

m Start with static word embedding

m Embedding for every word in training set

m Unknown words in test set mapped to <UNK>
@ Add character-level representation

m Bidirectional character LSTM

m Concatenate forward and backward outputs
@ Concatenate word embedding and character

representation
= r=[w,cs,c

T S (S C Newnl Constituency Parser Aralysis D S

Model & Data

Span Representation

<START> She played soccer i the park . <STOP>
0 1 2 4 5 6 7

Figure 1: Span representations are computed by running a bidirectional LSTM over the input sentence and taking
differences of the output vectors at the two endpoints. Here we illustrate the process for the span (1,4) correspond-
ing to “played soccer in” in the example sentence.

Adam Stewart (UIUC) Neural Constituency Parser Analysis March 25, 2020

Model & Data _

Span representation given by:
ryj = [f; — fi,b; — by]

Scoring function is single-layer feedforward network with output
dimensionality equal to the number of possible layers

Score of specific label [is corresponding component of output vector:
s(i,5,1) = [Wag(Wiry + z1) + 2],

where g is an elementwise ReLU nonlinearity
Adam Stewart (UIUC) C Newnl Constituency Parser Aralysis D S

Model & Data

Inference: choosing the optimal tree

Problem: efficient CKY parsers only work
for binary trees, but model uses n-ary trees

Solution: introduce auxiliary empty label g
with s(7, j,) = 0 to transform n-ary trees
into binary trees

Adam Stewart (UIUC) Neural Constituency Parser Analysis

the flight through Houston

S,VPX2 S,VPX2
[0,3] [0,4] [0,5]

) -
1,31 1,41

Nominal,
Noun
[2,4]
Prep
3,4] (3,5

NP,
Proper-
Noun
4.5]

Model & Data _

Penn Treebank (PTB) dataset
m 2,499 Wall Street Journal (WSJ) stories
m Syntactic annotation
m Part-of-speech tagging

Model achieves F1 score of 92.22 on validation, 92.08 on test

m State-of-the-art performance (for a model that doesn't use external
data or ensembling)

T S (S C Newnl Constituency Parser Aralysis D S

T S (S C Newnl Constituency Parser Aralysis D S

Information about compatibility between outputs
in a structured prediction model

T S (S C Newnl Constituency Parser Aralysis D S

Experiments & Results _

Traditionally, parsers relied on correlations between predicted labels

Here, each label is scored independently, then dynamic programming
chooses optimal tree

Hypothesis: LSTM handles reconciliation between labels that was
previously handled by inference procedure

T S (S C Newnl Constituency Parser Aralysis D S

Experiments & Results _

Experiment: see if model can predict parent labels of spans
m Freeze input and LSTM parameters

m Train a new scoring network to predict the label of a span’s parent
instead of the label of the span

Result: able to achieve 92.3% accuracy, implying that information about
parent-child relationships provided explicitly by a grammar is not lost

T S (S C Newnl Constituency Parser Aralysis D S

Experiments & Results

No explicit grammar, but inference stage does still enforce tree
constraints

Experiment: remove these tree constraints and make decisions
independently

Result: F1 score of 92.20, 94.5% of predictions form valid trees,
implying that model learns tree constraints on its own

T S (S C Newnl Constituency Parser Aralysis D S

Importance of word and character representations

T S (S C Newnl Constituency Parser Aralysis D S

Experiments & Results

Experiment: ablation study

m Word embeddings alone are
not sufficient Word and Character LSTM

. Word Only
m Character representations Word and Tag

and Pa rt-of-speech tags Word, Tag, and Character LSTM | 92.24
provide much of the same Character Only 92.24

information

Table 1: Development F1 scores on section 22 of the
LRI rger A EIE o= g SY B\ =TIl Penn Treebank for different lexical representations.

make up for loss of word
embeddings

Adam Stewart (UIUC) Neural Constituency Parser Analysis _

Experiments & Results _

Past work shows that word shapes, suffixes, and other attributes are
important, especially for rare or <UNK> tokens

Hypothesis: character LSTM learns similar information

Experiment:
m Treat output of character LSTM as fixed word encoding
m Train small feedforward network to predict binary word features

Result: 99.74+% accuracy in all cases, implying that character LSTM
learns word roots, suffixes, etc.

T S (S C Newnl Constituency Parser Aralysis D S

Importance of context

T S (S C Newnl Constituency Parser Aralysis D S

Experiments & Results

Do LSTMs capture distant
information?

Experiment: take gradient of
each component of LSTM
output vector w.r.t. each LSTM
input vector

Average Derivative

20 30
Result: even words 40 words

away affect gradient

Distance

Adam Stewart (UIUC) Neural Constituency Parser Analysis _

Experiments & Results

—[fa — f1,b1 — by]
~(f1,b1)

<START> soccer in
~(fs,ba

T

<STOP>

he
<START> She played soccer in the park . <STOP>
0 1 2 3 7

Figure 3: An example of creating a truncated span representation for the span “played soccer in” with context size
k = 2. This representation is used to investigate the importance of information far away from the fenceposts of a
span.

Adam Stewart (UIUC) Neural Constituency Parser Analysis

Experiments & Results

How important is distant
information?

Experiment:
m Remove distant context

info from span encoding

@ Add position-dependent
cell state initialization

Development F1

e Truncated
Shuffled

10 20
Context Window

Result: distant context
improves accuracy

Adam Stewart (UIUC) Neural Constituency Parser Analysis

Experiments & Results

’—>[f4 - f1, by — b4]
(f1,b1)

]

s

in <STOP>

] s

<START> played She soccer i the park . <STOP>
0 1 2 3 5 6 7

<START> She played soccer

@
”@

Figure 5: An example of creating a shuffled span representation for the span “played soccer in” with context size
k = 2. The light blue words are outside the context window and are shuffled randomly. Shuffled representations
are used to explore whether the order of far-away words is important.

Adam Stewart (UIUC) Neural Constituency Parser Analysis

Experiments & Results

How important is distant
word order?

—
5
Experiment: shuffle distant g
. 5}
words to remove order info o)
%
o
Result: word order Shuffied
important, some context is 10 20
better than no context Context Window

Adam Stewart (UIUC) Neural Constituency Parser Analysis _

Experiments & Results

Adam Stewart (UIUC)

Experiments & Results _

LSTMs can handle variable length sequences, but is that their only
advantage?

Experiment:
m Rerun truncation analysis experiment with feedforward network
m Focus on context window of size k£ = 3
B Concatenate learned position embedding to input

Feedforward network | 83.39 F1
LSTM 89.92 F1

T S (S C Newnl Constituency Parser Aralysis D S

Adam Stewart (UIUC) " Neural Constituency Parser Analysis [\Viareh 25,2020

Discussion _

This paper provides important evidence for many different hypotheses
about neural constituency parsing (and NLP in general)

m LSTMs are capable of learning parent-child relationships and tree
constraints

m Character representations learn much of the same information that
part-of-speech tags once provided

m Distant context, and even word order is important for LSTM
performance

m LSTMs are superior to MLPs for NLP

T S (S C Newnl Constituency Parser Aralysis D S

Discussion _

Still a lot we don’t know about how LSTMs learn and how knowledge is
represented within the model

m In “predicting word features” experiment, don't compare against
performance of word embeddings

m In “truncation analysis” experiment, don't use size-dependent cell
state, and don't retune hyperparameters

m Only tested on English

T S (S C Newnl Constituency Parser Aralysis D S

Questions?

Component

Dimensions Layers

Word Embeddings
Character Embeddings
Character LSTM
Sentence LSTM
Label Feedforward Network

100
50
100
250
250 1

Table 2: The sizes of the components used in our model.

Adam Stewart (UIUC)

Majority Char-LSTM Majority Char-LSTM

Binary Feature Class Classifier Binary Feature ~ Class Classifier
all-letters 717.22% 99.77% suffix = “s” 82.65% 99.99%
has-letter 89.18% 99.97% suffix = “ed” 92.52% 99.98%
all-lowercase 56.95% 99.95% suffix = “ing” 93.26% 99.95%
has-lowercase 85.85% 99.90% suffix = “ion” 97.75% 99.93%
all-uppercase ~ 96.68% 99.90% suffix = “er” 96.42% 99.97%
has-uppercase 67.77% 99.97% suffix = “est” 99.63% 99.98%
all-digits 98.38% 99.99% suffix =“ly” 97.56% 99.99%
has-digit 87.90% 99.91% suffix = “ity” 99.30% 99.94%

all-punctuation 99.93% 99.98% suffix = “y” 92.97% 99.93%
has-punctuation 79.04% 99.75% suffix = “al” 98.48% 99.92%
has-dash 88.89% 99.95% suffix = “ble” 99.30% 99.90%
has-period 92.55% 99.95% suffix = “e” 89.57% 99.99%
has-comma 98.02% 99.97%

Table 3: Classification accuracy for various binary word features using the character LSTM representations for
words induced by a pre-trained parser. Performance substantially exceeds that of a majority class classifier in all
cases, reaching 99.7% or higher for all features. The majority class is True for the first four features in the left
column and False for the rest.

Adam Stewart (UIUC) Neural Constituency Parser Analysis

References _

B Amidi, A. & Amidi, S. Recurrent neural networks cheatsheet.
https://stanford.edu/~shervine/teaching/cs-
230/cheatsheet-recurrent-neural-networks. 2018.

B Gaddy, D., Stern, M. & Klein, D. What's going on in neural

constituency parsers? an analysis. Proceedings of NAACL-HLT
2018, 999-1010 (2018).

B Jurafsky, D. & Martin, J. H. Speech and language processing. Third
edition draft (2019).

T S (S C Newnl Constituency Parser Aralysis D S

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

What Do Recurrent Neural Network
Grammars Learn About Syntax?

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong,
Chris Dyer, Graham Neubig, Noah A. Smith

Presented by Yi Zhu

Outline

RNNG

Composition is Key

Gated Attention RNNG
Headedness in Phrases

The Role of Nonterminal Labels
Related Work

Recurrent Neural Network Grammars

e RNNG defines a joint probability distribution over string terminals and
phrase-structure nonterminals.
o <N,X 6>
o N: the set of nonterminal symbols (NP, VP, etc.)

o X:the set of all terminal symbols
o ©O: the set of all model parameters

Recurrent Neural Network Grammars

e Algorithmic state
o Stack: partially completed constituents
o Buffer: already-generated terminal symbols
o List of past actions

e Phrase-structure tree y, sentence x

o Top-down
o Oracle, a=<a 5.0, & >

(S NP (VP cat hungry The

The hungry cat

This figure is due to Dyer et al. (2016)

Recurrent Neural Network Grammars

e Actions
o NT(X): introduces an open nonterminal symbol onto the stack
o GEN(x): generates a terminal symbol and places it on the stack and buffer
o REDUCE: indicates a constituent is now complete. (popped—composition
function—pushed)

NP

;BI“]F‘W
e aal

This figure is due to Dyer et al. (2016)

Recurrent Neural Network Grammars

e (Composition function

o Computes a vector representation
o LSTM

e (enerative model

p(@,y) = pla) = [[plac | a,. .., ar-1).

Composition is Key

e C(rucial role in the generalization success

Model y
Vinyals et al. (2015) — PTB only 88.3
Discriminative RNNG 91.2
Choe and Charniak (2016) — PTB only | 92.6
Generative RNNG 93.3

Table 1: Phrase-structure parsing performance on
PTB §23. All results are reported using single-
model performance and without any additional

data.

Composition is Key
e Ablated RNNGs

o Conjecture: Stack which makes use of the composition function is critical to the performance
o The stack-only results are the best published PTB results

Model R Model UAS | LAS Model Test ppl. (PTB)
Vinyals et al. (20157 0.1 gt ed e KN 5-gram 169.3
Choe and Charniak (2016) | 92.6 . e : : LSTM LM 113.4
, t | 038 Dozat and Manning (2016) 954 | 93.8 RNNG 1052
Choe and Chamiak (2016)' | 93. Choe and Charniak (2016)! 959 | 94.1 . :
B e RN i Baseline RNNG 956 | 944 Ablated RNNG (no history) | 105.7
Ablated RNNG (no history) | 93.2 Ablated RNNG (no history) 954 | 942 Ablated RNNG (no buffer) 106.1
Ablated RNNG (no buffer) | 93.3 Ablated RNNG (no buffer) 95.6 | 94.4 Ablated RNNG (no stack) 131
Ablated RNNG (no stack) | 92.5 Ablated RNNG (no stack) 95.1 | 93.8 Stack-only RNNG 1012
Stack-only RNNG 93.6 Stack-only RNNG 95.8 | 94.6 y :
GA-RNNG (935 GA-RNNG [95.7] 945 GA-RNNG | 1009

Table 2: Phrase-structure parsing performance on ~ Table 3: Dependency parsing performance on
PTB §23 f indicates systems that use additional PTB §23 with Stanford Dependencies (De Marn-
unparsed data (semisupervised). The GA-RNNG offe and Manning, 2008). T indicates systems that
I ST use additional unparsed data (semisupervised).
T SGGGSSGSSSSSS——————————————,— S

Table 4: Language modeling: perplexity. IKN
refers to Kneser-Ney 5-gram LM.

Gated Attention RNNG

e Linguistic Hypotheses

o Individual lexical head or multiple heads?

e (ated Attention Composition
o GA-RNNG: explicit attention mechanism and a sigmoid gate with multiplicative interactions
“Attention weight”, weighted sum
a = softmax ([cl cz -] V[u ont])
g =0 (Wity: + Wam + b)
c=gOty+(1-g)Om.
e [xperimental results:
o Outperforms the baseline RNNG with all three structures present

0O O O O

o Achieves competitive performance with the strongest, stack-only, RNNG variant

Headedness in Phrases :
e The Heads that GA-RNNG Learns 1 00 |

o Average perplexity of the attention vectors ADIP VP NP PP QP SBAR

Resemble the vector of one salient constituent, but not exclusively Figure 3: Average perplexity of the learned atten-

tion vectors on the test set (blue), as opposed to

O

o How attention is distributed for the major nonterminal categories e average perplexity of the uniform distribution
(red), computed for each major phrase type.

o NPs, VPsand PPs P !

Noun phrases Verb phrases Prepositional phrases
1 | Canadian (0.09) Auto (0.31) Workers (0.2) union (0.22) president (0.18) buying (0.31) and (0.25) selling (0.21) NP (0.23) ADVP (0.14) on (0.72) NP (0.14)
2 | no (0.29) major (0.05) Eurobond (0.32) or (0.01) foreign (0.01) bond (0.1) offerings (0.22) | ADVP (0.27) show (0.29) PRT (0.23) PP (0.21) ADVP (0.05) for (0.54) NP (0.40)
3 | Saatchi (0.12) client (0.14) Philips (0.21) Lighting (0.24) Co. (0.29) pleaded (0.48) ADJP (0.23) PP (0.15) PP (0.08) PP (0.06) | ADVP (0.02) because (0.73) of (0.18) NP (0.07)
4 | nonperforming (0.18) commercial (0.23) real (0.25) estate (0.1) assets (0.25) received (0.33) PP (0.18) NP (0.32) PP (0.17) such (0.31) as (0.65) NP (0.04)
s | the (0.1) Jamaica (0.1) Tourist (0.03) Board (0.17) ad (0.20) account (0.40) cut (0.27) NP (0.37) PP (0.22) PP (0.14) from (0.39) NP (0.49) PP (0.12)
6 | the (0.0) final (0.18) hour (0.81) to (0.99) VP (0.01) of (0.97) NP (0.03)
7 | their (0.0) first (0.23) test (0.77) were (0.77) n’t (0.22) VP (0.01) in (0.93) NP (0.07)
s | Apple (0.62) . (0.02) Compagq (0.1) and (0.01) IBM (0.25) did (0.39) n’t (0.60) VP (0.01) by (0.96) S (0.04)
9 | both (0.02) stocks (0.03) and (0.06) futures (0.88) handle (0.09) NP (0.91) at (0.99) NP (0.01)
10 | NP (0.01) . (0.0) and (0.98) NP (0.01) VP (0.15) and (0.83) VP 0.02) NP (0.1) after (0.83) NP (0.06)

e (Comparison to Existing Head Rules
o Higher overlap with the conversion using Collins head rules rather than the Stanford head rules
o GA-RNNG has the power to infer head rules

The Role of Nonterminal Labels

e Whether heads are sufficient to create representations of phrases
e Unlabeled F, parsing accuracy: U-GA-RNNG 93.5%, GA-RNNG 94.2%
e Visualization
e Analysis of PP and SBAR Oy
o SBARs (start with “prepositional” words) are similar to PPs -
o The model learns to disregard the word that o
o Certain categories of PPs and SBARs form their own separate clusters 2 e
SwADVPWVPaj’;B:D = s . s
; .. &
Ore e mronre e '8(2“" Figure 4: t-SNE on composed vectors when train-
0 SW%SPPMNPUO ing without nonterminal categories. Vectors in
"%Qm N sémmms dark blue are VPs, red are SBARSs, yellow are PPs,
s R “g‘ GCP)mm light blue are NPs, and green are Ss.
! mié: (%;Ai . sa%mmvppp g
BAR S OSOBARS P?VHNPS
arsQ) QSRS 99 §*°

Related Work

e Sequential RNNs (Karpathy et al., 2015; Li et al., 2016).

e Sequence-to sequence neural translation models capture a certain degree of syntactic knowledge of the
source language as a by-product of the translation objective (Shi et al., 2016)

e (Competitive parsing accuracy without explicit composition (Vinyals et al. ,2015; Wiseman and Rush,
2016)

e The importance of recursive tree structures in four different tasks (Li et al., 2015)

e The probabilistic context-free grammar formalism, with lexicalized (Collins, 1997) and nonterminal
(Johnson, 1998; Klein and Manning, 2003) augmentations.

e [ine-grained nonterminal rules and labels can be discovered given weaker bracketing structures
(Chiang and Bikel, 2002; Klein and Manning, 2002; Petrov et al., 2006)

e [Entropy minimization and greedy familiarity maximization techniques to obtain lexical heads from
labeled phrase-structure trees in an unsupervised manner (Sangati and Zuidema, 2009)

Deep Semantic Role Labeling:
What Works and What' s Next

Luheng He, Kenton Lee, Mike Lewis, Luke Zettlemoyer

Presented by Huining Liang

. Outline

- Model

- Experiments
- Analysis

- Related Work

- Conclusion and Future Work

Model

- Predicting an SRL structure under our model involves finding the highest-
scoring tag sequence over the space of all possibilities Y:

9 = argmax f(w,y)
yey

- Use a deep bidirectional LSTM (BiLSTM) to learn a locally decomposed
scoring function conditioned on the iput: Xi;logp(y: | w)

To incorporate additional information (e.g., structural consistency,
syntactic input), we augment the scoring function with penalization terms:

flw,y) =) logp(y: | w) =) c(w, 1)
t=1

ceC

Model

- Our model computes the distribution over tags us-
ing stacked B1iLSTMSs, which we define as follows:

iy = o(Wilhiers, @igl + b)) & = tanh(W[Ryers,, @1,] + bL)
ot =0 (Wé [P tts,, i) + bf,) Clt = 1,10 Crt + fit © Ciyg,
fl,t = O-(Wi'[hl,t+5p wl,t] + bi- + 1) hl,t =0t ©° ta'nh(cl,t)

Softmax

- To stack the LSTMs 1n an interleaving pattern, the Transform

layer-specific inputs x; . and directionality d; are Gates

arranged 1n the following manner: LSTM

oy — | Wem (w0, Wiaat =v)] 1=1 o _J1 ifliseven Wrdd g9ee @000 000 0000
’ h;_14 [>1 —1 otherwise Predicate

- Finally, the locally normalized distribution over Highway LSTM with four layers.

output tags 1s computed via a softmax layer:
p(y: | @) oc exp(Wighr i + biag)

Model

- Highway Connections - BIO Constraints
ris = o(Wihy s 1, @] + bl) These const.ramts reject any sequence that does not
h, = o1 o tanh(cy,) produce valid BIO transitions.

hiy =750 hiy+ (1 — i) o Wi, - SRL Constraints

- Recurrent Dropout Unique core roles (U)
Continuationroles (C)

hip =m0 by + (1 —1i) o Wiy Reference roles (R)

hi i =z 0h;

: : - Predicate Detection
- Constrained A* Decodin .
; g We propose a simple model for end-to-end SRL, where
Flw,yre) = logp(y | w) — Y c(w,yu) the system first predicts a set of predicate words v from
i=1 ceC the input sentence w. Then each predicate in v 1s used as
n an input to argument prediction.
g(w,y1:t) = Z ;Ilél%’(log p(y; | w)
i=t+1""

2 Experiments

- Datasets
CoNLL-2005 & CoNLL-2012

Following the train-development-test split for both
Using the official evaluation script from the CoNLL 2005 shared task for evaluation on

both datasets

- Model Setup
Our network consists of 8 BILSTM layers (4 forward LSTMs and 4 reversed LSTMs)

with 300-dimensional hidden units, and a softmax layer for predicting the output
distribution.

Initialization - Training - Ensembling - Constrained Decoding

2 Experiments

Development WSJ Test Brown Test Combined
Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1
Ours (PoE) 83.1 824 827 641 850 843 846 665 749 724 73.6 465 83.2
Ours 81.6 816 81.6 623 83.1 83.0 831 643 729 714 721 448 81.6
Zhou 79.7 794 79.6 829 828 828 70.7 682 694 81.1

FitzGerald (Struct.,PoE) 81.2 76.7 789 55.1 825 782 803 573 745 70.0 722 41.3 -
Téckstrom (Struct.) 812 762 786 544 823 776 799 560 743 68.6 713 39.8 -
Toutanova (Ensemble) - - 78.6 587 819 78.8 803 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 774 50.7 823 768 794 538 734 629 678 323 779

Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of completely correct
predicates (Comp.). We report results of our best single and ensemble (PoE) model.

Development Test
Method P R F1 Comp. P R F1 Comp.
Ours (PoE) 835 83.2 83.4 67.5 83.5 833 834 68.5
Ours 81.8 814 81.5 64.6 81.7 81.6 81.7 66.0
Zhou - 81.1 81.3

FitzGerald (Struct.,PoE) 81.0 78.5 79.7 60.9 81.2 79.0 80.1 62.6
Téckstrom (Struct.) 80.5 77.8 79.1 60.1 80.6 78.2 79.4 61.8
Pradhan (revised) - - - - 78.5 76.6 71.5 55.8

Experimental results on CoNLL 2012 in the same metrics as above. We compare our best single and ensemble (PoE)
models against Zhou and Xu (2015), FitzGerald et al. (2015), Ta'ckstrom et al. (2015) and Pradhan et al. (2013).

2 Experiments

Predicate Detection End-to-end SRL (Single) End-to-end SRL (PoE)
Dataset P R F1 P R F1 P R F1 AF1
CoNLL 2005 Dev. 974 974 97.4 80.3 80.4 80.3 81.8 81.2 81.5 -1.2
WSIJ Test 945 98.5 96.4 80.2 82.3 81.2 82.0 83.4 82.7 -1.9
Brown Test 89.3 95.7 92.4 67.6 69.6 68.5 69.7 70.5 70.1 -3.5
CoNLL 2012 Dev. 88.7 90.6 89.7 74.9 76.2 75.5 76.5 77.8 717.2 -6.2
CoNLL 2012 Test 93.7 879 90.7 78.6 75.1 76.8 80.2 76.6 78.4 -5.0

Predicate detection performance and end-to-end SRL results using predicted predicates. A F1 shows the absolute
performance drop compared to our best ensemble model with gold predicates.

|
% - Ablations
Smoothed learning curve of various ablations. The
R 75 . . .
= combination of highway layers, orthonormal parameter
A1 P— initialization and recurrent dropout i1s crucial to achieving
—— No highway connections strong performance. The numbers shown here are without
—o— No dropout . .
65 | | No orthogonal initialization constrained deCOdlng.
100 200 300 400 500

Num. epochs

3 Analysis

- Error Types Breakdown
Label Confusion & Attachment Mistakes

100
100 » 80
E 62
95 |- s 60]
‘s 40 [
< 90 F S 20 | 10 10 g 4 9
85 [[
Ours PP VP NP SBAR ADVP Other
80 —++— Pradhan
L | | | | —=— Punyakanok For cases where our model either splits a
On ks Cos Spabe S S?:n youlb gold span into two (Z — XY) or merges
Arg. Boundary two gold constituents (XY — Z), we show

Performance after doing each type of oracle transformation the distribution of syntactic labels for the Y
in sequence, compared to two strong non-neural baselines. span. Results show the major cause of these
The gap is closed after the Add Arg. transformation, showing errors is inaccurate prepositional phrase
how our approach i1s gaining from predicting more attachment.

arguments than traditional systems.

3

Analysis

Operation Description %o
Fix Labels Correct the span label if its boundary 9.3
matches gold.
Move Arg. Move a unique core argument to its cor- 4 5
rect position.
Meroe Combine two predicted spans into a gold
S g span if they are separated by at most one 10.6
pans
word.
Solit Split a predicted span into two gold
Sp spans that are separated by at most one 14.7
pans
word.
Fix Correct the boundary of a span if its la- 18.0
Boundary bel matches an overlapping gold span. ’
Drop Arg. Drop a pre-:dlcted argument that does not 74
overlap with any gold span.
Add Arg. Add a gold argument that does not over- 11.0

lap with any predicted span.

Oracle transformations paired with the
relative error reduction after each operation.
All the operations are permitted only if they
do not cause any overlapping arguments.

- Error Types Breakdown
Label Confusion & Attachment Mistakes

pred. \ gold A0 Al A2 A3 ADV DIR LOC MNR PNC TMP
AO - 11 13 4 0 0 0 O O

AL - 6 o 11 10 25 14
A2 11 23 - |8l 25 0
A3 3 2 2 - 0 0 25 14
ADV 0 0 0 4 15 29 25 36
DR 0 0 5 4 11 2 0 0
LOC 5 9 12 0 - 10 0 14
MNR 3 0 1226 o - 0 21
PNC 0 3 5 4 4 2 - 0
TMP 0 8 5 0 2% 6 0 -

Confusion matrix for labeling errors,
showing the percentage of predicted labels
for each gold label. We only count predicted
arguments that match gold span boundaries.

3 Analysis

- Long-range Dependencies

—a—18
—o— L6
65 | —— L4
—e— L2
—»— Punyakanok
55 | —=— Pradhan —

0 1-2 3-6 7-max

Distance (num. words in between)

F1 by surface distance between predi- cates and arguments. Performance degrades least rapidly on long-
range arguments for the deeper neural models.

3 Analysis

- Structural Consistency SRL-Violations
BIO Violations & SRL Structure Violations Modelor Oracle F1 Syn% U C R
Accuracy Violations Avg. Entropy Gold 100.0 98.7 24 0 61
Model (no BIO) F1 Token BIO All BIO L8+PoE 82.7 943 37 3 68
L8 81.6 94.0 48 4 73
L8+PoE 815 915 0.7 002 072
L8 80.5 909 0.07 002 073 L6 814 937 39 3 85
L6 80.1 903 0.06 002 072 L4 80.5 932 5l 3 84
L4 79.1 902 0.08 002 0.70 L2 772 913 96 5 72
L2 746 884 0.18 003 0.66 [8+PoEsSRL 828 942 s " P
. . . . L8+PoE+AutoSyn 83.2 96.1 113 3 68
Comparison of BILSTM models without BIO decoding. L8+PoE+GoldSyn 850 97.6 102 3 68
Gold [N vl ARG2 I ARG3 | Punyakanok 774 953 0 0 0
are expected to quicken [a bit“from August’s pacel Pradhan 78.3 93.0 84 3 58
Pred. [II) vl ARG2 B ARG2
+SRL [vl ARG1 [ARG2 Comparison of models with different depths

and decoding constraints (in addition to BIO)

Example where performance is hurt by enforcing the :
as well as two previous systems.

constraint that core roles may only occur once (+SRL).

3 Analysis

- Can Syntax Still Help SRL?

Constrained Decoding with Syntax

—o— Gold
—++— Choe
—=a4— Charniak

CoNLL-05 CoNLL-2012 Dev.
Dev. Test BC BN NW MZ PT TC WB

L8+PoE 82.7 84.6 81.4 82.8 82.8 80.4 93.6 84.8 81.0
+AutoSyn 83.2 84.8 81.5 82.8 83.2 80.6 93.7 84.9 81.1

85

84

F1 %

82 |-

0 1 10 100 1000 10000 ©° F1 on CoNLL 2005, and the development
Penalty ¢ set of CoNLL 2012, broken down by genres.
Performance of syntax-constrained decoding as the non- Syntax-constrained decoding (+AutoSyn)

constituent penalty increases for syntax from two parsers and shows bigger improvement on in-domain
gold syntax. The best existing parser gives a small {ata (CONLL 05 and CoNLL 2012 NW).
improvement, but the improvement from gold syntax shows

that there is still potential for syntax to help SRL.

4 Related Work

- Traditional approaches to semantic role labeling have used syntactic parsers to
identify constituents and model long-range dependencies, and enforced global
consistency using integer linear programming (Punyakanok et al., 2008) or dynamic
programs (Ta'ckstro metal.,2015).

- More recently, neural methods have been employed on top of syntactic features
(FitzGerald et al., 2015; Roth and Lapata, 2016) .

- Our experiments show that off-the-shelf neural methods have a remarkable ability
to learn long-range dependencies, syntactic constituency structure, and global
constraints without coding task-specific mechanisms for doing so.

5 Conclusion and Future Work

- A new deep learning model for span-based semantic role labeling

10% relative error reduction over the previous state of the art

Ensemble of 8 layer BiLSTMs incorporated some of the recent best practices(orthonormal
initialization, RNN-dropout, and highway connections, which are crucial for getting good results
with deep models)

- Extensive error analysis shows the strengths and limitations of our deep SRL
model compared with shallower models and two strong non-neural systems.

Our deep model is better at recovering long-distance predicate-argumentrelations
Structural inconsistencies(which can be alleviated by constrained decoding)

- The question of whether deep SRL still needs syntactic supervision

Despite recent success without syntactic input, there is still potential for high quality parsers to
further improve deep SRL models.

References

- Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena Hwang, and Martha Palmer. 2010. Propbank annotation
guidelines. Center for Computational Language and Education Research Institute of Cognitive Science University of
Colorado at Boulder .

- Xavier Carreras and Llu 1s Ma'rquez.2005. Introduction to the conll-2005 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational
Linguistics, pages 152—164.

- Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proc. of the First North American chapter of the
Association for Computational Linguistics conference (NAACL). Association for Computational Linguistics, pages
132-1309.

- Do Kook Choe and Eugene Charniak. 2016. Parsing as language modeling. In Proc. of the 2016 Conference of
Empirical Methods in Natural Language Processing (EMNLP).

