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Sequence Labeling
● assignment of a categorical label to each member of a sequence of observed values
● Eg: part of speech tagging

Mary had a   little lamb
(noun) (verb) (det)   (adj) (noun)

● can be treated as a set of independent classification tasks
○ choose the globally best set of labels for the entire sequence at once

● algorithms are probabilistic in nature
○ Markov assumption 
○ Hidden Markov model (HMM)



POS Tagging
● Label word with syntactic tag (verb, noun, adverb…)
● best POS classifiers 

○ trained on windows of text, which are then fed 
to bidirectional decoding algorithm during 
inference

○ Features - previous and next tag context, 
multiple words (bigrams, trigrams. . . ) context

● Shen et al. (2007) 
○ “Guided learning” - bidirectional sequence 

classification using perceptrons



Chunking
● labeling segments of a sentence with syntactic 

constituents (NP or VP)
● each word assigned only one unique tag, encoded 

as begin-chunk (B-NP) or inside-chunk tag (I-NP)
● evaluated using CoNLL shared task

● Sha and Pereira, 2003
○ systems based on second-order random 

fields
○ Conditional Random Fields



Named Entity Recognition
● labels atomic elements in the sentence into categories 

(“PERSON”, “LOCATION”) 

● Ando and Zhang (2005) 
○ semi-supervised approach
○ Viterbi decoding at test time
○ Features: words, POS tags, suffixes and prefixes or 

CHUNK tags



Semantic Role Labeling
● give a semantic role to a syntactic constituent of a sentence
● State-of-the-art SRL systems consist of stages

○ producing a parse tree
○ identifying which parse tree nodes represent the arguments of a 

given verb,
○ classifying nodes to compute the corresponding SRL tags

● Koomen et al. (2005) 
○ takes the output of multiple classifiers and combines them into a 

coherent predicate-argument output 
○ optimization stage takes into account recommendation of the 

classifiers and problem specific constraints



Introduction
● Existing systems

○ Find intermediate representations with task-specific features
■ Derived from output of existing systems (runtime dependencies)

○ Advantage: effective due to extensive use of linguistic knowledge
○ How to progress toward broader goals of NL understanding?

● Collobert et al. 2011
○ Single learning system to discover internal representations
○ Avoid large body of linguistic knowledge - instead, transfer intermediate representations discovered 

on large unlabeled data sets
○ “Almost from scratch” - reduced reliance on prior NLP knowledge



Remarks
● comparing systems

○ do not learn anything of the quality of each system if they were trained with 
different labeled data 

○ refer to benchmark systems - top existing systems which avoid usage of external 
data and have been well-established in the NLP field

● for more complex tasks (with corresponding lower accuracies), best systems have more 
engineered features
○ POS task is one of the simplest of our four tasks, and only has relatively few 

engineered features
○ SRL is the most complex, and many kinds of features have been designed for it



Networks
● Traditional NLP approach

○ extract rich set of hand-designed features (based on linguistic intuition, trial and error)
■  task dependent

○ Complex tasks (SRL) then require a large number of possibly complex features (eg: extracted from a 
parse tree) 
■ can impact the computational cost

● Proposed approach
○ pre-process features as little as possible - make it generalizable
○ use a multilayer neural network (NN) architecture trained in an end-to-end fashion. 



Transforming Words into Feature Vectors
● For efficiency, words are fed to our architecture as indices taken from a finite dictionary D. 
● The first layer of our network maps each of these word indices into a feature vector, by a lookup table 

operation. Initialize the word lookup table with these representations (instead of randomly)

● For each word w ∈ D , an internal dwrd -dimensional feature vector representation is given by the lookup 
table layer LTW (·):
○ LTW(w)=⟨W⟩1

w
where W is a matrix of parameters to be learned, ⟨W⟩ is the wth column of W and dwrd is the word 
vector size (a hyper-parameter)

● Given a sentence or any sequence of T words, the output matrix produced - 



Extracting Higher Level Features from Word Feature Vectors
● Window approach: assumes the tag of a word depends mainly on its neighboring words
● Word feature window given by the first network layer:

● Linear Layer:

● HardTanh Layer:

● Scoring: size of number of tags with corresponding score
● Feature window is not well defined for words near the beginning or the end of a sentence - augment the sentence 

with a special “PADDING” akin to the use of “start” and “stop” symbols in sequence models.



Extracting Higher Level Features from Word Feature Vectors
● Sentence approach: window approach fails with SRL, where the tag 

of a word depends on a verb chosen beforehand in the sentence
● Convolutional Layer: generalization of a window approach - for all 

windows t, output column of lth layer

● Max Layer: 
○ average operation does not make much sense - most words in 

the sentence do not have any influence on the semantic role of 
a given word to tag. 

○  max approach forces the network to capture the most useful 
local features



Extracting Higher Level Features from Word Feature Vectors
● Tagging schemes:

○ window approach
■ tags apply to the word located in the center of the window

○ sentence approach
■  tags apply to the word designated by additional markers in the network input

● most expressive IOBES tagging scheme



Training
● For θ trainable parameters and a training set T: maximize the following log-likelihood with 

respect to θ:

● Stochastic gradient: maximization is achieved by iteratively selecting a random example (x, 
y) and making a gradient step:

● Word-level log likelihood: each word in sentence is considered independently
Get conditional tag probability with use of softmax



Training
● Introduce scores:

○ Transition score [A]ij : from i to j tags in successive words
○ Initial score [A]i0 : starting from the ith tag

● Sentence-level log likelihood: enforces dependencies between the predicted tags in a sentence.
○ Score of sentence along a path of tags, using initial and transition scores

○ Maximize this score 
■ Viterbi algorithm for inference



Results

● Remarks:
○ Architecture: choice of hyperparameters such as the number of hidden units has a limited impact on 

the generalization performance
○ Prefer semantically similar words to be close in the embedding space represented by the word 

lookup table but that it is not the case



NLP (Almost) From Scratch Pt. 2
Harrison Ding



Word Embeddings
- Goal

- Obtain Word Embeddings that can capture syntactic and semantic 

differences



Datasets
- English Wikipedia (631 million words)

- Constructed a dictionary of 100k most common words in WSJ

- Replace the non-dictionary words with “RARE” tokens

- Reuters RCV1 Dataset (221 million words)

- Extended dictionary to a size of 130k words where 30k were Reuters most 

common words



Ranking Criterion
- Cohen et al. 1998

- Binary Preference Function

- Ranking ordering

- Training is done with a windowed approach

X = Set of all possible text windows  

D = All words in the dictionary

x

(w)

 = Text window with the center word replaced by the chosen word

f(x) = Score of the text 

window



Result of Embeddings for LM1
- Goal of capturing semantic and syntactic differences appears to have been 

achieved



Tricks with Training
- Length of time calculated in weeks

- Problem

- Difficult to try a large number of hyperparameter combinations

- Efficient Solution

- Train networks based on earlier networks

- Construct embeddings based on small dictionaries and use the best from 

there

- “Breeding”



Language Models Information
- Language Model LM1

- Window size d

win

 = 11

- Hidden layer n

hu

1

 = 100 units

- English Wikipedia

- Dictionary sizes: 5k, 10k, 30k, 50k, 100k

- Training time: 4 weeks



Language Models Information
- Language Model LM1

- Window size d

win

 = 11

- Hidden layer n

hu

1

 = 100 units

- English Wikipedia

- Dictionary sizes: 5k, 10k, 30k, 50k, 100k

- Training time: 4 weeks

- Language Model LM2

- Same dimensions as LM1

- Initialized embeddings LM1

- English Wikipedia + Reuters

- Dictionary size: 130k

- Training time: 3 more weeks



Comparison of Generalization Performance



Comparison of Generalization Performance



Comparison of Generalization Performance



Multi-Task Learning
- Joint training = Training a neural network for two tasks

- Easy to do when similar patterns appear in training tasks with different labels



Multi-Task Learning
- Joint training = Training a neural network for multiple tasks

- Easy to do when similar patterns appear in training tasks with different labels



Results of Multi-Task Learning



Results of Multi-Task Learning



Adding a Task-Specific Features



Some other testing stuff later…
With parse trees and Brown Clusters...



Final Results and Putting It All Together
- Semantic/syntactic Extraction using a Neural Network Architecture (SENNA)



Concluding Information
- The NN technology is simple

- Existed over twenty years before this paper was written

- Simply used a neural network to do most of the work

- Conclusion

- Throwing a bunch of unlabeled data at a neural network that is constructed 

correctly will yield state-of-the-art results (10 years ago)

- Fun fact

- If they tried implementing this paper ten years prior to when it was written, 

it would probably finish in 10 years



Questions?



Citations
Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu, 

and Pavel Kuksa. 2011. Natural Language Processing (Almost) from Scratch. 

JMLR, 12:2493–2537.



END-TO-END SEQUENCE 
LABELING VIA BI-DIRECTIONAL 

LSTM-CNNS-CRF
Xuezhe Ma and Eduard Hovy

Presenter: Jiaxin Huang
03/13/2020



Advantages of Neural Sequence Models
■ Prior Approaches
– Hand-crafted features: word spelling, orthographic features
– Task-specific resources: external dictionaries
– Linear statistical models: HMM, CRF



Advantages of Neural Sequence Models
■ Neural Sequence Models (in this paper)
– No hand-engineered features
– No specialized knowledge resources
– No data preprocessing beyond unsupervised word embedding

training



Neural Network Architecture
■ Data Preparation
– NER Tag Schema used: BIOES instead of BIO
■ B: Beginning
■ I: Inside
■ E: End
■ O: Outside
■ S: Single

– Pre-trained Word Embeddings: Mapping from words to low-
dimensional vectors
■ GloVe
■ Word2Vec
■ Senna



Neural Network Architecture
■ CNN Encoder for Character-Level Representation
– A convolution layer on top of char embeddings to extract
morphological information (like prefix or suffix of a word)

– A dropout layer is applied before CNN.



Neural Network Architecture
■ Bi-directional LSTM for word-level encoding

– The word embedding and character-level 
representation are concatenated together as 
word-level representation.

– The forward LSTM reads the sequence from left 
to right and generates a vector representing 
what it has seen so far.

– The backward LSTM does the same in an 
opposite direction.

■ CRF layer (next page)
– Since the decisions of tags are not independent

and can heavily depend on neighbors, we use a
conditional random field to jointly label the
sequence.



Graphical Models

Relationship between different graphical models.
Transparent nodes are hidden variables (labels), and grey nodes are observed words.

Generative
Models:

P(x, y)

Discriminative
Models:

P(y|x)

One hidden variable
E.g., document
classification

A sequence of hidden
Variables
E.g., NER, POS tagging

More general cases



Linear-Chain CRF
■ Linear-Chain CRF (Conditional Random Field) maximizes the conditional probability
of a sequence of tags given the input sentence.

■ Softmax over all possible sequences of labels, with y being the tag sequence, and z
being the input sentence.

!" is the hidden variable (tag of words).

#" is the observation (word in the sentence).
#$ #% #& #'

!( !$ !% !& !'

Apple CEO Tim Cook …

S-ORG O B-PER I-PER …

#(

Numerator: score of a tag sequence
factored into potential functions of
subgraphs.

Denominator: sum over scores of all
tag sequences.



Linear-Chain CRF in Neural Networks
■ How potential functions are represented in neural networks:

– !"#,"
% and b"#," are the weight vector and bias corresponding to label pair

((), () respectively.

■ CRF layer: Jointly decoding the best chain of labels of a given sequence.

■ Solving a sequence CRF model 
– Training and decoding can be solved efficiently by adopting the Viterbi 

algorithm.



Experiments —— Datasets
■ POS tagging
– Wall Street Journal (Marcus et al., 1993)
– Containing 45 different POS tags.

■ NER
– English data from CoNLL 2003 shared task (Tjong Kim Sang and 

De Meulder, 2003).
– Four different types of named entities: PERSON, LOCATION,

ORGANIZATION, and MISC.



Experiments —— Ablation Study

■ BLSTM > BRNN

■ CNN brings significant improvement: character level information is important for
sequence labeling problems.

■ CRF brings significant improvement: jointly decoding label sequences can 
significantly benefit the final performance.



Experiments —— Comparison w. Baselines

■ ‡ marks the neural models.

POS tagging accuracy. NER F1 score.

BLSTM + CRF + features
BLSTM + CNN + features

BLSTM for w & c + CRF

Feed-forward
CharWNN



Experiments —— Other Model Designs

■ NER relies more heavily on the quality of embeddings than POS tagging.

■ GloVe > Senna > Word2Vec (vocabulary mismatch) > Random

■ Dropout layers effectively reduce overfitting.

Results with different choices of word
embeddings . Results with and w/o dropout.



Experiments —— OOV Error Analysis

■ Partition of words: in-vocabulary words (IV), out-of-training-vocabulary words (OOTV),
out-of-embedding-vocabulary words (OOEV) and out-of-both-vocabulary words (OOBV)

■ CRF layer for joint decoding helps improve the performance on words that are out of 
both the training and embedding sets. (OOBV)



Conclusion
■ Advantages in Model Design of LSTM-CNNs-CRF:

– End-to-end model requiring no feature engineering and task-specific resources
– Combining different levels of information by CNN and BLSTM
– CRF layer is used to jointly decode the sequence.

■ Further Improvements:
– As embeddings are shown to greatly affect the performance of sequence
labeling problems, efforts can be made to improve the quality of embeddings
by multi-task learning.

– For example, character level embedding is initialized randomly in this paper,
but they can be improved by char-level language modeling, without further
annotations.



Neural Architectures for 
Named Entity Recognition

Author: Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian,
Kazuya Kawakami, Chris Dyer
Presenter: Haoyang Wen



Named Entity Recognition



Named Entity Recognition

• Challenges
• Very small amount of data available for most languages and domains
• Difficult to generalize from small sample of data



Named Entity Recognition

• Challenges
• Very small amount of data available for most languages and domains
• Difficult to generalize from small sample of data

• Results
• Using constructed orthographic features
• Using language-specific knowledge resources



Named Entity Recognition

• Challenges
• Very small amount of data available for most languages and domains
• Difficult to generalize from small sample of data

• Results
• Using constructed orthographic features
• Using language-specific knowledge resources

• This paper
• Neural architectures for NER that

• Uses no language-specific resources or features



Model I: LSTM-CRF

• LSTM
• Input: A sequence of vectors
• Return: another sequence that encoded every input vector with its context

• BiLSTM: for a given sentence (𝑥!, 𝑥", … , 𝑥#)
• Compute ℎ! of the left context at every word t
• Compute ℎ! of the right context at every word t
• ℎ! = ℎ!; ℎ!

• BiLSTM as a sequence encoder



Model I: LSTM-CRF

• Naïve Tagging
• Simply use ℎ! for each output 𝑦!

• independent tagging decision
• Fail to capture strong dependencies between labels

• Modeling label dependency?



Model I: LSTM-CRF

• Naïve Tagging
• Conditional Random Field (CRF)

• Consider 𝑃 ∈ ℝ"×$ to be the matrix of scores output by BiLSTM
• 𝑃%&: the score of 𝑗!' tag of the 𝑖!' word



Model I: LSTM-CRF

• Naïve Tagging
• Conditional Random Field (CRF)

• Consider 𝑃 ∈ ℝ"×$ to be the matrix of scores output by BiLSTM
• 𝑃%&: the score of 𝑗!' tag of the 𝑖!' word
• For a sequence of predictions 𝒚 = 𝑦(, … , 𝑦"

• Score over a sequence
• 𝑠 𝑿, 𝒚 = ∑!"#

$ 𝐴%! ,%!"# + ∑!"'
$ 𝑃!,%!

• 𝐴!(,!()* is a score of transition from 𝑦# to 𝑦#$%
• A softmax over all possible tag sequences



Model I: LSTM-CRF

• CRF Training
• Maximize the log-probability

log 𝑝 𝒚 𝑿 = log
𝑒2 𝑿,𝒚

∑3𝒚∈𝒀𝑿 𝑒
2 𝑿,3𝒚 = 𝑠 𝑿, 𝒚 − log6

3𝒚∈𝒀𝑿
𝑒2 𝑿,3𝒚

• Dynamic Programming

• CRF Decoding
𝒚∗ = argmax 𝑠(𝑿, 𝒚)

• Dynamic Programming



Model II: Chunking Algorithm

• Stack-LSTM (Dyer et al., 2015)

• Chunking Algorithm



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

[] [] [Mark, Watney, visited, Mars]



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

SHIFT [] [Mark] [Watney, visited, Mars]



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

SHIFT [] [Mark, Watney] [visited, Mars]



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

REDUCE(PER) [(Mark Watney)-PER] [] [visited, Mars] (Mark Watney)-PER



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

OUT [(Mark Watney)-PER, visited] [] [Mars]



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

SHIFT [(Mark Watney)-PER, visited] [Mars] []



Model II: Chunking Algorithm

• Transition sequence example

Transition Output Stack Buffer Segment

REDUCE(LOC) [(Mark Watney)-PER, visited, Mars-LOC] [] [] Mars-LOC



Word Embeddings

• Character-based model of words
• Character-level BiLSTM

• Pretrained embeddings
• Skip-n-gram (Ling et al., 2015)

• Word2vec that accounts for word order
• Pretrained on

• Spanish Gigaword version 3
• Leipzig corpora collection
• German monolingual data from 2010 WMT
• English Gigaword version 4



Training

• Neural Network training
• Back-propagation
• SGD with gradient clipping

• Hyperparameters
• LSTM dimension: 100
• Dropout rate: 0.5
• Embedding for transition: 16



Results

• Experiment on English
• CoNLL-2003



Results

• Experiment on German
• CoNLL-2003



Results

• Experiment on Spanish
• CoNLL-2002



Results

• Experiment on Dutch
• CoNLL-2002



Ablation



Conclusion

• Two neural architectures for sequence labeling
• The best NER results in standard evaluation settings at the time of publish
• Comparable performance with models that use external resouces

• Key aspects
• Model output label dependencies
• Word representations are crucial



DESIGN CHALLENGES AND 
MISCONCEPTIONS IN NEURAL 

SEQUENCE LABELING
By Jie Yang, Shuailong Liang, and Yue Zhang

Presented by Jamshed Kaikaus
CS 546 Spring 2020



Motivation
■ Numerous state-of-the-art models on sequence labeling tasks (NER, Chunking, 

POS Tagging, etc.)

■ However, reproducing published work can be challenging 

■ Why? Likely due to sensitivity on experimental settings and inconsistent 
configurations



Inconsistent Configurations pt. 1

Datasets CoNLL 2003 
English NER PTB POS Combos? Modifications?

Preprocessing Normalize digit 
characters

Fine-grained 
Representations None?

Features Word Spelling 
features Context features Neural features

No 'Hand-
Crafted' 
features



Inconsistent Configurations pt. 2

Hyperparameters Learning Rate Dropout Rate Num. Layers etc.

Evaluation
Mean + Std. 
Deviation, 
different 

random seeds

Best results 
among 

different trials

Hardware GPU CPU



Proposal – A Unified Framework
■ Authors implement a unified neural sequence labeling  framework 

containing three layers:
1. Character Sequence Representation layer
2. Word Sequence Representation layer
3. Inference Layer



Character Sequence Representation 
Layer



Word Sequence Representation Layer





Inference Layer

■ Takes output of previous layer (word sequence representations) as input
■ Assigns labels to the word sequence as output
■ Two options are examined as the inference layer:

1. Independent local decoding with a linear layer mapping WSR to 
label vocabulary, followed by softmax

2. Tasks with strong output label dependency, CRF is used



Experimental Setup
■ Three sequence labeling tasks to help comparison: NER, Chunking, and POS 

Tagging
NER Chunking POS Tagging

Data CoNLL 2003 English 
NER

CoNLL 2000 Shared 
Task

Peen Treebank – WSJ 
Portion

Evaluation

Precision Precision

Token AccuracyRecall Recall

F1-Score F1-Score

■ Hyperparameters used include the following:
– Learning Rate (𝜂!"#$ = 0.015, 𝜂%&& = 0.005)
– GloVe 100-dim used to initialize word embeddings; Character embeddings were 

randomly initialized
– SGD with a decayed learning rate to update parameters
– BIOES tag scheme for NER and Chunking



Results – Named Entity Recognition



Results – Chunking



Results – POS Tagging



Results – External Factors

■ Models using pre-trained embeddings show significant improvements

■ Models using BIOES tag schemes perform significantly better than those that 
use BIO

■ SGD outperforms all other optimizers significantly



Analysis – Decoding Speed
§ CRF Inference layer limits decoding speed 

due to the left-to-right inference process

§ Char. LSTM significantly slows down the 
system

§ Adding Char. CNN does not affect decoding 
speed but gives significant accuracy 
improvements

§ Word-Based CNN are significantly faster 
than Word-Based LSTM, with close 
accuracies



Analysis – Out-Of-Vocabulary

§ Char. LSTM or CNN representations improve OOTV and OOBV the most
§ Proves neural character sequence representations disambiguate the OOV 

words
§ Char. LSTM representations give best IV scores across all configurations



Takeways
■ Character information improves model performances
■ LSTM vs. CNN

– Comparable improvements at the character-level
– LSTM encoder provide better performance at the word-

level
– CNN generally more efficient

■ CRF Inference algorithm is effective on NER and chunking 
tasks

■ BIOES tags are better than BIO
■ Pretrained embeddings and SGD optimizer provide better 

performance


