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Abstract

Claims: “This paper examines two simple and effective classes of attentional mechanism: a global approach
which always attends to all source words and a local one that only looks at a subset of source words at a time.”

Key-result: “Our ensemble model using different attention architectures yields a new state-of-the-art result in the
WMT’15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the
existing best system backed by NMT and an n-gram reranker.”



Introduction

Bahdanau et al.
Attentional mechanism has been successfully applied to jointly
translate and align words.

2015

Luong et al.
X Y VA <eos> A large neural network that is trained in an End-to-End fashion. (figure
1. RNN based Encoder-Decoder architecture)

2014 Attention !!

The concept of “attention” has gained popularity recently in training
neural networks, allowing models to learn alignments between

different modalities.

A B C D <eos> X Y y4

Figure 1: Neural machine translation as a stacking 2003 Koehn et al.
recurrent architecture for translating a source sequence

A, B, C, D into a target sequence X, Y, Z . Here <eos>

marks the end of a sentence

Standard MT



Related Work — NMT

m
logp(ylz) = ) . logp (sly<j» 5)

P (¥jly<j, 8) = softmax (g (h;))

h’j — .f(hj—la S)a

where
g: transformation function that outputs a vocabulary size vector
h: RNN hidden unit

f. computes the current hidden state given the previously hidden
state.

NMT two components:

1. An encoder which computes a
representation S for each source sentence.

2. A decoder which generates translation one
word at a time and hence decomposes the
conditional probability. (RNN architecture)

Training objective:

Jp = Z(m,y) _p, ~ logp(ylz)



Related Work

- X Y Z <eos>
hi

Attention Layer




Attention-based Models:

Global
h: = tanh(W¢[es; hy])

p(yt|y<t, =) = softmax(Why)

- Global attentional model

ai(s) = align(hy, hy)
_ exp (score(hy, hs))
Y exp (score(hy, I_Ls/))

h h, dot
score(hy, hs) =14 h{ Wyh, general
v} tanh (Wa [hy; ’—Ls]) concat

Context vector

Global align weights

h(t): Hidden target state

c(t): Source side context vector
y(t): Current target word
h_bar(t). Attentional hidden
state

a(t): Alignment vector



Comparison to (Bahdanau et al., 2015)

BLEU

System Ppl Before | After unk
global (location) 6.4 18.1 19.3 (+1.2)
global (dot) 6.1 | 18.6 | 20.5(+1.9)
global (general) 6.1 17.3 19.1 (+1.8)
local-m (dot) >7.0 X X

local-m (general) 6.2 18.6 | 204 (+1.8)
local-p (dot) 6.6 18.0 | 19.6(+1.9)
local-p (general) 5.9 19 209 (+1.9)

For content-based functions, our implementation of concat does not
yield good performances and more analysis should be done to

understand the reason...

1.

Global : “we simply use hidden states
at the top LSTM layers in both the
encoder and decoder”;

Previous: use the concatenation of the
forward and backward source hidden
states in the bi-directional encoder and
target hidden states in their non-
stacking uni-directional decoder

Global: computation path is simpler

Previous: build from the previous
hidden state

Previous: only experimented with one
alignment function: the concat product.



Attention-based
Madels:.l.ocal

- Small window of context and is differentiable.
- Thelocal alignment vector a(t) is now fixed-dimensional

Monotonic Alignment (local-m) :- Global Attention

ai(s) = align(hy, ’_"'s)
_ exp (score(hy, hs))
Y, exp (score(hy, hy))

Predictive aligr

pr=25"- sigmoid('v;,r tanh(Wph,)),

at(s) = align(hy, hs) exp (_%)

Context vector

Aligned position
Pt |

Local weights \ -

W(p) and v(p) are models
parameters which will be
learned to predict positions.
S is the source sentence
length

p(?): [0,S]



Input-feeding
Approach

.- In the proposed attention mechanisms the attention
decisions are made independently.

How?

.- h_bar(t) is concatenated with inputs at the next time steps
as illustrated.

Advantages:

1. Make the model fully aware of the previous alignment

choices.
2. Create a very deep network spanning both horizontally

and vertically

X Y Z <eos>

Attention Layer

A B C D <eos> X Y Z

Input-feeding approach - Attention vectors
h_bar(t) are fed as inputs to the next time steps
to inform the model about past alignment
decisions



Experiment (WMT' 14 & 15 English-
German)

System Ppl BLEU
Winning WMT’ 14 system — phrase-based + large LM (Buck et al., 2014) 20.7
Existing NMT systems
RNNsearch (Jean et al., 2015) 16.5
RNNsearch + unk replace (Jean et al., 2015) 19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015 21.6
Our NMT systems : - ( ) System BLEU
Base 106 13 SOTA — NMT + 5-gram rerank (MILA) | 24.9
Base + reverse 9.9 | 12.6 (+1.3) Our ensemble 8 models + unk replace 25.9
Base + reverse + dropout 8.1 | 14.0 (+1.4)

" Base + reverse + dropout + global attention (location) T 7371168 (+2.8)
Base + reverse + dropout + global attention (location) + feed input 6.4 | 18.1 (+1.3) WMT’15 English-German results -NIST

" Base  revérse ¥ dropout + local-p aftention (genéral) + feed imput ~ 7777 DN BLEU scores of the existing WMT'15 SOTA
Base + reverse + dropout + local-p attention (general) + feed input + unk replace 1209 (+1.9) system and our best one on newstest2015.

" Ensemble 8 models + unk replace o 230+2D)

WMT’14 English-German results - shown are the perplexities (ppl) and the tokenized BLEU scores of various
systems on newstest 2014. We highlight the best system in bold and give progressive improvements in italic
between consecutive systems. Local-p refers to the local attention with predictive alignments. We indicate for
each attention model the alignment score function used in parentheses.



Experiment (WMT'15 German-English)

System Ppl. BLEU
WMT’15 systems
SOTA - phrase-based (Edinburgh) 29.2
NMT + 5-gram rerank (MILA) 27.6
Our NMT systems
Base (reverse) 14.3 16.9

~+ global (location)y 127 [ 19.1 (+2.2)
+ global (location) + feed 109 | 20.1 (+1.0)

~ + global (dor) + drop + feed B —9—7— 228 (+2.7)
+ global (dot) + drop + feed + unk 1249 (+2.1)

WMT’ 15 German-English results - performance of various systems. The base system already
includes source reversing on which we add global attention, dropout, input feeding, and unk
(universal token) replacement.



Test cost

Experiment analysis

6 ©basic
+basic+reverse
5 +basic+reverse+dropout
basic+reverse+dropout+globalAttn
[&basic+reverse+dropout+globalAttn+feedinput
4 »basic+reverse+dropout+pLocalAttn+feedInput
3_
2t 2, XT X,
0.2 0.4 06 0.8 1 1.2 1.4 1.6 1.8
Mini-batches x 10

Learning curves — test cost (In perplexity) on
newstest2014 for English-German NMTs as training
progresses

25

urs, no attn (BLEU 13.9)
urs, local-p attn (BLEU 20.9)
urs, best system (BLEU 23.0)
WMT'14 best (BLEU 20.7)
eans et al., 2015 (BLEU 21.6)

20 30 40 50
Sent Lengths

60 70

Length Analysis - the translation quality does
not degrade as sentences become longer. Our
best model (blue + curve) outperforms all other
systems in all length buckets.



Takeaways

1. This work proposes two simple and effective attentional mechanisms for NMT: global which always looks at
all source positions and local one which only attends to a subset of source positions at a time.

This work compared various alignment functions and shed light on which functions are the best for which
attentional models.

The dependencies between previous alignment information and current alignment decisions take into
consideration.

Attentional beats non-attentional

B W D



Neural Machine Translation
of with

Rico Sennrich, Barry Haddow, Alexandra Birch

Presented by: Wei Liu
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Recap: NMT

Over the line ! <eos>
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Motivation

A few words _
are very frequent :

Most words
are very rare

100:- %ﬁ,

10 |

Word frequency (log-scale)

English words, sorted by frequency (log-scale)
w1 = the, Wz = to, ...., Ws346 = computer, ...



Motivation

German: Donaudampfschiffahrtselektrizitatenhaupt-
betriebswer-kbauunterbeamtengesellschaft

English:

Association for Subordinate Officials of the Main
Maintenance Building of the Danube Steam Shipping
Electrical Services



Motivation

Transparent Word:

Words that are translatable by a
competent translator even if they
are novel to him/her.

Named Entities

- Barack Obama (English)

- NT 7 F /3= (Japanese)
Cognates and Loanwords

- Claustrophobia (English)

- Klaustrophobie (German)
Morphologically complex
words

- Solar System(English)

- Sonnensystem(German)



Solution?
Goto subword
level!



Algorithm 1 Learn BPE operations

ContribUtion import re, collections

def get_stats (vocab):
pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range(len(symbols)-1):
pairs[symbols[i],symbols[i+1l]] += freq
return pairs

def merge_vocab(pair, v_in):
v_out = {}
bigram = re.escape(' '.join(pair))
p = re.compile(r' (?<!\S)"' + bigram + r'(2!\S)")
for word in v_in:
w_out = p.sub(''.join(pair), word)
v_out [w_out] = v_in[word]
return v_out

vocab = {'1l ow </w>' : 5, 'l ower</w'.:2,
'newest </w>':6, 'widest</w>':3}
num_merges = 10

for i in range (num_merges) :
pairs = get_stats (vocab)
best = max(pairs, key=pairs.get)
vocab = merge_vocab (best, vocab)
print (best)




Contribution

What is Byte Pair Encoding?

— aaabdaaabac

— ZabdZabac
/=aa

- ZYdZYac
Y=ab
/=aa

—> XdXac
X=ZY
Y=ab
/=aa



Dictionary Vocabulary

5 low l, o,w, e, r,n,w,s,t,id

2 lower

6 newest .

3 widest Stavt with all chavactevs
w Vocao

Dictionary Vocabulary

5 low l, o,w, e, r,n,w,s,tid,es

2 lower

© newest

3 widest Add a eair (e, 9) with €veq 9

Adapted from https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf



https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf

Dictionary Vocabulary

l,o,w,e, r,n,w,s,t,i,d,es, est

5 low

2 lower

6 newest

W Add a gair (e5, 1) with €veq 9
Dictionary Vocabulary

5 low l,o,w,e, r,n,w,s,t,i,d,es, est, lo

2 lower

6 newest
2wl e Add a gair (|, 0) with €veq 7

Adapted from https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf



https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf

Variants 1. Learn two independent encodings.
One for the source vocabulary,
one for the target vocabulary.

1. Learn one encoding on
the union of the two vocabularies.

Note: For languages use different alphabet,
like Russian and English, first transliterate
Russian vocabulary into Latin characters.
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Transliteration




M OdEI = Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al. 2015)

Encoder:
Bidirectional
Gated Recurrent Unit

Decoder:

Recurrent Neural
Network

X X X Xt



Evaluation

Basic BPE >
Joint BPE >

vocabulary BLEU CHRF3 unigram F; (%)
name segmentation shortlist source  target | single ens-8 | single ens-8| all rare OOV
syntax-based (Sennrich and Haddow, 2015) 24.4 -1 553 -159.1 46.0 37.7
WUnk - - 300000 500000| 20.6 22.8| 47.2 48.9(56.7 204 0.0
WDict - - 300000 500000| 22.0 242| 50.5 52.4|58.1 36.8 36.8
C2-50k  char-bigram 50000 60000 60000| 22.8 25.3| 519 53.5|584 40.5 30.9
BPE-60k BPE - 60000 60000| (21.5 24.5| 52.0 539|584 409 293
BPE-J90k BPE (joint) - 90000 90000| |22.8 24.7| 51.7 54.1|58.5 41.8 33.6
vocabulary BLEU CHRF3 unigram F; (%)
name segmentation shortlist source  target | single ens-8 |single ens-8| all rare OOV
phrase-based (Haddow et al., 2015) 24.3 -] 53.8 -156.0 31.3 16.5
WUnk - - 300000 500000 | 18.8 224| 46.5 499|542 252 00
WDict - - 300000 500000| 19.1 22.8| 47.5 51.0(54.8 26.5 6.6
C2-50k  char-bigram 50000 60000 60000 0.9 24 49.0 51.6
BPE-60k BPE - 60000 60000 (20.5 23.6| 49.8 52.7(553 29.7 15.6
BPE-J90k BPE (joint) - 90000 100000 | (20.4 24.1) 49.7 53.0|55.8 29.7 183

English - German

English - Russian



Evaluation

unigram F;

]_ T T T T T T 11 TT1T [
50000 500000
0.8
0.6
0.4
—— BPE-J90k
------ C2-50k
0.2 | | - -~ C2-300/500k
— WDict
...... WUnk
0 | | | | | Lol b Lo
10 10t 102 103 10* 10° 106

training set frequency rank

English - Geraman

unigram F

TT T T TTTTT

BPE-J90k

50000

TTTTTT]

500000

|
108 102 10® 104

training set frequency rank

English = Russian




Evaluation

50000 500000

°y rank

English - Geraman

T

50000 500000

0* 10° 10°
1ICy rank

English - Russian



Conclusion

What is Byte Pair Encoding?
- Itis just a subword-level encoding technique.

What’s the advantage of using it?
- Better accuracy for the translation of rare words.
- Relative lower vocabulary size compared to
character n-grams.

What’s the drawback?
- Longer training time. Backprop through time over
a much longer sequence.
- Longer runtime.

Is it still being used now?
- Yes, very often. For example, RoBERTa, Google
NMT.



Convolutional Sequence to
Sequence Learning

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin (Facebook
2017)

Presenter: Yujia Qiu



Motivation

e RNNs maintantain a hidden state of the entire past that prevents parallel
computation within a sequence. CNN does not depend on previous time
step -> Parallelization.

e (NN creates a hierarchical structure provides a shorter path to capture
long-range dependencies compared to RNN

o RNN O(n) -> CNN O(n/k)



Model Architecture

Embedding

o  Embed x = (X4, ..., Xp) to W = (Wy, ...

+ Wi )

o  Position embeddings p = (p1, -y Pm)

o  e=(Wi+ P eHWn+ Pm)
Output of decoder states h
Output of encoder states z

CH H H H H 1

<p> <p> <s> Sie stimmen zu

<p> They agree <Js> <p>
Embeddings

Convolutions

Gated
Linear
Units

Attention

X X &
LLICTIICL]

@
>
[ ]

<) Q
o’
‘.

N B

Sie stimmen zu </s>



Convolutional Block Architecture

<p> They agree </s> <p>

Embeddings — — —

e 1-D Convolution (kernel width k)

W e R2dxkd b, € R2?
XeRFd ——» Y cRM
e Non-linearity (GLU) | Y = [A B] cR2d:

Convolutions

o  Gated linear units Gated
o([A B])= A®0(B) Linear
Units




Convolutional Block Architecture

To enable deep convolutional networks, = |

Residual Connection

residual connections are added from the
input of each convolution to the output of the
block

hg=v(Wl[h§:}c/2,...,h§;i/2]+bgv)+hé—1 e ﬁ > ﬁ

After the last decoder, compute distribution
over the T possible next target elements vy;, 1,

P(Yit1|Y1,--,i,X) =softmax(Woh; +b,) €R”



Multi-step Attention

<p> They agree <Js> <p>
Embeddings

Convolutions

e Combine current decoder h; with an
embedding of previous target element g; Gated

Linear
Units

d; =W ihi+b+g;

Attention

e Attention (Decoder d; and z; of last encoder
block u)

l exp (di z;l‘)
Qij = m | u
D i 1€XP (di "2t )

C T T T

e Conditional input ¢;, weighted sum over z, R KRR
. L . .. .. Dl Dl D

o g provides point information, which is beneficial 1 : 1 :

CLICTICLICT ]

m
l_ l v v
Ci—;aij(zy+ei) CH o
‘7=

<p> <p> <s> Sie stimmen zu Sie stimmen zu </s>



Normalization & Initialization

e Normalization

o

Multiply the sum of input and output of a residual block by 05 to halve the variance of the
sum

Conditional input ¢; is a weighted sum of m vectors, then the variance is scaling by m 1/
Multiply by m to scale up the inputs to their original size.

Convolutional decoder with multiple attentions, scale the gradients for the encoder layers by
the number of attention mechanisms used.

e |nitialization

All embeddings are initialized from a normal distribution with mean 0 and std 1

For layers whose output is not directly fed to a gated linear unit, initialize weights from N(0 \/l/—nz)
n, is the number of input connections to each neuron -> make the variance retained.

For layers followed by GLU activation, weights are N(0, 4/m)  if variance are small

Apply dropouts to restore the variance.



Datasets

e WMT'16 English-Romanian (2.8M sentences pairs)
WMT’14 English-German (4.5M sentences pairs)
WMT’14 English-French (35.5M sentences pairs)



R e S U I t S WMT’16 English-Romanian BLEU

Sennrich et al. (2016b) GRU (BPE 90K) 28.1
ConvS2S (Word 80K) 29.45
ConvS2S (BPE 40K) 30.02
WMT’14 English-German BLEU
Luong et al. (2015) LSTM (Word 50K) 20.9
Kalchbrenner et al. (2016) ByteNet (Char) 23.75
Wau et al. (2016) GNMT (Word 80K) 23.12
Wau et al. (2016) GNMT (Word pieces) 24.61
ConvS2S (BPE 40K) 25.16
WMT’14 English-French BLEU
Wau et al. (2016) GNMT (Word 80K) 37.90
Wau et al. (2016) GNMT (Word pieces) 38.95
Wau et al. (2016) GNMT (Word pieces) + RL ~ 39.92
ConvS2S (BPE 40K) 40.51

Table 1. Accuracy on WMT tasks comapred to previous work. ConvS2S
and GNMT results are averaged over several runs.



Results

WMT’14 English-German BLEU
Wau et al. (2016) GNMT 26.20
Wu et al. (2016) GNMT + RL 26.30
ConvS2S 2643
WMT’14 English-French BLEU
Zhou et al. (2016) 404
Wau et al. (2016) GNMT 40.35
Wau et al. (2016) GNMT + RL 41.16
ConvS2S 41.44
ConvS2S (10 models) 41.62

Table 2. Accuracy of ensembles with eight models. We show both
likelihood and Reinforce (RL) results for GNMT; Zhou et al. (2016)

and ConvS2S use simple likelihood training.



Generation Speed

BLEU Time (s)

GNMT GPU (K80) 31.20 3,028
GNMT CPU 88 cores 31.20 1,322
GNMT TPU 31.21 384
ConvS2S GPU (K40) b=1 33.45 327
ConvS2S GPU (M40) b=1 33.45 221
ConvS2S GPU (GTX-1080ti) b=1 33.45 142
ConvS2S CPU 48 cores b=1 33.45 142
ConvS2S GPU (K40) b=5 34.10 587
ConvS2S CPU 48 cores b=5 34.10 482
ConvS2S GPU (M40) b=5 34.10 406
ConvS2S GPU (GTX-1080ti)) b=5  34.10 256

Table 3. CPU and GPU generation speed in seconds on the development
set of WMT’ 14 English-French. We show results for different beam
sizes b. GNMT figures are taken from Wu et al. (2016). CPU speeds
are not directly comparable because Wu et al. (2016) use a 88 core
machine versus our 48 core setup.



Results

PPL BLEU
ConvS2S 6.64 21.7
-source position 6.69 213
-target position 6.63 21.5

-source & target position  6.68 21.2

Table 4. Effect of removing position embeddings from our model in
terms of validation perplexity (valid PPL) and BLEU.

Position embeddings allow the model to identify the source and target sequence. Removing
source position embedding results in a larger accuracy decrease than target position
embeddings.

Model can learn relative position information within the contexts visible to encoder & decoder



My thoughts

e Advantages:
o  Accuracy improvement
o  Fast speed
e Disadvantages:
o It needs more parameters tuning when doing normalization & initialization
o  Limited range of dependency
m  kernel width k, the dependency will only be a(k-1)+1 inputs



Phrase-Based & Neural
Unsupervised Machine
Translation
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Background : Supervised Machine Translation

® Using large bilingual text corpus, you train an encoder-decoder pair
to translate from source sentences to target sentences.

e Problem: Many language pairs do not have large parallel text
corpora, these are referred to as low-resource languages.

e Solution: Automatically generate source and target sentence pairs
to turn unsupervised into supervised!
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Background : Unsupervised Machine Translation

® Builds on two previous works

o G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. 2018.
Unsupervised machine translation using monolingual corpora
only. In International Conference on Learning Representations
(ICLR).

o Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun
Cho. 2018. Unsupervised neural machine translation. In
International Conference on Learning Representations (ICLR)



Background : Unsupervised Machine Translation

® Builds on two previous works

o G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. 2018.
Unsupervised machine translation using monolingual corpora
only. In International Conference on Learning Representations
(ICLR).

o Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun
Cho. 2018. Unsupervised neural machine translation. In
International Conference on Learning Representations (ICLR)

e Distills and improves on the 3 common principles underlying the
success of the above works.
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1. Initialize Translation Models P, and PO, .



Principles of Unsupervised MT : Language Models

(@ ©

©
@ observed source sentence @ observed target sentence

O unobserved translation of a target sentence O unobserved translation of a source sentence

X system translation of a target sentence ¢ system translation of a source sentence
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1. Initialize Translation Models P, and PO, .
2. Language models : Learn two language models, P, and P;, over
source and target languages.



Principles of Unsupervised MT : Initialization

(@ ©

©
@ observed source sentence @ observed target sentence

O unobserved translation of a target sentence O unobserved translation of a source sentence

X system translation of a target sentence ¢ system translation of a source sentence
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Principles of Unsupervised MT : Algorithm

1. Initialize Translation Models P, and PO, .
2. Language models : Learn two language models, P, and P;, over

source and target languages.

3. fork=1toNdo
i. Back Translation : Use Pk . pkl. . P and P; to

generate source and target sentences

i. Train new translation models P 5. and P, ., using the
generated sentences and P, and P; .

end



Principles of Unsupervised MT : Back Translation

(@ ©

©
@ observed source sentence @ observed target sentence

O unobserved translation of a target sentence O unobserved translation of a source sentence

X system translation of a target sentence ¢ system translation of a source sentence
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Unsupervised NMT : Models

2 types of models

® LSTM-based
O Encoder, decoder : 3-layer bidirectional LSTM.
O Encoders and decoders share LSTM weights across source and
target

e Transformer-based
O 4 -layer encoder and decoder
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Unsupervised NMT : Initialization

2 main contributions :

® Byte-Pair Encodings (BPEs) were used.
O Reduce vocabulary size
O Eliminate the presence of unknown words in the output translation

® Learn token embeddings from the byte pair tokenization of joint corpora
and use these to initialize the lookup tables in the encoder and decoder.
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Unsupervised NMT : Language Modelling

® Language modelling is accomplished via denoising auto-encoding.

e The language model aims to minimize :

Egns[—log Psoys(2|C(z))] +

Ey~7[—1og P, (y|C(y))]

C is a noise model and P,_,; and P,_,, are the composite encoder-
decoder pairs for the source and target languages respectively.
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Unsupervised NMT : Back-Translation

® l[etxeES and y €T
o u*(y) =argmax, Pk, 5. (uly).
o v*(x) =argmax, Pk s, (v|x).
e The pairs (u*(y), y) and (x, v*(x)) are automatically generated parallel

sentences that can be use to train P%,,and P®,5. using the back-
translation principle.
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Unsupervised NMT : Back-Translation

e The models are trained by minimizing:

Lr% = Eyor[—log Posy(ylu*(y))] +

Ezns[—log Py s(z[v* ()]

® The models are not trained via back-propagation through the reverse
model but rather just by minimizing L, + L;,, at every iteration of
stochastic gradient descent.



Unsupervised PBSMT : Models



Unsupervised PBSMT : Models

e PBSMT:
o argmax,P(y[x) = argmax,P(x[y) P(y).
O P(x|y) : phrase tables

O P(y):language model



Unsupervised PBSMT : Models

e PBSMT:
o argmax,P(y[x) = argmax,P(x[y) P(y).
O P(x|y): phrase tables
o P(y):language model

® PBSMT uses a smoothed n-gram language model.
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Unsupervised PBSMT : Initialization

® Need to populate source-target and target-source phrase tables!

O Conneau et al. (2018) : Infer bilingual dictionary from 2
monolingual corpora.

O Phrase tables are populated with scores using :

e % cos(e(t;),We(s;))
p(tjlsi) =

Zk e% cos(e(tr),We(s;))’
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Unsupervised PBSMT : Language Modelling

® Smoothed n-gram language models are learned using KenLM (Heafield,
2011).

® These remain fixed throughout back-translation iterations.
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Unsupervised PBSMT : Back-Translation Algorithm

e Learn PO _, from phrase tables and language model, and get D),
using P . on source corpus.

e fork=1toNdo
o Train P,  using Dk-1),

o Back Translation : P, . on target corpus gives D),
o Train P® . using D, .
o Back Translation : P¥)._s. on source corpus gives D,

end
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Experiments : Datasets
® 5 language pairs : English-French, English-German, English-
Romanian, English-Russian, and English-Urdu
® WMT monolingual News Crawl datasets from 2007-2017 for training

® newstest 2014 for en-fr, newstest 2016 for en-de, en-ro and en-ru
for evaluation

® For Urdu, LDC2010T21 and LDC2010T23 corpora with 1800
sentences for validation and test, respectively.
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Experiments : Initialization

® For NMT, the two monolingual corpora were concatenated and
fastText (Bojanowski et al., 2017) was used to generate a cross-
lingual BPE embedding with embedding dimension of 512.

® For PBSMT, n-gram embeddings are created for the source and
target corpora independently, then aligned using the MUSE library.
o Only the 300k most frequent phrases are considered and
aligned to their 200 nearest neighbors in the target space.
o This creates 60 million phrase pairs which are scored using

L cos(e(t;),We(s;))
eT
p(tjlsi) =

Ek 6% cos(e(ty),We(s;))
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Experiments : Training

For NMT
e Dimensionality of hidden layers and embeddings is set to 512
e The adam optimizer is used with learning rate 10-.

® Batch size =32
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Experiments : Training

For PBSMT

® Translate 5 million randomly sampled sentences per iteration
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Results : NMT

— SUperv. NMT
m—Superv. PBSMT
==+ unsup. NMT
==« unsup. PBSMT

104 10° 10°
number of parallel training sentences




Results : NMT

Model | en-fr fr-en | en-de de-en

(Artetxe et al., 2018) | 15.1 15.6 - -
9.6 13.3
10.9 14.6

(Lample et al., 2018) | 15.0 14.3
(Yang et al., 2018) 170 15.6

NMT (LSTM) 245 237 | 147 19.6

NMT (Transformer) 25.1 242 17.2 21.0
PBSMT (Iter. 0) 162 175 P 11.0 156
PBSMT (Iter. n) 281 272 | 179 22.9

NMT + PBSMT 27.1 263 | 175  22.1
PBSMT + NMT 276  27.7 | 20.2  25.2




Results

| en—fr fr—en | en—vde de—en | en—ro ro—en | en—ru ru—en

Unsupervised PBSMT

Unsupervised phrase table - 17.50 15.63 14.10 8.08

Back-translation - Iter. 1 24.79 26.16 2243 21.49 15.16
Back-translation - Iter. 2 27.32 26.80 22.85 22.52 16.42
Back-translation - Iter. 3 27.77 26.93 22.87 22.99 16.52
Back-translation - Iter. 4 27.84 27.20 22.68 23.01 16.62
Back-translation - Iter. 5 28.11 27.16 - - -

Unsupervised NMT

LSTM 24 .48 23.74 14.71 19.60 - - - -
Transformer 25.14 24.18 17.16 21.00 21.18 19.44 7.98 9.09

Phrase-based + Neural network

NMT + PBSMT 2712 2629 | 1752 2206 | 2195 2373 | 10.14  12.62
PBSMT + NMT 2760  27.68 | 20.23 2519 | 2503 2390 | 13.76 _ 16.62
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Conclusion : Summary

® Unsupervised machine translation performed with back-translation
of large monolingual corpora can perform as well as supervised MT

which has parallel data requirements.

® Tuning the NMT model with the data generated from PBSMT
performs at the current state of the art for unsupervised machine
translation methods



Synchronous Bidirectional Neural
EILERIGLEEL

Long Zhou, Jiajun Zhang, and Chengqing Zong. TACL, vol 7, 2019.

Presented by Yang Yu



Unidirectional encoder-decoder model

e Generates target translation in one
direction (left to right)

e Suffers from unbalanced outputs

e Decoding relies on history
information but pays no attention to
future information

Model The first 4 tokens The last 4 tokens
L2R 40.21% 35.10%
R2L 35.67% 39.47 %

Table 1: Translation accuracy of the first 4 tokens
and last 4 tokens in NIST Chinese-English translation
tasks. L2R denotes left-to-right decoding and R2L
means right-to-left decoding for conventional NMT.



Attempts to solve this problem

e |Independent bidirectional decoder
o  Train two NMT models, one L2R and one R2L
o  Evaluate the translation candidates together
e Asynchronous bidirectional decoding

o  Adding a backward decoder

o Only the forward decoder can use information from the backward decoder



Synchronous Bidirectional NMT (SB-NMT)
Model

e Single decoder to bidirectionally generate target sentences
e (Capable of optimizing bidirectional decoding simultaneously

e Uses a beam search algorithm, the single decoder model is faster and more compact




SB-NMT Model
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SB-NMT Model

Multi-Head
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Synchronous Bidirectional Beam Search

. Synchronous Bidirectional Beam Search (size=4)
1. For each time step, choose half of the

beam for L2R, half for R2L :E"_"—'

S - ... L2R

2. After the final time step, translation <l2r> *
- : L S .. L2R

result with highest probability will be <l2r> Soatt sBAtt
the final result. <r2l> == L B

<205 e TR — 1 . R2L
\ R el P -—;:=
Nl
[1] N e N e R2L

T=0 T=1 T=2



Synchronous Bidirectional Beam Search

Effect of different beam sizes was
investigated
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Synchronous Bidirectional Attention

Multi-Head Attention

Concat

t!

Scaled Dot-Product h
Attention

Jon e s ey s o
Linear Linear Linear

\ K Q

e Based on the Transformer model with Scaled Dot-Product Attention
Scaled Dot-Product Attention and
Multi-Head Attention proposed by
Vaswani et. al. (NIPS 2017)




Synchronous Bidirectional Attention

Scaled Dot-Product Attention

e Similar to a retrieval process: maps a query and a set
of key-value pairs to output

| SoftMax
Mask (opt.

)&
Attention(Q, K, V') = softmax( @

Vi

W




Synchronous Bidirectional Attention

Multi-Head Attention

Concat

1 i

£
e

Scaled Dot-Product
Attention

2

\%

r‘—b rﬂ—‘ i r‘_i A
Linear Linear Linear

K Q

e Allows the model to attend to information from
different representation subspaces at different
positions

MultiHead(Q, K, V') = Concat (head, ..., heady, )W
where head; = Attention(QVViQ, KwWE vwY)



Synchronous Bidirectional Attention

Synchronous Bidirectional Dot-Product Attention

Used for decoder self-attention
Allows future information to combine with history
information

H history — Attention(a. é I_/>)
H future — Attention(a. K. ((7)
ﬁ — FUSiOH(ﬁMStOTy, ﬁfut’u;re)




Choices for Fusion Function

e Linear Interpolation ﬁ _ ﬁhi.stor'y L\« ﬁfutu:re

e Nonlinear Interpolation ﬁ = ﬁhistm’y 4\ % AF(ﬁfﬂ'tum)

o tanh or relu as activation function

Ty, 2 = O.(U'g [ﬁhistory; ﬁ f utuxre])

ﬁ =7 O ﬁhisto-'ry +2 0 ﬁ future

e Gated Mechanism



Choices for Fusion Function

Fusion A=01 | A=05] A=1.0
Linear 51.05 50.71 46.98
Nonlinear tanh 50.99 50.72 50.96
relu 50.79 50.57 50.71
Gate 50.51

Sensitive to 4

Robust

More parameters



Output (L2R & R2L)
Probabilities

SB-NMT Model

xN
1 \ —
Positional e ™ Positional
Encoding (d_® Encoding
Input Output
Embedding Embedding
Inputs Outputs (L2R & R2L)

(shifted right)



Experiments - translation quality

Model [ TEST Model [ DEV TEST
GNMT} (Wuet al., 2016) 24.61 Transformer 35.28 31.02
Convi (Gehring et al., 2017) 2516 Transformer (R2L) 35.22 30.57
AttIsAllf (Vaswani et al., 2017) 28.40 Our Model 36.38 32.06
Transformer!! 27.72

Transformer (R2L) 27.13 Table 5: Results of WMT18 Russian-English transla-
Rerank-NMT 27.81 tion using case-insensitive tokenized BLEU.
ABD-NMT 28.22

Our Model ] 29.21

Table 4: Results of WMT14 English-German transla-
tion using case-sensitive BLEU. Results with § mark
are taken from the corresponding papers.



Experiments - translation quality

Model DEV MTO03 MTO04 MO5 MTO06 AVE A

Moses 37.85 37.47 41.20 36.41 36.03 37.78 —-941
RNMT 42.43 42.43 44.56 41.94 40.95 42.47 —4.72
Transformer 48.12 47.63 48.32 47.51 45.31 47.19 -

Transformer (R2L) 47.81 46.79 47.01 46.50 44.13 46.11 —1.08
Rerank-NMT 49.18 48.23 48.91 48.73 46.51 48.10 +0.91
ABD-NMT 48.28 49.47 48.01 48.19 47.09 48.19 +1.00
Our Model \ 50.99 | 51.87 51.50 51.23 49.83 | 51.11 +3.92

Table 3: Evaluation of translation quality for Chinese-English translation tasks using case-insensitive BLEU
scores. All results of our model are significantly better than Transformer and Transformer (R2L) (p < 0.01).



Experiments - translation speed

Speed
Model Param Train Test
Transformer 207.8M 2.07 19.97
Transformer (R2L) 207.8M 2.07 19.81
Rerank-NMT 415.6M 1.03 6.51
ABD-NMT 333.8M 1.18 7.20
Our Model | 207.8M | 1.26 17.87

Table 6: Statistics of parameters, training, and testing
speeds. Train denotes the number of global training
steps processed per second at the same batch-size
sentences; Test indicates the amount of translated
sentences in 1 second.



Experiments - unbalanced outputs
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Figure 7: Translation accuracy of the first and last 4
tokens for Transformer, Transformer (R2L), Rerank-
NMT, ABD-NMT, and our proposed model.



Experiments - long sentences
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Figure 9: Performance of translations on the test set with respect to the lengths of the source sentences.



Experiments - subject evaluation

Over-Trans Under-Trans
Model Ratio A Ratio A
L2R 0.07% - 7.85% -
R2L 0.14% - 7.81% -
Ours 0.07% | —0.00% | 5.42% | —30.6%

Table 7: Subjective evaluation on over-translation and
under-translation for Chinese-English. Ratio denotes
the percentage of source words which are over- or
under-translated; A indicates relative improvement.



Future work

e Fine tuning of parameters, e.g. 4, choice of fusion
function

e Application to other tasks, e.g. sequence labeling,
abstractive summarization, and image captioning



Thank you!

Questions?



