node2vec:
Scalable Feature Learning for Networks

Aditya Grover and Jure Leskovec. KDD 2016.

Presented by Haoxiang Wang. Feb 26, 2020.




Node Embeddings

—0.6[
# g
—-08 @g g ® o
29 3
-1.0} e ., ]

—1.4}

—-1.6}

—1.8}

-1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5

®» |[ntuition: Find embeddings of nodes in a d-
dimensional space so that “similar” nodes in the graph
have embeddings that are close together.




Setup

» Assume we have a graph G:
»YV s the vertex set (i.e., node set).
®A s the odjqceng:y maltrix (assume binary).

. :




Embedding Nodes

» Goal: to encode nodes so that similarity in the embedding space
(e.g., dot product) approximates similarity in the original network.

-----------------
st
..
..
..
.

ENC(u)

encode nodes

.
s
s
........
---------------------------------------

original network embedding space




Random Walk Embeddings: Basic Idea

7 | 7~y Probability that zand vco-occur on a
u U random walk over the network

1. Estimate probability of visiting
node von arandom walk
starting from node u using
me random walk strategy R. Ny

. Optimize embeddings to
encode these random walk
statistics.




Algorithm/Optimization of Random Walk Embeddings

1. Run short random walks starfing from each node on the
graph using some strategy R.

2. For each node u collect Ng(u), the multiset” of nodes
visited on random walks starting from u. (* Nj(u) can have
repeat elements since nodes can be visited multiple times on

random walks. )
3. Optimize embeddings fo according to:

L= > —log(P(v|z,))

uecV veENR(u)

! P(v|z,) = eXp(ZIZU_l)_
Pr(v|u) D nev €xXp(Z, Zy)

T

In practice, random sampling based
on some distribution over nodes




Node2vec: Biased Random Walks

» |dea: use flexible, biased random walks that can trade off between
local and global views of the network (Grover and Leskovec, 2016).

» BFS (Breath-First Search)and DFS (Depth-First Search): Two classic
stfrategies to define a neighborhood Ni(u) of a given node u:

Npps(u) = { s1, 52,53}

LLocal microscopic view

@
—>»BFS
Q ' —)DFS Nprs(u) = { 54, S5, S}

@ Global macroscopic view



https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Combine BFS + DFS by a Ratio

Biased random walk R that
Unnormalized

given a hode u generates Walker is at w. transition prob
neighborhood Ny (u) Where to go next? ,/ |
» WO parameters: —
» Rt - s1| | 1/p
urn parameter p: s,| | 1
eturn back to the ss| | 1/9

previous node

» Walk-away parameter ~ BFS-like walk: Low value of p
g : Moving outwards DFS-like walk: Low value of g

(DES) vs. inwards (BFS)




Benchmarks: Node Classification & Link Prediction

¥ [

Node

aa
Classification —
Learning
V4
Link Prediction & &

>
Machine g
Learning




Link Prediction
Empirical Results Op  Algorithm Dataset

Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Node Classification Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
. Pref. Attachment 0.7137 0.6670 | 0.6996
Algorithm Dataset . . Spectral Clustering | 0.5960 0.6588 | 0.5812
BlogCatalog | PPI | Wikipedia (a) | DeepWalk 0.7238 | 0.6923 | 0.7066
Spectral Clustering 0.0405 0.0681 0.0395 LINE 0.7029 0.6330 | 0.6516
DeepWalk 02110 01768 | 01274 node2vec 0.7266 | 0.7543 | 0.7221
Spectral Clusterin 0.6192 0.4920 | 0.5740
LINE 0.0784 0.1447 0.1164 (b) DlZepWalk ¢ 0.9680 0.7441 | 0.9340
node2vec 0.2581 0.1791 0.1552 LINE 0.9490 0.7249 | 0.8902
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5 node2vec 0.9680 0.7719 | 0.9366
Gain of node2vec [%] 22.3 1.3 21.8 Spectral Clustering 0.7200 0.6356 | 0.7099
(c) | DeepWalk 0.9574 0.6026 | 0.8282
Table 2: Macro-F; scores for multilabel classification on BlogCat- LINE 0.9483 0.7024 | 0.8809
alog, PPI (Homo sapiens) and Wikipedia word cooccurrence net- ISIOdf’ZVfCC 1' 8-3?83 8-2(2)32 8-2‘7122

. s e ectra usterin . . .

works with 50% of the nodes labeled for training. @ DIZepWalk & 0.9584 0.6118 | 0.8305
LINE 0.9460 0.7106 | 0.8862
node2vec 0.9606 0.6236 | 0.8477

Table 4: Area Under Curve (AUC) scores for link prediction. Com-
parison with popular baselines and embedding based methods boot-
stapped using binary operators: (a) Average, (b) Hadamard, (c)
Weighted-L1, and (d) Weighted-L2 (See Table 1 for definitions).



Advantages of Node2Vec

®» node2vec performs betfter on node
classification compared with other node
embedding methods.

» Random walk approaches are generally more
efficient (i.e., O(|E|) vs. O(|V]|?))

= (Note: In general, one must choose definition of
node similarity that matches application. )




Other random walk node
embedding works
» Different kinds of biased random walks:

» Based on node attributes (Dong et al., 2017).
» Based on a learned weights (Abu-El-Haija et al., 2017

» Alternative optimization schemes:

» Directly optimize based on 1-hop and 2-hop random
walk probabillities (as in LINE from Tang et al. 2015).

» Network preprocessing techniques:

» Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 201/’s struct2vec, Chen et
al. 2016's HARP).



https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845

B NNINE
ENTITY AND
RELATION
EMBEDDINGS
FOR
KNOWLEDGE

GRAPH
COMPLETION

XIAODAN DU




KNOWLEDGE
GRAPH
COMPLETION

m Predicting
relations between
entities under
supervision of the
existing
knowledge graph

is a state in




KNOWLEDGE GRAPH EMBEDDING

m Embedding a knowledge graph into a continuous vector space
while preserving certain information of the graph

m Learning vector embeddings for both entities and relationships

m Transk (Bordes et al. 2013), TransH (Wang et al. 2014): assume
embeddings of entities and relations belong to a single space R

m TransR: assumes one entity space and multiple relation spaces



TRANSE AND
TRANSH

IF TRIPLE (H, R, T) HOLDS

Transk

L

fr(h,t) = |[h+1 — 3

TransH

fr(h,t) =|hy +r—t.5.
h, =h-w,/  hw,

Solves the problem of 1-to-N,
N-to-1 and N-to-N relations



TRANSR
m Authors argue that:

relations and entities are completely different objects, so they shouldn’t be embedded in
the same semantic space.

Even though TransH extends modeling flexibility, it does not perfectly break the restrict of
a common semantic space

A

AAC@/“M\ h,teR\reR? M & R
A A
h, = hM,, t, =tM,.

fr(h,t) = |h, + 1 — t'r'”g-

> >

Entity Space Relation Space of r



(Head, Tail)

I | (Africa, Congo), (Asia, Nepal), (Americas, Aruba),
(Oceania, Federated States of Micronesia)

2 | (United States of America, Kankakee), (England, Bury St
Edmunds), (England, Darlington), (Italy, Perugia)

3 | (Georgia, Chatham County), (Idaho, Boise), (Iowa, Polk
County), (Missouri, Jackson County), (Nebraska, Cass CT RANSR —
County)

4 | (Sweden, Lund University), (England, King’s College CI—U STE R_ BASE
at Cambridge), (Fresno, California State University at D TR ANSR

Fresno), (Italy, Milan Conservatory)

Basic idea of CTransR: Grouping head-tail
pairs into different clusters and learning
relation embeddings for each cluster




1. Obtain entity embeddings h and t for all (h, ?)
pairs using Transk

2. Compute vector offsets (h - t) for all training
data for each relation r

3. Vector offset§ for a certain relation are likely CTRANSR -
to form multiple clusters CLUSTER-BASE

4. Learn a separate relation vector r_for each
cluster and matrix M_for each relation, D TRANSR

respectively (

)
h hMr tr,c = tM,

fr(h,t) = |[hre + re — trcll3 + allre — x|,




EXPERIMENT RESULTS

Link Prediction: predicting the missing h or t for a relation fact triple (h, r, 1)

Data Sets WNI18 FB15K
Metric Mean Rank Hits@10 (%) | Mean Rank | Hits@10 (%)
Raw  Filter | Raw  Filter Raw  Filter | Raw  Filter
Unstructured (Bordes et al. 2012) 315 304 | 35.3 38.2 | 1,074 979 4.5 6.3
RESCAL (Nickel, Tresp, and Kriegel 2011) | 1,180 1,163 | 37.2 52.8 828 683 | 284  44.1
SE (Bordes et al. 2011) 1,011 985 | 68.5 80.5 213 162 | 28.8 39.8
SME (linear) (Bordes et al. 2012) 545 533 | 631 74.1 274 154 | 30.7 40.8
SME (bilinear) (Bordes et al. 2012) 526 509 | 54.7 61.3 284 158 | 31.3 41.3
LFM (Jenatton et al. 2012) 469 456 | 71.4 81.6 283 164 | 26.0 3 |
TransE (Bordes et al. 2013) 263 251 | 754 89.2 243 125 | 349 47.1
TransH (unif) (Wang et al. 2014) 318 303 | 754 86.7 211 84 | 42.5 58.5
TransH (bern) (Wang et al. 2014) 401 388 | 73.0 82.3 212 87 | 45.7 64.4
TransR (unif) 232 219 | 78.3 91.7 226 78 | 43.8 65.5
TransR (bern) 238 225 | 79.8 92.0 198 77 | 48.2 68.7
CTransR (unif) 243 230 | 78.9 92.3 233 82 44 66.3
CTransR (bern) 231 218 | 794 92.3 199 75 | 48.4 70.2




EXPERIMENT RESULTS

Triple Classification: judging whether a given triple (h, r, t) is correct

Data Sets WNI11 | FB13 | FB15K

SE 53.0 12 -

SME (bilinear) 70.0 63.7 -
SLM 69.9 85.3 -
LFM 73.8 84.3 -
NTN 70.4 87.1 68.5

TransE (unif) 129 70.9 79.6
TransE (bern) 739 81.5 79.2
TransH (unif) F i % 76.5 79.0
TransH (bern) 78.8 83.3 80.2
TransR (unif) 35.5 74.7 81.7
TransR (bern) 85.9 82D 83.9
CTransR (bern) 85.7 - 84.5




EXPERIMENT RESULTS

T T ] ] I I [ T T
I 1 1 1 i 1 i 1

| —%—Sma2r

. . ' : -| —©—TransE | ---
Relation Extraction from = 5 ] -
L 0.7 e
Text: Combining results ; | = TransR
: ] L i e e e
from text-based relation 5 :
. Y L R e R T e sl SRS R
extraction model and 3 ;
= 04 ol [ s I;. --------------------------------------
knowledge graph
) 0.3 i ity it it i iy
embeddings to rank test . R
triples Ny -
OO 011 012 0I3 014 015 Ol6 017 0.8 »09‘ 1



MY THOUGHTS

Training time — Performance Tradeoff
A single CNN instead of matrix for each relation
Relation hyperplane vs. relation space

CTransR is more inspirational



Gated Graph Sequence
Neural Networks

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R, ICLR 2016
Presented by Hyoungwook Nam (hnb)



Abstract

- Graph-structured data appears on many domains

- Based on GNNs (graph neural network), utilize GRU (gated
recurrent unit) and extend to output sequences

- The result is flexible, and better than sequence-based models
(e.g. LSTM) if a problem can be graph-structured

- State-of-the-art on bAbl and graph algorithm tasks



Introduction

Previous approaches:

* Graph feature engineering, Graph neural network (GNN),
spectral networks, etc.

Contributions:
* Propose GGS-NN, a gated GNN for sequence output.

* Show that it is useful for many problems (shortest path,
program verification, etc.)



Graph Neural Network (GNN)

Propagation
- Model

K"

Node Labels [,

!

hy’

G = (V,E)

h"

Output
Model

Node
Representations

=

Output o,

* Propagation model gives node representations (embeddings)

« Output model g provides outputs o,

* Similar to RNN encoder-decoder without attention

g(h,, L,) per vertex



Propagation Model

h§11) hgT)
Propagation
hy - Model f - )
(1) (T)
h h
C < T C
Initial (random) Converged
Representations Representations

. h(t) f(NBR(t 1)) where NBR, is a set of v’s neighbors

* From initial h,(,l)s, the update repeats until convergence



Gated Graph Neural Network (GG-NN)

e Initialize h,(,l) with annotations x, instead of random values
* GRU-like propagation model

h() = [z ,0]" (1) vl = o (Wl + Uh{"") 4)

al — AT {hgf—m L h(“'—l”} "ib )

! h(® — tanh (Wafj) +U (ri ® hgf—”)) 5)

2, = o (Wl + U h{ V) B W —(-zyen! Vi onl. (6
* Qutput model: Graph-level or node-selection with softmax
. T . T — h(T)
hg = tanh ZU (z(hg ),mv)) © tanh (g(hg ),:cv)) Oy = ()’( ( -,u’L'..f:r)

veEY



Adjacency Matrix and Neighborhood
’(?lutgc;inAg ngez 'I:con;injg ngez
€

B

®
(.D/V
@‘/@ O ®

(a) (b) (C) A = :A(om):A(in)]

C|PB C’
C B’
B C’

AW N -

» Adjacency matrix 4 = [40¥D), A(W)] for neighborhood updates
©) _ A7 [ D] e i

ca, =A [hl . hy ] will propagate h, of v’s neighbors

- B = GRU(@@P, R



Gated Graph Sequence NN (GGS-NN)

- Objective: create an output sequence oV ..o
» RNN-like structure using two GG-NNs F\™, F{™

l\”’;\' @;\' 0(2}
¥ o Yo7
[nit Fa' [nit Fi'
Y (3 () ——— @) (2 ) ®)

- Latent (hidden) or observed annotations X (s are possible



bADbI Task Evaluation Setup

* Symbolic task to graph structured problem

W S (S{ON)

) g GGS-NN

0 & m

- B 0))
M= = QP

T

A: Start
B: End

eval path B A w, s



bADbIl + Graph Algorithm Result

* (N): Samples needed for the best result (max 950)

Task RNN LSTM GG-NN

bAbI Task 4 97.3+1.9 (250) 97.442.0 (250)  100.04-0.0 (50)

bAbI Task 15  48.6+1.9 (950) 50.3+1.3 (950)  100.040.0 (50)

bAbI Task 16  33.04+1.9 (950) 37.5+0.9 (950)  100.0+0.0 (50)

bAbI Task 18  88.940.9 (950) 88.940.8 (950)  100.04-0.0 (50)
Task RNN LSTM GGS-NNs
bAbI Task 19 24.742.7(950) | 28.241.3(950) | 71.1414.7 (50) 92.54+5.9 (100) 99.041.1 (250)
Shortest Path 9.741.7 (950) | 10.5+1.2 (950) | 100.0+ 0.0 (50)

Eulerian Circuit

0.320.2 (950)

0.12=0.2 (950)

100.0%= 0.0 (50)




Program Verification Setup

* Program - Memory Heap - GG-NN - Invariant Logic

nodex concat (nodex a, nodex b) {

if (a == NULL) return b;
node* cur = a;
while (cur.next != NULL) _}
cur = cur—>next;
cur—>next = b;
return a; }
(
GGS-NN

1

Is(argl,NULL, At; — Is(t1,NULL, T)) * tree(arg2, Aty — dey.Is(ta,e1, T) xIs(e1,e1, T))



Program Verification Result

» Exceeds the previous method with domain-specific feature
engineering (89.96% > 89.11%)

Program  Invariant Found

Traversel Is(1lst,curr) xlIs(curr,NULL)
Traverse2 curr # NULL * lst # NULL *Is(1st, curr) *Is(curr,NULL)

Concat a# NULLx*a # bx*xb+# curr x curr # NULL
xls(curr, NULL) x Is(a, curr) * Is(b, NULL)
Copy Is(curr,NULL) * Is(1st, curr) *Is(cp, NULL)
Dispose Is(1st,NULL)
Insert curr # NULL * curr # elt xelt # NULL*xelt # 1lst x 1st # NULL

*ls(elt,NULL) % Is(1st, curr) *xIs(curr,NULL)
Remove  curr # NULL * 1st # NULL * Is(1st, curr) *Is(curr, NULL)




Takeaways

* GNNs consist of a propagation model to update node
representations and an output model to compute the outputs

* GG-NN uses a GRU-like propagation model and GGS-NN follows
the recurrent structure for sequential outputs

* They are proven very powerful on tasks like bAbl and program
verification which can be graph-structured



Graph CNNs for Semantic Role Labeling

Eddie Huang

marcheggiani-titov-2017-encoding
"Encoding Sentences with Graph Convolutional Networks for Semantic Role
Labeling" - Marcheggiani, Diego and Titov, lvan

20 February, 2020



Outline

Main Idea

Introduction
Semantic Role Labeling (SRL)
Related Work

Reiterate Main Idea

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture

Results

Criticism



Outline

Main Idea

Introduction
Semantic Role Labeling (SRL)
Related Work

Reiterate Main Idea

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture

Results

Criticism



Main Idea



Main Idea

Al

i Classifier
t

o

dob'
nsuhl
N / K layers
|:| |:| |:| |:| h
t
I:I:I:I w3
BiLSTM
tt t f
“ | I I word J
representation
bt

Lane disputed those estimates

Figure 1: Model Architecture



Main Idea

Al h

Iil Classifier
[y

dobj
,1, \
nsub) omo

\/ <

t
f

i i word
H H H representation

ot

Lane disputed those estimates

&
a

—>

—

Figure 1: Model Architecture

A new model using
graph convolutional
neural networks
with syntax graphs
exceeds previous
best models in
semantic role
labeling



Outline

Introduction
Semantic Role Labeling (SRL)
Related Work



What is Semantic Role Labeling (SRL)?



What is Semantic Role Labeling (SRL)?

Want to know "who did what to whom?"



What is Semantic Role Labeling (SRL)?

Want to know "who did what to whom?"

Example

Sequa makes and repairs jet engines



What is Semantic Role Labeling (SRL)?

Want to know "who did what to whom?"

Example

Sequa makes and repairs jet engines
» Predicates: makes, repairs
» Semantic Roles:

> Agent: Sequa
> Patient: engines



Why do we want SRL?



Why do we want SRL?

IFezilie Nore Feature
Raw Text Preprocess extraction A Classifier
(SRL) Extraction

Figure 2: SRL provides more intermediate features in NLP pipeline



Related Work



Related Work

» Earliest works with RNNs on SRL began in 2008

> 2014-2017 Modern approaches using LSTMs and Syntactic
features

» A multi-layer Bi-LSTM model made in 2017 was the most
state-of-the-art SRL model at the time (created by the same
author)

Basic Components

» GCNs

» Syntax Parsing

» LSTMs

» Word Embeddings



Outline

Reiterate Main Idea



Reiterate Main ldea

Al h

Iil Classifier

\

[

- /;%"m;\ A new model using
» N1 Kl .
GoN graph convolutional
neural networks
Ff ot with syntax graphs
exceeds previous
J layers .
I_I:I—;I BILSTM best models in

FF f 7 sema.ntlc role
( H word |abe|lng

H i [ representation

-ttt

Lane disputed those estimates

Figure 3: Model Architecture



Example

Al

repair,01 . engine.01
Sequa and repairs jet engines.
SB J COORD CONJ

ROOT

Figure 4: An Example (red is what we want to find)



Outline

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture



Syntactic Dependency Graph

» Syntax of a language can be represented as a relationship
between words rooted at the predicate of a sentence

are
We | trying
: i : to
understand
difference

t hlc

We are trying to understand the difference.

Figure 5: A syntax dependency graph



Syntactic Dependency Graph

» Syntax of a language can be represented as a relationship
between words rooted at the predicate of a sentence

> Edges represent the syntactic relationship between the nodes

are
We | trying
: i : to
understand
difference

t hlc

We are trying to understand the difference.

Figure 5: A syntax dependency graph



Role of Syntactic Dependency Graphs



Role of Syntactic Dependency Graphs

CA
ﬁ Classifier

K layers

H GCN
J layers
BiLSTM

i
] H i reprems’::tjatiorJ
bttt

Lane disputed those estimates

Figure 6: Syntactic dependency occurs between LSTM and GCN



What are Graph Convolutional Neural Networks (GCNs)?



What are Graph Convolutional Neural Networks (GCNs)?

Lane disputed those estimates
> /N
N - ~ > NMOD 7
~_ _ -~ ~ —==
SBJ OBT -

Figure 7: Graph Convolutional Neural Network



What are Graph Convolutional Neural Networks (GCNs)?

GCNs are neural
networks that take
in a graph (a set of
nodes and edges)
and output features
for each node.

Lane disputed those estimates

> /N »
> ™~ Nwmop, 77

Figure 7: Graph Convolutional Neural Network



How do GCNs compute features for nodes?



How do GCNs compute features for nodes?

Node features are computed as non-linear combinations of their
neighbors



How do GCNs compute features for nodes?

Node features are computed as non-linear combinations of their

neighbors
h, = ReLU< > (Wi + b))
IJEN(V)

P> x, is a vector representation of node u.



How do GCNs compute features for nodes?

Node features are computed as non-linear combinations of their

neighbors
hy, = ReLU< > (Wi + b))
UEN(V)

P> x, is a vector representation of node u.

Can stack k GCN layers to capture dependency between nodes k
hops away (k = 1 was best)

Al — ReLU( 3

(WDt b(“)))
ueNv)



K Layers Captures K-hop dependencies

‘ReLU(D) | ‘ReLU(E-) | ‘ReLU(E-) | ‘ReLU(E-) |

Lane disputed those estimates
3 /N
~

Figure 8: h{/ = ReLU(ZueN(v)(W(k—Uh‘u“’ + b("—l))>



Capturing Edge Information

A1

A0 _—
< At
0 / T A
A/
make.01 repair01 . engine.01
Sequa makes and repairs jet englnesj
o8 COORD — CONJ NMOD
0BJ

ROOT

Figure 9: Syntax graphs have directionality and edges have different
meanings based on their syntax



Capturing Edge Information

A0

ake 01] ( repair01 \ . engine m
Sequa ak and repalrs jet englnes

S8y { COORD  CONJ NMOD

0OBJ
ROOT

Figure 9: Syntax graphs have directionality and edges have different
meanings based on their syntax

Solution - Have separate weights for each type of edge



Capturing Edge Information

vy T A
e —
s C\ak’? o) " (‘repair01" ot (engips.m )
equa makes an repairs e engines.
qua - (makes) \repais | jet [engines
Py COORD  CONJ NMOD
oBJ

ROOT

Figure 9: Syntax graphs have directionality and edges have different
meanings based on their syntax

Solution - Have separate weights for each type of edge

Ak — ReLU< 3 (Wcsikr(j,lj)h(f‘l) 4 b&j}j))
ueNv)

» dir(u, v) € {backward(1), self-loop(2), forward(3)}
» L(u,v) captures both directionality and syntax function



Weighting Importance to Different Syntax

ke 0o repair01 engine.01
Sequa makes an repairs | engines.

COORD  CONJ NMOD

0OBJ
ROOT

Figure 10: Some edges are more important than others



Weighting Importance to Different Syntax

A1

A0 _—
< At
0 / T A
A/
make.01 repair01 . engine.01
Sequa makes and repairs jet englnesj
o8 COORD  CONJ NMOD
0BJ

ROOT

Figure 10: Some edges are more important than others

Solution - Use sigmoid to express weighted importance



Weighting Importance to Different Syntax

J—
/ 01 repair,01
Sequa Qnakes repairs )

S8y { COORD  CONJ NMOD

0OBJ
ROOT

Figure 10: Some edges are more important than others

Solution - Use sigmoid to express weighted importance

g = ol o+ 6



Weighting Importance to Different Syntax

A0

% T
e.01 ] ( \ eeeeee
Sequa Qnakes and repal rs j englnes

S8y { COORD  CONJ NMOD

0OBJ
ROOT

Figure 10: Some edges are more important than others

Solution - Use sigmoid to express weighted importance

g = ol o+ 6

k k 1 k 1 k 1 k—1

ueNwv



Final Version of GCN

Node features are computed as a weighted non-linear combination
of neighbors within k hops.

)= retof 32 el (W o))

ueNwv

Remark
Similar to a multi-layer perceptron



Architecture

Ay
( At

lil Classifier
\ A J
’—70
-
doﬂ, -~
nsubj nmd
- o
LN / d ‘ K layers
D H D GCN
1 i ;
J layers
BiLSTM

-
£

Lane disputed those estimates

Figure 11: Architecture of new model

Remarks

» Relies on external
syntactic parser and
predicate identifier.

» Layer after the GCN
is just another
feed-forward network
with a softmax for
semantic role
classification.



LSTMs and GCNs compliment each other

Al

engine.01
engines.

repair.01 .
and repairs jet

SBJ ’ COORD CONJ NMOD

0oBJ
ROOT

Figure 12: engines is physically far away from makes but syntactically
adjacent to it

LSTMs (RNNs) efficiently capture physically close dependencies.
GCNs can efficiently capture physically far away dependencies



Outline

Main Idea

Introduction
Semantic Role Labeling (SRL)
Related Work

Reiterate Main Idea

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture

Results

Criticism



Results

Precision, recall, and F1 scores for the CoNLL-2009 English and
Chinese datasets

System P R F

Lei et al. (2015) (ocal) - - 866

FitzGerald et al. (2015) (local) - - 867

Roth and Lapata (2016) (local) ~ 88.1 85.3 86.7

Marcheggiani et al. (2017) (local) 88.7 86.8 87.7 System P R K
Ours (local 89.1 86.8 88.0

B_‘“i(l d’ T e Zhao et al. (2009) (global) 80.4 752 71.7
jorkelund et al. (global) X .. .S

FitzGerald et al. (2015) (global) o 873 Bjorkelund et al. (2009) (global) 82.4 75.1 78.6
Foland and Martin (2015) (globah - - 86.0 Roth and Lapata (2016) (global) 83.2 75.9 79.4
Swayamdipta et al. (2016) (global) - - 850

Roth and Lapata (2016) (global) ~ 90.0 85.5 87.7 Ours (local) 84.6 80.4 82.5
FizGerald et al. (2015) (ensemble) - - 877

Roth and Lapata (2016) (ensemble) 90.3 85.7 87.9

Ours (ensemble 3x) 90.5 87.7 89.1

Figure 14: Chinese Results

Figure 13: English Results

Remark
» Beats previous best results by 0.6% — 1.9%
> k =1 works best



Outline

Main Idea

Introduction
Semantic Role Labeling (SRL)
Related Work

Reiterate Main Idea

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture

Results

Criticism



Criticism

Syntactic graph parsing is similar to semantic role labeling because
their graph structures look nearly the same. Could probably make
at least a decent hand-made algorithm to perform SRL given
syntax dependency graph. Would like to see comparison between
hand-made algorithm vs. neural net.

Al

engine.01
engines.

repair.01 .
Sequa K jet

sBJ ‘ COORD CONJ NMOD

oBJ
ROOT

Figure 15: SRL and Syntactic are nearly identical



