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Abstract

Claims: “This paper examines two simple and effective classes of attentional mechanism: a global approach 
which always attends to all source words and a local one that only looks at a subset of source words at a time.”

Key-result: “Our ensemble model using different attention architectures yields a new state-of-the-art result in the 
WMT’15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the 
existing best system backed by NMT and an n-gram reranker.”



Introduction

Attention !!

The concept of “attention” has gained popularity recently in training 
neural networks, allowing models to learn alignments between 
different modalities. 

2014

Koehn et al.

Standard MT 

2003Figure 1: Neural machine translation as a stacking 
recurrent architecture for translating a source sequence 
A, B, C, D into a target sequence X, Y, Z . Here <eos> 
marks the end of a sentence

Luong et al.

2015

A large neural network that is trained in an End-to-End fashion. (figure 
1. RNN based Encoder-Decoder architecture)

Attentional mechanism has been successfully applied to jointly 
translate and align words.

Bahdanau et al.



Related Work → NMT 
NMT two components:

1. An encoder which computes a 
representation S for each source sentence.

2. A decoder which generates translation one 
word at a time and hence decomposes the 
conditional probability. (RNN architecture)

Training objective:

where
g: transformation function that outputs a vocabulary size vector
h: RNN hidden unit

f: computes the current hidden state given the previously hidden 
state.



Related Work



Attention-based Models: 
Global - Attention

- Global attentional model

h(t): Hidden target state
c(t): Source side context vector
y(t): Current target word
h_bar(t): Attentional hidden 
state
a(t): Alignment vector



Comparison to (Bahdanau et al., 2015)
1. Global : “we simply use hidden states 

at the top LSTM layers in both the 
encoder and decoder”;

Previous: use the concatenation of the 
forward and backward source hidden 
states in the bi-directional encoder and 
target hidden states in their non-
stacking uni-directional decoder 

1. Global: computation path is simpler

Previous: build from the previous 
hidden state

1. Previous: only experimented with one 
alignment function: the concat product.For content-based functions, our implementation of concat does not 

yield good performances and more analysis should be done to 
understand the reason...



Attention-based 
Models: LocalLocal Attentional Model

- Small window of context and is differentiable.
- The local alignment vector a(t) is now fixed-dimensional

Monotonic Alignment (local-m) :- Global Attention

Predictive alignment (local-p)

W(p) and v(p) are models 
parameters which will be 
learned to predict positions.
S is the source sentence 
length
p(t): [0,S]



Input-feeding 
ApproachWhy? 

:- In the proposed attention mechanisms the attention 
decisions are made independently.

How?

:- h_bar(t) is concatenated with inputs at the next time steps 
as illustrated.

Advantages:

1. Make the model fully aware of the previous alignment 
choices.

2. Create a very deep network spanning both horizontally 
and vertically

Input-feeding approach - Attention vectors 
h_bar(t) are fed as inputs to the next time steps 
to inform the model about past alignment 
decisions 



Experiment (WMT’ 14 & 15 English-
German)

WMT’14 English-German results - shown are the perplexities (ppl) and the tokenized BLEU scores of various 
systems on newstest 2014. We highlight the best system in bold and give progressive improvements in italic 
between consecutive systems. Local-p refers to the local attention with predictive alignments. We indicate for 
each attention model the alignment score function used in parentheses. 

WMT’15 English-German results -NIST 
BLEU scores of the existing WMT’15 SOTA 
system and our best one on newstest2015.



Experiment (WMT’15 German-English)

WMT’ 15 German-English results - performance of various systems. The base system already 
includes source reversing on which we add global attention, dropout, input feeding, and unk
(universal token) replacement.



Experiment analysis

Learning curves – test cost (ln perplexity) on 
newstest2014 for English-German NMTs as training 
progresses

Length Analysis - the translation quality does 
not degrade as sentences become longer. Our 
best model (blue + curve) outperforms all other 
systems in all length buckets.



Takeaways

1. This work proposes two simple and effective attentional mechanisms for NMT: global which always looks at 
all source positions and local one which only attends to a subset of source positions at a time. 

2. This work compared various alignment functions and shed light on which functions are the best for which 
attentional models.

3. The dependencies between previous alignment information and current alignment decisions take into 
consideration.

4. Attentional beats non-attentional 



Neural Machine Translation
of Rare Words with 
Subword Units
Rico Sennrich, Barry Haddow, Alexandra Birch

Presented by: Wei Liu
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Motivation



Motivation

German: Donaudampfschiffahrtselektrizitätenhaupt-
betriebswer-kbauunterbeamtengesellschaft

English:

Association for Subordinate Officials of the Main 
Maintenance Building of the Danube Steam Shipping 
Electrical Services



- Named Entities
- Barack Obama (English)
- バラクオバマ (Japanese)

- Cognates and Loanwords
- Claustrophobia (English)
- Klaustrophobie (German)

- Morphologically complex 
words
- Solar System(English)
- Sonnensystem(German)

Motivation

Transparent Word:

Words that are translatable by a 
competent translator even if they 
are novel to him/her.



Solution?
Goto subword 
level!



Contribution

Byte Pair Encoding



What is Byte Pair Encoding?

→ aaabdaaabac

→ ZabdZabac
Z=aa

→ ZYdZYac
Y=ab
Z=aa

→ XdXac
X=ZY
Y=ab
Z=aa

Contribution

Byte Pair Encoding



Adapted from https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf


Adapted from https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf


1. Learn two independent encodings. 
One for the source vocabulary,
one for the target vocabulary.

1. Learn one encoding on 
the union of the two vocabularies.

Note: For languages use different alphabet, 
like Russian and English, first transliterate 
Russian vocabulary into Latin characters.

Variants



Transliteration



Model:  Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al. 2015)

Encoder:
Bidirectional
Gated Recurrent Unit

Decoder: 
Recurrent Neural 
Network



Evaluation

English → German

English → Russian

Basic BPE →
Joint BPE  →



Evaluation

English → Geraman English → Russian



Evaluation

English → Geraman English → Russian



Conclusion

What is Byte Pair Encoding?
- It is just a subword-level encoding technique.

What’s the advantage of using it?
- Better accuracy for the translation of rare words.
- Relative lower vocabulary size compared to 

character n-grams.

What’s the drawback?
- Longer training time. Backprop through time over 

a much longer sequence.
- Longer runtime.

Is it still being used now?
- Yes, very often. For example, RoBERTa, Google 

NMT.



Convolutional Sequence to 
Sequence Learning

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin (Facebook 
2017)

Presenter: Yujia Qiu



Motivation

● RNNs maintantain a hidden state of the entire past that prevents parallel 
computation within a sequence. CNN does not depend on previous time 
step -> Parallelization.

● CNN creates a hierarchical structure provides a shorter path to capture 
long-range dependencies compared to RNN
○ RNN O(n) -> CNN O(n/k) 



Model Architecture

● Embedding
○ Embed x = (x1, …, xm) to w = (w1, …, wm )
○ Position embeddings p = (p1, …, pm)
○ e = (w1 + p1, …, wm + pm)

● Output of decoder states h
● Output of encoder states z



Convolutional Block Architecture

● 1-D Convolution (kernel width k)

● Non-linearity (GLU)
○ Gated linear units



Convolutional Block Architecture

To enable deep convolutional networks, 
residual connections are added from the 
input of each convolution to the output of the 
block

After the last decoder, compute distribution 
over the T possible next target elements yi+1, 



Multi-step Attention

● Combine current decoder hi with an 
embedding of previous target element gi

● Attention (Decoder di and zj of last encoder 
block u)

● Conditional input ci, weighted sum over zj
○ ej provides point information, which is beneficial 



Normalization & Initialization

● Normalization
○ Multiply the sum of input and output of a residual block by                to halve the variance of the 

sum
○ Conditional input ci is a weighted sum of m vectors, then the variance is scaling by           

Multiply by m to scale up the inputs to their original size. 
○ Convolutional decoder with multiple attentions, scale the gradients for the encoder layers by 

the number of attention mechanisms used.
● Initialization

○ All embeddings are initialized from a normal distribution with mean 0 and std 1
○ For layers whose output is not directly fed to a gated linear unit, initialize weights from              

nl is the number of input connections to each neuron -> make the variance retained.
○ For layers followed by GLU activation, weights are                             if variance are small
○ Apply dropouts to restore the variance.



Datasets

● WMT’16 English-Romanian (2.8M sentences pairs)
● WMT’14 English-German (4.5M sentences pairs)
● WMT’14 English-French (35.5M sentences pairs)



Results



Results



Generation Speed



Results

Position embeddings allow the model to identify the source and target sequence.  Removing 
source position embedding results in a larger accuracy decrease than target position 
embeddings. 

Model can learn relative position information within the contexts visible to encoder & decoder



My thoughts

● Advantages:
○ Accuracy improvement
○ Fast speed

● Disadvantages:
○ It needs more parameters tuning when doing normalization & initialization
○ Limited range of dependency 

■ kernel width k, the dependency will only be α(k-1)+1 inputs



Phrase-Based & Neural 
Unsupervised Machine 
Translation

G. Lample et al. (2018)

Presenter: Ashwin Ramesh
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Background : Supervised Machine Translation

● Using large bilingual text corpus, you train an encoder-decoder pair 
to translate from source sentences to target sentences.

● Problem: Many language pairs do not have large parallel text 
corpora, these are referred to as low-resource languages. 

● Solution: Automatically generate source and target sentence pairs 
to turn unsupervised into supervised!



Background : Unsupervised Machine Translation

● Builds on two previous works 



Background : Unsupervised Machine Translation

● Builds on two previous works 
○ G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. 2018. 

Unsupervised machine translation using monolingual corpora 
only. In International Conference on Learning Representations 
(ICLR).

○ Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun 
Cho. 2018. Unsupervised neural machine translation. In 
International Conference on Learning Representations (ICLR)



Background : Unsupervised Machine Translation

● Builds on two previous works 
○ G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. 2018. 

Unsupervised machine translation using monolingual corpora 
only. In International Conference on Learning Representations 
(ICLR).

○ Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun 
Cho. 2018. Unsupervised neural machine translation. In 
International Conference on Learning Representations (ICLR)

● Distills and improves on the 3 common principles underlying the 
success of the above works. 
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Principles of Unsupervised MT : Algorithm

1. Initialize Translation Models P(0)
s→t and P(0)

t→s .
2. Language models : Learn two language models, Ps and Pt , over 

source and target languages. 
3. for k = 1 to N do

i. Back Translation : Use P(k-1)
s→t ,  P(k-1)

t→s , Ps and Pt to 
generate source and target sentences

i. Train new translation models P(k)
s→t and P(k)

t→s, using the 
generated sentences and Ps and Pt .

end



Principles of Unsupervised MT : Back Translation
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Unsupervised NMT : Models  

2 types of models

● LSTM-based
○ Encoder, decoder : 3-layer bidirectional LSTM. 
○ Encoders and decoders share LSTM weights across source and 

target

● Transformer-based 
○ 4 -layer encoder and decoder



Unsupervised NMT : Initialization

2 main contributions :



Unsupervised NMT : Initialization

2 main contributions :

● Byte-Pair Encodings (BPEs) were used. 
○ Reduce vocabulary size
○ Eliminate the presence of unknown words in the output translation



Unsupervised NMT : Initialization

2 main contributions :

● Byte-Pair Encodings (BPEs) were used. 
○ Reduce vocabulary size
○ Eliminate the presence of unknown words in the output translation

● Learn token embeddings from the byte pair tokenization of joint corpora 
and use these to initialize the lookup tables in the encoder and decoder. 



Unsupervised NMT : Language Modelling

● Language modelling is accomplished via denoising auto-encoding. 



Unsupervised NMT : Language Modelling

● Language modelling is accomplished via denoising auto-encoding. 

● The language model aims to minimize :

C is a noise model and Ps→s and Pt→t are the composite encoder-
decoder pairs for the source and target languages respectively.
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● Let x∈ S and y ∈ T 

○ u*(y)  = argmaxu P(k-1)
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Unsupervised NMT : Back-Translation

● Let x∈ S and y ∈ T 

○ u*(y)  = argmaxu P(k-1)
t→s (u|y).

○ v*(x)  = argmaxv P(k-1)
s→t (v|x).

● The pairs (u*(y), y) and (x, v*(x)) are automatically generated parallel 
sentences that can be use to train  P(k)

s→t and P(k)
t→s using the back-

translation principle.
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● The models are trained by minimizing:



Unsupervised NMT : Back-Translation

● The models are trained by minimizing:

● The models are not trained via back-propagation through the reverse 
model but rather just by minimizing Lback + Llm at every iteration of 
stochastic gradient descent. 
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Unsupervised PBSMT : Models

● PBSMT :  

○ argmaxyP(y|x) = argmaxyP(x|y) P(y).

○ P(x|y) : phrase tables

○ P(y) : language model

● PBSMT uses a smoothed n-gram language model.
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Unsupervised PBSMT : Initialization

● Need to populate source-target and target-source phrase tables!

○ Conneau et al. (2018) :  Infer bilingual dictionary from 2 
monolingual corpora.

○ Phrase tables are populated with scores using :
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● Smoothed n-gram language models are learned using KenLM (Heafield, 
2011). 



Unsupervised PBSMT : Language Modelling

● Smoothed n-gram language models are learned using KenLM (Heafield, 
2011). 

● These remain fixed throughout back-translation iterations. 
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Unsupervised PBSMT : Back-Translation Algorithm

● Learn  P(0)
s→t from phrase tables and language model, and get D(0)

t
using P(0)

s→t on source corpus.

● for k = 1 to N do
○ Train P(k)

t→s using D(k-1)
t .

○ Back Translation : P(k)
t→s on target corpus gives D(k)

s

○ Train P(k)
s→t using D(k)

s .

○ Back Translation : P(k)
s→t on source corpus gives D(k)

t

end
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Experiments : Datasets

● 5 language pairs : English-French, English-German, English-
Romanian, English-Russian, and English-Urdu

● WMT monolingual News Crawl datasets from 2007-2017 for training

● newstest 2014 for en-fr,  newstest 2016 for en-de, en-ro and en-ru
for evaluation

● For Urdu, LDC2010T21 and LDC2010T23 corpora with 1800 
sentences for validation and test, respectively. 
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Experiments : Initialization

● For NMT,  the two monolingual corpora were concatenated  and 
fastText (Bojanowski et al., 2017) was used to generate a cross-
lingual BPE embedding with embedding dimension of 512.

● For PBSMT, n-gram embeddings are created for the source and 
target corpora independently, then aligned using the MUSE library. 

○ Only the 300k most frequent phrases are considered and 
aligned to their 200 nearest neighbors in the target space. 

○ This creates 60 million phrase pairs which are scored using
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Experiments : Training

For NMT

● Dimensionality of hidden layers and embeddings is set to 512

● The adam optimizer is used with learning rate 10-4. 

● Batch_size = 32
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Experiments : Training

For PBSMT

● Translate 5 million  randomly sampled sentences per iteration 
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Results 
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Conclusion : Summary

● Unsupervised machine translation performed with back-translation 
of large monolingual corpora can perform as well as  supervised MT 
which has parallel data requirements. 

● Tuning the NMT model with the data generated from PBSMT 
performs at the current state of the art for unsupervised machine 
translation methods



Synchronous Bidirectional Neural 
Machine Translation
Long Zhou, Jiajun Zhang, and Chengqing Zong. TACL, vol 7, 2019.

Presented by Yang Yu



Unidirectional encoder-decoder model

● Generates target translation in one 
direction (left to right)

● Suffers from unbalanced outputs

● Decoding relies on history 
information but pays no attention to 
future information



Attempts to solve this problem

● Independent bidirectional decoder

○ Train two NMT models, one L2R and one R2L

○ Evaluate the translation candidates together

● Asynchronous bidirectional decoding

○ Adding a backward decoder

○ Only the forward decoder can use information from the backward decoder



Synchronous Bidirectional NMT (SB-NMT) 
Model
● Single decoder to bidirectionally generate target sentences

● Capable of optimizing bidirectional decoding simultaneously

● Uses a beam search algorithm, the single decoder model is faster and more compact



SB-NMT Model



SB-NMT Model



Synchronous Bidirectional Beam Search

1. For each time step,  choose half of the 
beam for L2R, half for R2L

2. After the final time step, translation 
result with highest probability will be 
the final result.



Synchronous Bidirectional Beam Search

● Effect of different beam sizes was 
investigated



Synchronous Bidirectional Attention

● Based on the Transformer model with 
Scaled Dot-Product Attention and 
Multi-Head Attention proposed by 
Vaswani et. al. (NIPS 2017)



● SImilar to a retrieval process: maps a query and a set 
of key-value pairs to output

Synchronous Bidirectional Attention



● Allows the model to attend to information from 
different representation subspaces at different 
positions

Synchronous Bidirectional Attention



● Used for decoder self-attention
● Allows future information to combine with history 

information

Synchronous Bidirectional Attention



Choices for Fusion Function

● Linear Interpolation

● Nonlinear Interpolation
○ tanh or relu as activation function

● Gated Mechanism



Choices for Fusion Function

Robust

Sensitive to 𝜆

More parameters



SB-NMT Model



Experiments - translation quality
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Experiments - translation speed



Experiments - unbalanced outputs



Experiments - long sentences



Experiments - subject evaluation



Future work

● Fine tuning of parameters, e.g. 𝜆, choice of fusion 
function

● Application to other tasks, e.g. sequence labeling, 
abstractive summarization, and image captioning



Thank you!

Questions?


