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Sequence Labeling

e assignment of a categorical label to each member of a sequence of observed values
e Eg: partof speech tagging

Mary had a little lamb
(noun) (verb) (det) (adj) (noun)

e can betreated as a set of independent classification tasks

o choose the globally best set of labels for the entire sequence at once
e algorithms are probabilistic in nature

o  Markov assumption

o Hidden Markov model (HMM) Markov process: X, - X, - X, _—— .

Observations: (9, 0, @



POS Tagging

e Labelword with syntactic tag (verb, noun, adverb...)
e best POS classifiers
o trained on windows of text, which are then fed
to bidirectional decoding algorithm during
inference
o Features - previous and next tag context,
multiple words (bigrams, trigrams. . . ) context

® Shenetal. (2007)

o “Guided learning” - bidirectional sequence
classification using perceptrons

l

Fruit flies like Det N

a banana

Agatha found that book interesting
wl w2 w3 wé w5

If we scan from left to right, we may find it
difficult to resolve the ambiguity of the label for
that, which could be either DT (determiner), or
IN (preposition or subordinating conjunction) in the
Penn Treebank. However, if we resolve the labels for
book and interesting, it would be relatively easy to
figure out the correct label for that.



Chunklng

labeling segments of a sentence with syntactic
constituents (NP or VP)
e each word assigned only one unique tag, encoded
as begin-chunk (B-NP) or inside-chunk tag (I-NP)
e evaluated using CoNLL shared task

e Sha and Pereira, 2003
o systems based on second-order random
fields
o  Conditional Random Fields
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Named Entity Recognition
Automatlcally find names

e labels atomic elements in the sentence into categories
(“PERSON”, “LOCATION”)

and orgamzauons in text

e Ando and Zhang (2005) across many languages.
o  semi-supervised approach

o Viterbi decoding at test time
o Features: words, POS tags, suffixes and prefixes or
CHUNK tags



Semantic Role Labeling

give a semantic role to a syntactic constituent of a sentence
State-of-the-art SRL systems consist of stages
o  producing a parse tree
o identifying which parse tree nodes represent the arguments of a
given verb,
o classifying nodes to compute the corresponding SRL tags

e Koomen et al. (2005)
o takesthe output of multiple classifiers and combines them into a
coherent predicate-argument output
o  optimization stage takes into account recommendation of the
classifiers and problem specific constraints

Who  did what to whom  at where!?

I 11 |

The police officer detained the suspect at the scene of the crime

—_—
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Introduction

e  Existing systems
o Find intermediate representations with task-specific features
m  Derived from output of existing systems (runtime dependencies)
o Advantage: effective due to extensive use of linguistic knowledge
o How to progress toward broader goals of NL understanding?

e Collobertetal. 2011
o  Single learning system to discover internal representations
o Avoid large body of linguistic knowledge - instead, transfer intermediate representations discovered
on large unlabeled data sets
o  “Almost from scratch” - reduced reliance on prior NLP knowledge



Remarks

e comparing systems
o donot learn anything of the quality of each system if they were trained with
different labeled data
o referto benchmark systems - top existing systems which avoid usage of external
data and have been well-established in the NLP field

e for more complex tasks (with corresponding lower accuracies), best systems have more
engineered features
o POStaskis one of the simplest of our four tasks, and only has relatively few
engineered features
o  SRLis the most complex, and many kinds of features have been designed for it



Networks

e Traditional NLP approach
o extractrich set of hand-designed features (based on linguistic intuition, trial and error)
m taskdependent
o Complextasks (SRL) then require a large number of possibly complex features (eg: extracted from a
parse tree)
m canimpact the computational cost

e Proposed approach
o  pre-process features as little as possible - make it generalizable
o use a multilayer neural network (NN) architecture trained in an end-to-end fashion.



Transforming Words into Feature Vectors

e For efficiency, words are fed to our architecture as indices taken from a finite dictionary D.
e The first layer of our network maps each of these word indices into a feature vector, by a lookup table
operation. Initialize the word lookup table with these representations (instead of randomly)

e Foreachwordw € D, aninternald , -dimensionalfeature vector representation is given by the lookup

table layer LTW (-):
o LTw(w)= (W),
where W is a matrix of parameters to be learned, (W) is the w'" column of W and d, 4 is the word

vector size (a hyper-parameter)
e Given a sentence or any sequence of T words, the output matrix produced -

LTw([W]{)Z( (W)[lw]] <W>[lw]2 <W>[1W]T )



Extracting Higher Level Features from Word Feature Vectors

e Window approach: assumes the tag of a word depends mainly on its neighboring words
e Word feature window given by the first network layer:

(w) [l“’]zfdw,-,,/z Input Window o ot e
. Text cat sat on the mat
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HardTanh(x) = x if—l<=x<=1 '
1 ifx>1
Figure 1: Window approach network.

e Scoring: size of number of tags with corresponding score
e Feature window is not well defined for words near the beginning or the end of a sentence - augment the sentence
with a special “PADDING” akin to the use of “start” and “stop” symbols in sequence models.



Extracting Higher Level Features from Word Feature Vectors

Sentence approach: window approach fails with SRL, where the tag
of a word depends on a verb chosen beforehand in the sentence
Convolutional Layer: generalization of a window approach - for all

windows t, output column of [" layer

ol =W (s i +b v

Max Layer:

o average operation does not make much sense - most words in
the sentence do not have any influence on the semantic role of

a given word to tag.
o  max approach forces the network to capture the most useful

local features
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Extracting Higher Level Features from Word Feature Vectors

e Tagging schemes:
o window approach
m tags apply to the word located in the center of the window
o  sentence approach
m tagsapply to the word designated by additional markers in the network input

Scheme | Begin | Inside | End | Single | Other
I0B B-X I-X | I- X | BX o
IOE I-X I-X | E-X | EX (@)
IOBES | B-X I-X | E-X| S-X (0]

Table 3: Various tagging schemes. Each word in a segment labeled “X” is tagged with a prefixed
label, depending of the word position in the segment (begin, inside, end). Single word
segment labeling is also output. Words not in a labeled segment are labeled “O”. Variants
of the IOB (and IOE) scheme exist, where the prefix B (or E) is replaced by I for all
segments not contiguous with another segment having the same label “X”.

e most expressive IOBES tagging scheme



Training

e For 0 trainable parameters and a training set T: maximize the following log-likelihood with
respect to 0O:

0 — logp(y|x,0).
(x,y)eT

e Stochastic gradient: maximization is achieved by iteratively selecting a random example (x,
y) and making a gradient step:

dlogp(y|x, 0)
90

0+—0+A

e Word-level log likelihood: each word in sentence is considered independently
Get conditional tag probability with use of softmax
e[fe]i

plilx,0) =~
2] e[fe]j




Training

e Introduce scores:
o Transition score [A]ij : fromito j tags in successive words
o Initial score [A],; : starting from the ith tag

e Sentence-level log likelihood: enforces dependencies between the predicted tags in a sentence.
o  Score of sentence along a path of tags, using initial and transition scores

ST 17,8 =3, (W), 0, + Al
‘ (i1, [: (i,

=
o  Maximize this score

m Viterbialgorithm for inference

argmaxs([x]{, [/]7, 6)
Uit



Results

Approach POS | Chunking | NER | SRL
(PWA) F1) F1) | (FI)
Benchmark Systems | 97.24 94.29 89.31 | 77.92
NN+WLL 96.31 89.13 79.53 | 55.40
NN+SLL 96.37 90.33 81.47 | 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a vanilla neu-

ral network (NN) approach, on POS, chunking, NER and SRL tasks. We report results with
both the word-level log-likelihood (WLL) and the sentence-level log-likelihood (SLL).
Generalization performance is reported in per-word accuracy rate (PWA) for POS and F1
score for other tasks. The NN results are behind the benchmark results, in Section 4 we
show how to improve these models using unlabeled data.

Remarks:

(@)

Architecture: choice of hyperparameters such as the number of hidden units has a limited impact on
the generalization performance

Prefer semantically similar words to be close in the embedding space represented by the word
lookup table but that it is not the case



NLP (Almost) From Scratch Pt. 2

Harrison Ding



Word Embeddings

- Goal

differences

FRANCE
454
PERSUADE
FAW
BLACKSTOCK
GIORGI
SHAHEED

JESUS
1973
THICKETS
SAVARY
SYMPATHETIC
JFK
KHWARAZM
STATIONERY
ILIAS
GSNUMBER
OPERATOR
W.J.

RUMELIA
PLANUM
GOA’ULD
COLLATION
BACHA

XBOX
6909
DECADENT
DIVO
VERUS
OXIDE
URBINA
EPOS
EGLINTON
EDGING
FRG
NAMSOS

REDDISH
11724
WIDESCREEN
ANTICA
SHABBY
AWE
THUD
OCCUPANT
REVISED
LEAVENED
PANDIONIDAE
SHIRT

SCRATCHED
29869
ODD
ANCHIETA
EMIGRATION
MARKING
HEUER
SAMBHAIJI
WORSHIPPERS
RITSUKO
LIFELESS
MAHAN

Obtain Word Embeddings that can capture syntactic and semantic

MEGABITS
87025
PPA
UDDIN
BIOLOGICALLY
KAYAK
MCLARENS
GLADWIN
CENTRALLY
INDONESIA
MONEO
NILGIRIS




Datasets
- English Wikipedia (631 million words)

- Constructed a dictionary of 100k most common words in WS]J
- Replace the non-dictionary words with “RARE” tokens

- Reuters RCV1 Dataset (221 million words)

- Extended dictionary to a size of 130k words where 30k were Reuters most
common words



Ranking Criterion

- Cohen et al. 1998
- Binary Preference Function
- Ranking ordering
- Training is done with a windowed approach

X = Set of all possible text windows
D = All words in the dictionary

x™") = Text window with the center word replaced by the chosen word

f(x) = Score of the text Ve € X Y € Dmax(O, 1 — f(:B) i f(w(w))

window




Result of Embeddings for LM1

Goal of capturing semantic and syntactic differences appears to have been

achieved

FRANCE
454
AUSTRIA
BELGIUM
GERMANY
ITALY

GREECE
SWEDEN
NORWAY
EUROPE
HUNGARY
SWITZERLAND

JESUS
1973
GOD
SATI

CHRIST
SATAN
KALI
INDRA
VISHNU
ANANDA
PARVATI
GRACE

XBOX
6909
AMIGA
PLAYSTATION
MSX
IPOD
SEGA
PSNUMBER
HD
DREAMCAST
GEFORCE
CAPCOM

REDDISH
11724
GREENISH
BLUISH
PINKISH
PURPLISH
BROWNISH
GREYISH
GRAYISH
WHITISH
SILVERY

YELLOWISH

SCRATCHED
29869
NAILED
SMASHED
PUNCHED
POPPED
CRIMPED
SCRAPED
SCREWED
SECTIONED
SLASHED
RIPPED

MEGABITS
87025
OCTETS
MB/S
BIT/S
BAUD
CARATS
KBIT/S
MEGAHERTZ
MEGAPIXELS
GBIT/S
AMPERES




Tricks with Training

- Length of time calculated in weeks
- Problem

- Difficult to try a large number of hyperparameter combinations

- Efficient Solution

- Train networks based on earlier networks

- Construct embeddings based on small dictionaries and use the best from
there

- “Breeding”



Language Models Information

- Language Model LM1
- Window sized . =11
- Hidden layer n,_' =100 units
- English Wikipedia
- Dictionary sizes: 5k, 10k, 30k, 50k, 100k
- Training time: 4 weeks



Language Models Information

- Language Model LM1 - Language Model LM2
- Window sized . =11 - Same dimensions as LM1
- Hidden layer n,_' =100 units - Initialized embeddings LM1
- English Wikipedia - English Wikipedia + Reuters
- Dictionary sizes: 5k, 10k, 30k, 50k, 100k - Dictionary size: 130k

- Training time: 4 weeks - Training time: 3 more weeks



Comparison of Generalization Performance

Approach CHUNK | NER | SRL

Benchmark Systems | 97.24 94.29 89.31

96.31 89.13 79.53
96.37 90.33 81.47 | 70.99




Comparison of Generalization Performance

Approach CHUNK | NER | SRL

Benchmark Systems | 97.24 94.29 89.31

9631 | 89.13 |79.53
NN+WLL+LMI 97.05 | 9191 | 85.68 | 58.18
s




Comparison of Generalization Performance

Approach

Benchmark Systems
NN+WLL

NN+SLL
NN+WLL+LMI1
NN+SLL+LMI
NN+WLL+LM2
NN+SLL+LM?2




Multi-Task Learning

- Joint training = Training a neural network for two tasks

- Easy to do when similar patterns appear in training tasks with different labels

Lookup Table Lookup Table

NERENilS




Multi-Task Learning

- Joint training = Training a neural network for multiple tasks

- Easy to do when similar patterns appear in training tasks with different labels

Lookup Table Lookup Table

AANNNNNs LTy AANANANAN> i —' ‘

—

Linear KJ
2
M(t2) XO AS> [ ]




Results of Multi-Task Learning

Approach POS | CHUNK | NER | SRL
(PWA) | (FI) (F1) | (F1)

Benchmark Systems | 97.24 94.29 89.31 | 77.92

Window Approach
NN+SLL+LM2 97.20 93.63 88.67




Results of Multi-Task Learning

Approach POS | CHUNK | NER
(PWA) | (F1) (F1)
Benchmark Systems | 97.24 94.29 89.31
Window Approach
NN+SLL+LM2 97.20 93.63 88.67
NN+SLL+LM2+MTL | 97.22 94.10 88.62

Sentence Approach
NN-+SLL+LM2 97.12 ‘ 93.37 ‘88.78

NN+SLL+LM2+MTL | 97.22 93.75 88.27




Adding a Task-Specific Features

Approach

Benchmark Systems
NN+SLL+LM2
NN+SLL+LM2+Suffix2
NN+SLL+LM2+Gazetteer
NN+SLL+LM2+POS
NN+SLL+LM2+CHUNK




Some other testing stuff later...

With parse trees and Brown Clusters..



Final Results and Putting It All Together

- Semantic/syntactic Extraction using a Neural Network Architecture (SENNA)

Benchmark
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %

Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
Parse Tree level 0 (PTO) (F1) 91.94 % 92.25 %
Semantic Role Labeling (SRL) (F1) 77.92 % 75.49 %




Concluding Information

- The NN technology is simple
- Existed over twenty years before this paper was written
- Simply used a neural network to do most of the work
- Conclusion
- Throwing a bunch of unlabeled data at a neural network that is constructed
correctly will yield state-of-the-art results (10 years ago)
- Fun fact

- If they tried implementing this paper ten years prior to when it was written,
it would probably finish in 10 years



Questions?
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Advantages of Neural Sequence Models

m Prior Approaches
- Hand-crafted features: word spelling, orthographic features
- Task-specific resources: external dictionaries
- Linear statistical models: HMM, CRF




Advantages of Neural Sequence Models

m Neural Sequence Models (in this paper)
— No hand-engineered features
— No specialized knowledge resources

— No data preprocessing beyond unsupervised word embedding
training




Neural Network Architecture

m Data Preparation

- NER Tag Schema used: BIOES instead of BIO
m B: Beginning
m |:Inside
m E:End
m O: Outside
m S:Single
— Pre-trained Word Embeddings: Mapping from words to low-
dimensional vectors
m GloVe
m Word2Vec
m Senna




Neural Network Architecture

m CNN Encoder for Character-Level Representation

— A convolution layer on top of char embeddings to extract

morphological information (like prefix or suffix of a word)
- A dropout layer is applied before CNN.
Padding P

1 a

| [ 1 ]«
1 ]~
[ 1 J=

>addin; g Padding
Char BEE ]
Embedding [ [ ]

HEENEREE
HEEEEREE, S

Convolution

Max Pooling (

Char
Representation

] e
HIENENEE &

1|
NIRRT
AR
T T T
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Neural Network Architecture

m Bi-directional LSTM for word-level encoding

- The word embedding and character-level
representation are concatenated together as
word-level representation.

- The forward LSTM reads the sequence from left
to right and generates a vector representing
what it has seen so far.

- The backward LSTM does the same in an
opposite direction.

m CRF layer (next page)

Char

- Since the decisions of tags are not independent Representation
and can heavily depend on neighbors, we use a
conditional random field to jointly label the

SequenCe. Word
Embedding

We are playing soccer




Graphical Models

One hidden variable A sequence of hidden More general cases
E.g., document Variables |
classification E.g., NER, POS tagging
Generative
Models: O O > >
P(X, y) SEQUENCE GENERAL
Naive Bayes HMMs GRAPHS Generative directed models

GO@NAI. Gﬂ@ﬂ\l GU@NAI.
Discriminative
Models:
GENERAL

PY[X) SEQUENGE

Logistic Regression Linear-chain CRFs GRAPHS General CRFs

Relationship between different graphical models.
Transparent nodes are hidden variables (labels), and grey nodes are observed words.




Linear-Chain CRF

m Linear-Chain CRF (Conditional Random Field) maximizes the conditional probability
of a sequence of tags given the input sentence.

S-ORG B-PER I-PER

@ @ @ @ @ Y; is the hidden variable (tag of words).

Z; is the observation (word in the sentence).
A Zs Z3 Zy Zs

Apple CEO Tim Cook

m Softmax over all possible sequences of labels, with y being the tag sequence, and z

being the input sentence.
Numerator: score of a tag sequence

n
H ’(/Ji(yz‘—h Yi s z) factored into potential functions of

p(y|z; W, b) = =1 subgraphs.

Z H (/)z(y@_l yz ) Denominator: sum over scores of all
y'eY(z) 1= tag sequences.




Linear-Chain CRF in Neural Networks

m How potential functions are represented in neural networks:

l/)i(ylvyv Z) — eXp(Wg’?yZi + by,:y)

- WyT, . and b, ,, are the weight vector and bias corresponding to label pair
(y',y) respectively.
m CRF layer: Jointly decoding the best chain of labels of a given sequence.

y* = argmax p(y|z; W, b)
ye)(z)

m Solving a sequence CRF model

- Training and decoding can be solved efficiently by adopting the Viterbi
algorithm.




Experiments — Datasets

m POS tagging
- Wall Street Journal (Marcus et al., 1993)
— Containing 45 different POS tags.

m NER

- English data from CoNLL 2003 shared task (Tjong Kim Sang and
De Meulder, 2003).

- Four different types of named entities: PERSON, LOCATION,
ORGANIZATION, and MISC.




Experiments — Ablation Study

POS NER
Dev  Test Dev | Test
Model Acc. Acc. | Prec. Recall Fi1 :Prec. Recall Fl1
|

BRNN 96.56 96.76 | 92.04 89.13 90.56 ' 87.05 83.88 85.44
BLSTM 96.88 96.93 | 92.31 90.85 91.57 , 87.77 _86.23 _ 87.00
BLSTM-CNN 97.34 97.33 | 9252 93.64 93.07 , 88.53 90.21 89.36
BRNN-CNN-CRF | 97.46 97.55 | 94.85 94.63 9474 1 91.35 91.06 91.21

m| BLSTM > BRNN

m| CNN brings significant improvement: character level information is important for
| sequence labeling problems. )

m| CRF brings significant improvement: jointly decoding label sequences can
_ significantly benefit the final performance.




Experiments — Comparison w. Baselines

NER F1 score.

POS tagging accuracy.
Model Acc.
Giménez and Marquez (2004) | 97.16
Toutanova et al. (2003) 97.27
Manning (2011) 97.28
Feed-forward Collobert et al. (2011)* 97.29
CharWNN Santos and Zadrozny (2014)* | 97.32
Shen et al. (2007) 97.33
Sun (2014) 97.36
Segaard (2011) 97.50
This paper 97.55

m [ marks the neural models.

Model F1

Chieu and Ng (2002) 88.31
Florian et al. (2003) 88.76
Ando and Zhang (2005) 89.31
Collobert et al. (2011)* 89.59
Huang et al. (2015)* 90.10
Chiu and Nichols (2015)F | 90.77
Ratinov and Roth (2009) | 90.80
Lin and Wu (2009) 90.90
Passos et al. (2014) 90.90
Lample et al. (2016)* 90.94
Luo et al. (2015) 91.20
This paper 91.21

BLSTM + CRF + features
BLSTM + CNN + features

BLSTM for w & ¢ + CRF



Experiments — Other Model Designs

Results with different choices of word Results with and w/o dropout.

embeddings .

Embedding | Dimension | POS | NER Train ll))(()eg Test | Train I\II)EI; Test
Random 100 97.13 | 80.76 No | 98.46 97.06 97.11 | 99.97 9351 89.25
Senna 50 97.44 | 90.28 Yes | 97.86 97.46 97.55 | 99.63 9474 91.21
Word2Vec 300 97.40 | 84.91

GloVe 100 97.55 | 91.21

m NER relies more heavily on the quality of embeddings than POS tagging.
m GloVe > Senna > Word2Vec (vocabulary mismatch) > Random

m Dropout layers effectively reduce overfitting.




Experiments — OOV Error Analysis

POS
Dev Test
v OOTV OOEV O0OOBV 1A% OOTV OOEV O0OO0OBV
LSTM-CNN 97.57 93.75  90.29 80.27 | 97.55 9345 90.14 80.07
LSTM-CNN-CRF | 97.68 9365 91.05 82.71 | 97.77 93.16 90.65 82.49
NER
Dev Test
v OOTV OOEV O0OOBV 1A% OOTV OOEV O0OOBV
LSTM-CNN 0483 87.28  96.55 82.90 | 90.07 8945 100.00 78.44
LSTM-CNN-CRF | 9649 88.63 97.67 86.91 | 92.14 90.73 100.00 80.60

Partition of words: in-vocabulary words (1V), out-of-training-vocabulary words (OOTV),

out-of-embedding-vocabulary words (OOEV) and out-of-both-vocabulary words (OOBV)

both the training and embedding sets. (OOBV)

CRF layer for joint decoding helps improve the performance on words that are out of



Conclusion

m Advantages in Model Design of LSTM-CNNs-CRF:
- End-to-end model requiring no feature engineering and task-specific resources
— Combining different levels of information by CNN and BLSTM
— CRF layer is used to jointly decode the sequence.

m Further Improvements:

- As embeddings are shown to greatly affect the performance of sequence

labeling problems, efforts can be made to improve the quality of embeddings
by multi-task learning.

- For example, character level embedding is initialized randomly in this paper,

but they can be improved by char-level language modeling, without further
annotations.




Neural Architectures for
Named Entity Recognition
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Named Entity Recognition

in Texts, Is FiredimagePeter Strzok, atop F.B.l. GPE counterintelligence agent who was taken off the special counsel

investigation after his disparaging texts about President _ were uncovered, was fired. _ for _

,the F.B.I. GPE senior counterintelligence agent who disparaged President _ in inflammatory text messages and helped

email and Russia GPE investigations, has been fired for violating bureau policies, Mr. _ 's lawyer

contentSkip to site indexPoliticsSubscribeLog InSubscribeLog InToday's

oversee the

said Monday DATE _Mr. Trump and his allies seized on the texts — exchanged during the 2016 DATE campaign with a former F.B.l. GPE lawyer,

assailing the Russia GPE investigation as an illegitimate “witch hunt.” Mr. _ , who rose over 20 years

DATE atthe F.B.l. GPE to become one of its most experienced counterintelligence agents, was a key figure in  the early months DATE of the

inquiry.Along with writing the texts, Mr. _ was accused of sending a highly sensitive search warrant to his personal email account. The

F.B.l. GPE had been under immense political pressure by Mr. _ to dismiss Mr. _ , who was removed last summer
DATE from the staff of the special counsel, _ . The president has repeatedly denounced Mr. _ in posts on



Named Entity Recognition

* Challenges
* Very small amount of data available for most languages and domains
* Difficult to generalize from small sample of data
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* Results
* Using constructed orthographic features
* Using language-specific knowledge resources



Named Entity Recognition

* Challenges
* Very small amount of data available for most languages and domains

* Difficult to generalize from small sample of data

* Results
* Using constructed orthographic features
* Using language-specific knowledge resources

* This paper

* Neural architectures for NER that
* Uses no language-specific resources or features



Model I: LSTM-CRF

* LSTM

* Input: A sequence of vectors

* Return: another sequence that encoded every input vector with its context
* BiLSTM: for a given sentence (xq, X5, ..., Xp,)

* Compute h_g of the left context at every word t

* Compute <h_t of the right context at every word t

* hy = [h_t):}l_t]

L
* BiLSTM as a sequence encoder A ;jtg A E
®



Model I: LSTM-CRF

* Naive Tagging
e Simply use h; for each output y;

* independent tagging decision
* Fail to capture strong dependencies between labels

* Modeling label dependency?



Model I: LSTM-CRF

* Naive Tagging

* Conditional Random Field (CRF)
* Consider P € R™¥ to be the matrix of scores output by BiLSTM
* P;j: the score of j*"* tag of the i*"* word




Model I: LSTM-CRF

* Naive Tagging

* Conditional Random Field (CRF)
* Consider P € R™¥ to be the matrix of scores output by BiLSTM
* P;j: the score of j*"* tag of the i*"* word

* For a sequence of predictions y = (yq, ..., ¥)
* Score over a sequence
* s(X,y) =X, Ay T Xty Py,
* Ay, .., isascore of transition from y; to y; 14
* A softmax over all possible tag sequences




Model I: LSTM-CRF

* CRF Training

* Maximize the log-probability
eS(X.y)

— — S(X.5)
sy — SX.Y) logzyeyxe

logp(y|X) = log
Zyeyx
* Dynamic Programming
* CRF Decoding
y* =argmaxs(X,y)

* Dynamic Programming



Model Il: Chunking Algorithm

e Stack-LSTM (Dyer et al., 2015)

¢ #
|-V0||Y1||y2|
0 sh
RO B ihﬁ = T
0 Wxﬂ
* Chunking Algorithm
Out; Stack;, Buffer, | Action | Out; 1, Stack,; Buffer,,; | Segments
(@) S (u,u), B | SHIFT (0] (u,u),S B —
@) (u,u),...,(v,v),S B REDUCE(y) | g(u,...,v,ry),0 S B (w...v,y)
O S (u,u), B | oUT g(u,ry), 0 S B -




Model II: Chunking Algorithm

* Transition sequence example

N S S S

[Mark, Watney, visited, Mars]



Model II: Chunking Algorithm

* Transition sequence example

T S S S

SHIFT [Mark] [Watney, visited, Mars]



Model II: Chunking Algorithm

* Transition sequence example

T S N ™ S

SHIFT [Mark, Watney] [visited, Mars]



Model II: Chunking Algorithm

* Transition sequence example

S S S " S

REDUCE(PER) [(Mark Watney)-PER] [visited, Mars] (Mark Watney)-PER



Model II: Chunking Algorithm

* Transition sequence example

S S [ S

[(Mark Watney)-PER, visited] [Mars]



Model II: Chunking Algorithm

* Transition sequence example

S S [ S

SHIFT [(Mark Watney)-PER, visited] [Mars]



Model II: Chunking Algorithm

* Transition sequence example

N S S [ R

REDUCE(LOC) [(Mark Watney)-PER, visited, Mars-LOC] Mars-LOC



Word Embeddings

Lookup table

~
Embedding from
lookup table
p

Embedding from 4
characters

e Character-based model of words
e Character-level BiLSTM

* Pretrained embeddings
* Skip-n-gram (Ling et al., 2015)

* Word2vec that accounts for word order

* Pretrained on
* Spanish Gigaword version 3

Concatenation - Final embedding
J

* Leipzig corpora collection
* German monolingual data from 2010 WMT
* English Gigaword version 4



Training

* Neural Network training
* Back-propagation
* SGD with gradient clipping

* Hyperparameters
e LSTM dimension: 100
* Dropout rate: 0.5
* Embedding for transition: 16



Results

* Experiment on English Model Fi
Collobert et al. (2011)* 89.59
* CoNLL-2003 Lin and Wu (2009) 83.78
Lin and Wu (2009)* 90.90
Huang et al. (2015)* 90.10
Passos et al. (2014) 90.05
Passos et al. (2014)* 90.90
Luo et al. (2015)* + gaz 89.9
Luo et al. (2015)* + gaz + linking | 91.2
Chiu and Nichols (2015) 90.69
Chiu and Nichols (2015)* 90.77
LSTM-CRF (no char) 90.20
LSTM-CRF 90.94
S-LSTM (no char) 87.96
S-LSTM 90.33

Table 1: English NER results (CoNLL-2003 test set). * indi-

cates models trained with the use of external labeled data



Results

* Experiment on German
* CoNLL-2003

Model F1

Florian et al. (2003)* 72.41
Ando and Zhang (2005a) | 75.27
Qi et al. (2009) 75.72
Gillick et al. (2015) 72.08
Gillick et al. (2015)* 76.22
LSTM-CRF - no char 75.06
LSTM-CRF 78.76
S-LSTM - no char 65.87
S-LSTM 75.66

Table 2: German NER results (CoNLL-2003 test set). * indi-
cates models trained with the use of external labeled data



Results

* Experiment on Spanish
* CoNLL-2002

Model F1

Carreras et al. (2002)* 81.39
Santos and Guimaraes (2015) | 82.21
Gillick et al. (2015) 81.83
Gillick et al. (2015)* 82.95
LSTM-CRF - no char 83.44
LSTM-CRF 85.75
S-LSTM - no char 79.46
S-LSTM 83.93

Table 4: Spanish NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data



Results

* Experiment on Dutch
* CoNLL-2002

Model Fq

Carreras et al. (2002) 77.05
Nothman et al. (2013) 78.6
Gillick et al. (2015) 78.08
Gillick et al. (2015)* 82.84

LSTM-CRF —no char | 73.14

LSTM-CRF 81.74
S-LSTM - no char 69.90
S-LSTM 79.88

Table 3: Dutch NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data



Ablation

Model Variant F1

LSTM char + dropout + pretrain | 89.15
LSTM-CRF | char + dropout 83.63
LSTM-CRF | pretrain 88.39
LSTM-CRF | pretrain + char 89.77
LSTM-CRF | pretrain + dropout 90.20
LSTM-CRF | pretrain + dropout + char | 90.94
S-LSTM char + dropout 80.88
S-LSTM pretrain 86.67
S-LSTM pretrain + char 89.32
S-LSTM pretrain + dropout 87.96
S-LSTM pretrain + dropout + char | 90.33

Table 5: English NER results with our models, using differ-
ent configurations. “pretrain” refers to models that include pre-
trained word embeddings, “char” refers to models that include

character-based modeling of words, “dropout” refers to models

that include dropout rate.



Conclusion

* Two neural architectures for sequence labeling
* The best NER results in standard evaluation settings at the time of publish
* Comparable performance with models that use external resouces

* Key aspects
* Model output label dependencies
* Word representations are crucial
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Motivation

Numerous state-of-the-art models on sequence labeling tasks (NER, Chunking,

POS Tagging, etc.)

However, reproducing published work can be challenging

Why? Likely due to sensitivity on experimental settings and inconsistent
configurations

Models Word LSTM+CRF Word LSTM Word CNN+CRF Word CNN
Huang et al. (2015)* Ma and Hovy (2016) | Collobert et al. (2011)* | Strubell et al. (2017)*
No Char Lample et al. (2016) Strubell et al. (2017)* | dos Santos et al. (2015)
Strubell et al. (2017)* Strubell et al. (2017)*
Lample et al. (2016) Lample et al. (2016) No existing work No existing work
Char LSTM | Rei (2017)
Liu et al. (2018)
Ma and Hovy (2016) Ma and Hovy (2016) | dos Santos et al. (2015) | Santos and Zadrozny (2014)
Char CNN | Chiu and Nichols (2016)*
Peters et al. (2017)




Inconsistent Configurations pt. 1

CoNLL 2003 o S
Datasets English NER PTB POS Combos?* Modifications?
Normalize digit Fine-grained o
characters Representations et
: No 'Hand-
Word Spelling :
T Context features Neural features Crafted

features




Inconsistent Configurations pt. 2

Hyperparameters Learning Rate Dropout Rate Num. Layers etc.

M De:vri]ati gr'ﬁd- Best results
different Sz

different trials
random seeds

Hardware GPU CPU




Proposal - A Unified Framework

m Authors implement a unified neural sequence labeling framework
containing three layers:

1. Character Sequence Representation layer
2. Word Sequence Representation layer
3. Inference Layer

C OLI NG i s h el d a t N e w Me x i1 ¢c o
€e3099 ¢4  $04% 4¢ 904 kees
N ? ? ? ? \
COLING Char Rep. y Char Rep. held Char Rep. " Char Rep. New CharlRep. Mexic Char Rep.
! l l ! l
v v - v v

Inference Layer: Softmax or CRF




Character Sequence Representation
Layer

Char
Char' Embedding
Embedding
AN e
Convolution  \ 1 i i e Forward
LSTM
Max Backward
Pooling LSTM
Char CNN Char LSTM Brony | Fiem,

(a) Character CNN. (b) Character LSTM.




Word Sequence Representation Layer

#Pad# COLING is held at New Mexico #Pad# COLING is held at New Mexico
Word N Word .
Representations epresentations
\, s AY N _‘l\- N 7 J
--------- gl 3l T Forward
Q b é)d) é o 7"
AN . AN / \ VAN l‘\ / /
Multi-layer RS S T A= e Backward
Convolutions \ ¢ ' . l l [ LSTM

.

s -
N
_______________

~ _:.-4~I__x _____ > -
CNN hidden b O lo LSTM hidden

Y ol

Softmax / CRF Qe Qreeee Qreeee O***Brot***ELoc Softmax / CRF (O XIIIIIIIT (O XTI (O ORI BDOC ...... ELDC

(a) Word CNN. (b) Word LSTM.




C OL I NG 1 s h el d a t N e w Me x 1 ¢ o
€29495 3¢  $94% 99 999 439
3695 $4 9999 3¢ 999 &8

COLING . is . held . at ' New Mexico
J— 1(1) o o L. e 1(1)
N O: : @ : : @ I O: : I O: : l O: : @ :

Inference Layer: Softmax or CRF




Inference Layer

4 ¥ 4 . 4

¢ ¢ ¢ ¢ ¢ :

Inference Layer: Softmax or CRF

m Takes output of previous layer (word sequence representations) as input
m Assigns labels to the word sequence as output

m [wo options are examined as the inference layer:

1. Independent local decoding with a linear layer mapping WSR to
label vocabulary, followed by softmax

2. Tasks with strong output label dependency, CRF is used



Experimental Setup

m Three sequence labeling tasks to help comparison: NER, Chunking, and POS
Tagging

T N T cnunkng 205 Tageing

CoNLL 2003 English CoNLL 2000 Shared Peen Treebank - WSJ
Data .
NER Task Portion

Precision Precision
Evaluation Recall Recall Token Accuracy
F1-Score F1-Score

Hyperparameters used include the following;

- Learning Rate Mysty = 0.015,n-yny = 0.005)

- GloVe 100-dim used to initialize word embeddings; Character embeddings were
randomly initialized

- SGD with a decayed learning rate to update parameters
— BIOES tag scheme for NER and Chunking




Results - Named Entity Recognition

NER
sesnits (Hi-score) WLSTM+CRF WLSTM WCNN+CRF | WCNN
90.10 (H-15)* 87.00 (M-16) | 89.59 (C-11)* | 89.97 (S-17)*
Literature 90.20 (L-16) 89.34 (S-17)* | 90.54 (S-17)*
Nochar 90.43 (S-17)*
Ours | Max 89.45 88.57 88.90 88.56
Mean-+tstd | 89.31+0.10 88.49+0.17 | 88.65+0.20 | 88.50+0.05
. 90.94 (L-16) 89.15 (L-16)
CLSTM Literature 91.20 (Y-17)} — —
Ours | Max 91.20 90.84 90.70 90.46
Mean-+std | 91.08+0.08 90.77+0.06 | 90.48+0.23 | 90.28+0.30
90.91+0.20 (C-16) | 89.36 (M-16)
Literature 91.21 (M-16) = =
CCNN 90.87-+0.13 (P-17)
Ours | Max 91.35 90.73 90.43 90.51
Mean-+tstd | 91.11+0.21 90.60+0.11 | 90.28+0.09 | 90.26+0.19




Results - Chunking

chunking
Results (F1-score) WLSTM+CRF | WLSTM WCNN+CRF | WCNN
- ES _ _ k
Literature 94.46 (H-15) 94.13 (Z-17) | 9432 (C-11)* |
Nochar 95.02 (H-17)*
Ours | Max 94.49 93.79 94.23 94.12
US| Mean+std | 94.37+0.11 93.75+0.04 | 94.11+0.08 | 94.08+0.06
. 93.15 (R-17)
CLSTM Literature 94.66 (Y-17)t - - >
Ours | Max 95.00 94.33 94.76 94.55
U5 | Mean+std | 94.93+0.05 94284+0.04 | 94.66+0.01 | 94.48+0.07
Literature 95.00+0.08 (P-17) | — _ _
CCNN [ | Max 95.06 94.24 94.77 9451
US| Mean=+std | 94.86+0.14 94.1940.04 | 94.66+0.13 | 94.47+0.03




Results - POS Tagging

Results (Accuracy) POS
WLSTM+CRF WLSTM WCNN+CRF | WCNN
Literature 97.55 (H-15)* 96.93 (M-16) | 97.29 (C-11)* | 96.13 (S-14)
Nochar 97.45 (H-17)*
Ours Max 97.20 97.23 96.99 97.07
Mean+std | 97.19+0.01 97.20+0.02 96.95+0.04 97.01+0.04
Literature 97.35+0.09 (L-16)t | 97.78 (L-15) ~ ~
CLSTM 97.55 (Y-17)1
Ours Max 97.49 97.51 97.38 97.38
Mean+std | 97.47+0.02 97.48+0.02 97.33+0.03 97.331+0.04
Literature 97.55 (M-16) 97.33 (M-16) | — 97.32 (S-14)
CCNN Ours Max 97.46 97.51 97.33 97.33
Mean+std | 97.43+0.02 97.441+0.04 97.29+0.03 97.30+0.02
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Fl-score

(o]
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Results - External Factors

J 91.11 W CLSTM+WLSTM+CRF
91.08 90.71 mgm CCNN4+WLSTM+CRF
90.54
83.37
1 83 36
GloVe SENNA Random

(a) Pretrained embeddings.

Fl-score

91.2

©
=
o

90.8 1

90.6 1

91.11

91.08
91.03

91.00

GPU/BIOES CPU

(b) Tag scheme and running environment.

s CLSTM+WLSTM+CRF
s CCNN+WLSTM+CRF

90.91

90.82

BIO

Fl-score

91.51

91.0

O
o
w

90.0

89.5

91.11 wm CLSTM+WLSTM+CRF

91.08 90.84 % CCNN+WLSTM+CRF
0.38 90.45
90.01
| 89.72
89 56

90.44
|8977

SGD Adagrad Adadelta RMSProp Adam

m Models using pre-trained embeddings show significant improvements

m Models using BIOES tag schemes perform significantly better than those that

use BIO

m SGD outperforms all other optimizers significantly




Time (s)

Analysis - Decoding Speed

10.0 ms CLSTM
e CCNN
9.0 B Nochar

WLSTM+CRF WLSTM WCNN+CRF WCNN

CRF Inference layer limits decoding speed
due to the left-to-right inference process

Char. LSTM significantly slows down the
system

Adding Char. CNN does not affect decoding
speed but gives significant accuracy
Improvements

Word-Based CNN are significantly faster
than Word-Based LSTM, with close
accuracies



Analysis - Out-Of-Vocabulary

Results NER (F1-score) chunking (F1-score) POS (Accuracy)

IV O0OTV OOEV OOBV | IV O0OTV OOEV OOBV | IV OOTV OOEV O0OBV

Nochar+WLSTM+CRF | 91.33 87.36 100.00 69.68 |94.87 90.84 9551 9147 |97.51 89.76 94.07 75.36

CLSTM+WLSTM+CRF | 92.18 90.63 100.00 78.57 | 95.20 92.65 9438 94.01 |97.63 93.82 9407 87.32

CCNN+WLSTM+CRF | 91.76 91.25 100.00 81.58 | 95.15 9234 9775 9355 |97.62 9333 94.69 83.82

Nochar+ WCNN+CRF 90.71 86.99 100.00 69.09 | 94.56 9098 9326 91.71 |97.29 89.10 9417 74.15

CLSTM+WCNN+CRF | 91.59 90.07 100.00 77.92 |95.02 9186 9438 93.32 |9748 93.28 94.17 88.29

CCNN+WCNN+CRF 9135 9046 100.00 78.88 | 94.83 9242 96.63 9240 |97.46 9274 93.86 87.80

= Char. LSTM or CNN representations improve OOTV and OOBV the most
® Proves neural character sequence representations disambiguate the OOV
words

= Char. LSTM representations give best IV scores across all configurations




Takeways

Character information improves model performances

LSTM vs. CNN
- Comparable improvements at the character-level

- LSTM encoder provide better performance at the word-
level

— CNN generally more efficient

CRF Inference algorithm is effective on NER and chunking
tasks

BIOES tags are better than BIO

Pretrained embeddings and SGD optimizer provide better
performance



