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Node Embeddings

´Intuition: Find embeddings of nodes in a d-
dimensional space so that “similar” nodes in the graph 
have embeddings that are close together.
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Setup
´Assume we have a graph G:

´V is the vertex set (i.e., node set).
´A is the adjacency matrix (assume binary).



Embedding Nodes 
´ Goal: to encode nodes so that similarity in the embedding space 

(e.g., dot product) approximates similarity in the original network.  

similarity(u, v) ⇡ z>v zu



Random Walk Embeddings: Basic Idea

1. Estimate probability of visiting 
node v on a random walk 
starting from node u using 
some random walk strategy R.

2. Optimize embeddings to 
encode these random walk 
statistics. 

probability that u and v co-occur on a 
random walk over the networkz>u zv ⇡



Algorithm/Optimization of Random Walk Embeddings

1. Run short random walks starting from each node on the 
graph using some strategy R.

2. For each node u collect NR(u), the multiset* of nodes 
visited on random walks starting from u.（* NR(u) can have 
repeat elements since nodes can be visited multiple times on 
random walks.）

3. Optimize embeddings to according to:

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))

P (v|zu) =
exp(z>u zv)P

n2V exp(z>u zn)

In practice, random sampling based 
on some distribution over nodes



Node2vec: Biased Random Walks
´ Idea: use flexible, biased random walks that can trade off between 

local and global views of the network (Grover and Leskovec, 2016).  
´ BFS (Breath-First Search)and DFS (Depth-First Search): Two classic 

strategies to define a neighborhood 𝑁, 𝑢 of a given node 𝑢:
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes
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Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

𝑁./0 𝑢 = { 𝑠4, 𝑠6, 𝑠7}

𝑁9/0 𝑢 = { 𝑠:, 𝑠;, 𝑠<}

Local microscopic view

Global macroscopic view

https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf


Combine BFS + DFS by a Ratio

Biased random walk 𝑅 that 
given a node 𝑢 generates 
neighborhood 𝑁, 𝑢
´Two parameters:

´Return parameter 𝑝:
Return back to the 
previous node

´Walk-away parameter 
𝑞 : Moving outwards 
(DFS) vs. inwards (BFS)

1

1/𝑞
1/𝑝s1

s2

w
s3

u

s1
s2
s3

1/𝑝
1
1/𝑞

BFS-like walk: Low value of 𝑝
DFS-like walk: Low value of 𝑞

Unnormalized
transition prob.

w →

Walker is at 𝑤. 
Where to go next?



Benchmarks: Node Classification & Link Prediction
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Empirical Results
Node Classification

Link Prediction



Advantages of Node2Vec

´node2vec performs better on node 
classification compared with other node 
embedding methods.

´Random walk approaches are generally more 
efficient (i.e., O(|E|)	vs. O(|V|2))

´(Note: In general, one must choose definition of 
node similarity that matches application. )



Other random walk node 
embedding works

´ Different kinds of biased random walks:
´Based on node attributes (Dong et al., 2017).
´Based on a learned weights (Abu-El-Haija et al., 2017)

´ Alternative optimization schemes:
´Directly optimize based on 1-hop and 2-hop random 

walk probabilities (as in LINE from Tang et al. 2015).
´ Network preprocessing techniques:

´Run random walks on modified versions of the original 
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et 
al. 2016’s HARP).

https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845


LEARNING 
ENTITY AND 
RELATION 
EMBEDDINGS 
FOR 
KNOWLEDGE 
GRAPH 
COMPLETION
XIAODAN DU



KNOWLEDGE 
GRAPH 
COMPLETION

◼ Predicting 
relations between 
entities under 
supervision of the 
existing 
knowledge graph



KNOWLEDGE GRAPH EMBEDDING

◼ Embedding a knowledge graph into a continuous vector space 
while preserving certain information of the graph

◼ Learning vector embeddings for both entities and relationships
◼ TransE (Bordes et al. 2013), TransH (Wang et al. 2014): assume 

embeddings of entities and relations belong to a single space ℝk

◼ TransR: assumes one entity space and multiple relation spaces



TRANSE AND 
TRANSH

IF TRIPLE (H, R, T) HOLDS
TransE TransH

Solves the problem of 1-to-N, 
N-to-1 and N-to-N relations



TRANSR

◼ Authors argue that: 
◼ relations and entities are completely different objects, so they shouldn’t be embedded in 

the same semantic space.

◼ Even though TransH extends modeling flexibility, it does not perfectly break the restrict of 
a common semantic space

h, t ∈ ℝk; r ∈ ℝd Mr ∈ ℝk×d



CTRANSR – 
CLUSTER-BASE
D TRANSR

A UNIQUE VECTOR FOR 
EACH RELATION MIGHT BE 
UNDER-REPRESENTATIVE 

Basic idea of CTransR: Grouping head-tail 
pairs into different clusters and learning 
relation embeddings for each cluster



CTRANSR – 
CLUSTER-BASE
D TRANSR

A UNIQUE VECTOR FOR 
EACH RELATION MIGHT BE 
UNDER-REPRESENTATIVE 

1. Obtain entity embeddings h and t for all (h, t) 
pairs using TransE

2. Compute vector offsets (h - t) for all training 
data for each relation r

3. Vector offsets for a certain relation are likely 
to form multiple clusters

4. Learn a separate relation vector rc for each 
cluster and matrix Mr for each relation, 
respectively (Authors seem to assume 
different clusters within the same relation 
share a single relation space)



EXPERIMENT RESULTS

Link Prediction: predicting the missing h or t for a relation fact triple (h, r, t)



EXPERIMENT RESULTS

Triple Classification: judging whether a given triple (h, r, t) is correct



EXPERIMENT RESULTS

Relation Extraction from 
Text: Combining results 
from text-based relation 
extraction model and 
knowledge graph 
embeddings to rank test 
triples



MY THOUGHTS

◼ Training time – Performance Tradeoff

◼ A single CNN instead of matrix for each relation

◼ Relation hyperplane vs. relation space

◼ CTransR is more inspirational



Gated Graph Sequence 
Neural Networks

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R, ICLR 2016

Presented by Hyoungwook Nam (hn5)



Abstract

- Graph-structured data appears on many domains

- Based on GNNs (graph neural network), utilize GRU (gated 
recurrent unit) and extend to output sequences

- The result is flexible, and better than sequence-based models 
(e.g. LSTM) if a problem can be graph-structured

- State-of-the-art on bAbI and graph algorithm tasks



Introduction

Previous approaches: 

• Graph feature engineering, Graph neural network (GNN), 
spectral networks, etc.

Contributions: 

• Propose GGS-NN, a gated GNN for sequence output.

• Show that it is useful for many problems (shortest path, 
program verification, etc.)



Graph Neural Network (GNN)

• Propagation model gives node representations (embeddings)

• Output model 𝑔 provides outputs 𝑜𝑣 = 𝑔(𝒉𝑣, 𝑙𝑣) per vertex

• Similar to RNN encoder-decoder without attention
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Propagation Model

• 𝒉𝑣
(𝑡)

= 𝑓(𝑁𝐵𝑅𝑣
(𝑡−1)

) where 𝑁𝐵𝑅𝑣 is a set of v’s neighbors

• From initial 𝒉𝑣
1

s, the update repeats until convergence
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Gated Graph Neural Network (GG-NN)

• Initialize ℎ𝑣
(1)

with annotations 𝑥𝑣 instead of random values

• GRU-like propagation model

• Output model: Graph-level or node-selection with softmax



Adjacency Matrix and Neighborhood

• Adjacency matrix 𝐴 = [𝐴 𝑜𝑢𝑡 , 𝐴 𝑖𝑛 ] for neighborhood updates

• 𝑎𝑣
𝑡
= 𝐴𝑇 ℎ1

𝑡−1
…ℎ𝑉

𝑡−1
𝑇

will propagate ℎ𝑣′ of v’s neighbors

• ℎ𝑣
𝑡
= 𝐺𝑅𝑈(𝑎𝑣

𝑡
, ℎ𝑣

𝑡−1
)



Gated Graph Sequence NN (GGS-NN)

• Objective: create an output sequence 𝑜(1)…𝑜(𝑘)

• RNN-like structure using two GG-NNs 𝐹𝑜
𝑛
, 𝐹𝑘

𝑛

• Latent (hidden) or observed annotations 𝑋(𝑛)s are possible



bAbI Task Evaluation Setup

• Symbolic task to graph structured problem

B
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bAbI + Graph Algorithm Result

• (N): Samples needed for the best result (max 950)



Program Verification Setup

• Program → Memory Heap → GG-NN → Invariant Logic 

GGS-NN



Program Verification Result

• Exceeds the previous method with domain-specific feature 
engineering (89.96% > 89.11%)



Takeaways

• GNNs consist of a propagation model to update node 
representations and an output model to compute the outputs

• GG-NN uses a GRU-like propagation model and GGS-NN follows 
the recurrent structure for sequential outputs

• They are proven very powerful on tasks like bAbI and program 
verification which can be graph-structured



Graph CNNs for Semantic Role Labeling

Eddie Huang

marcheggiani-titov-2017-encoding
"Encoding Sentences with Graph Convolutional Networks for Semantic Role

Labeling" - Marcheggiani, Diego and Titov, Ivan

20 February, 2020
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Main Idea

Figure 1: Model Architecture

A new model using
graph convolutional
neural networks
with syntax graphs
exceeds previous
best models in
semantic role
labeling
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What is Semantic Role Labeling (SRL)?

Want to know "who did what to whom?"

Example
Sequa makes and repairs jet engines
I Predicates: makes, repairs
I Semantic Roles:

I Agent: Sequa
I Patient: engines
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Why do we want SRL?

Raw Text Preprocess
Feature

extraction
(SRL)

ClassifierMore Feature
Extraction

Figure 2: SRL provides more intermediate features in NLP pipeline
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Related Work

I Earliest works with RNNs on SRL began in 2008
I 2014-2017 Modern approaches using LSTMs and Syntactic

features
I A multi-layer Bi-LSTM model made in 2017 was the most

state-of-the-art SRL model at the time (created by the same
author)

Basic Components
I GCNs
I Syntax Parsing
I LSTMs
I Word Embeddings



Related Work

I Earliest works with RNNs on SRL began in 2008
I 2014-2017 Modern approaches using LSTMs and Syntactic

features
I A multi-layer Bi-LSTM model made in 2017 was the most

state-of-the-art SRL model at the time (created by the same
author)

Basic Components
I GCNs
I Syntax Parsing
I LSTMs
I Word Embeddings



Outline

Main Idea

Introduction
Semantic Role Labeling (SRL)
Related Work

Reiterate Main Idea

Methodology
Syntactic Dependency Graph
Graph Convolutional Neural Networks (GCNs)
Architecture

Results

Criticism



Reiterate Main Idea

Figure 3: Model Architecture

A new model using
graph convolutional
neural networks
with syntax graphs
exceeds previous
best models in
semantic role
labeling



Example

Figure 4: An Example (red is what we want to find)
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Syntactic Dependency Graph
I Syntax of a language can be represented as a relationship

between words rooted at the predicate of a sentence

I Edges represent the syntactic relationship between the nodes

Figure 5: A syntax dependency graph
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Role of Syntactic Dependency Graphs

Figure 6: Syntactic dependency occurs between LSTM and GCN
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What are Graph Convolutional Neural Networks (GCNs)?

Figure 7: Graph Convolutional Neural Network

GCNs are neural
networks that take
in a graph (a set of
nodes and edges)
and output features
for each node.
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GCNs are neural
networks that take
in a graph (a set of
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for each node.



How do GCNs compute features for nodes?

Node features are computed as non-linear combinations of their
neighbors

hv = ReLU
( ∑

u∈N(v)

(Wxu + b)

)

I xu is a vector representation of node u.

Can stack k GCN layers to capture dependency between nodes k
hops away (k = 1 was best)

h
(k)
v = ReLU

( ∑
u∈N(v)

(W (k−1)h
(k−1)
u + b(k−1))

)
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( ∑
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K Layers Captures K-hop dependencies

Figure 8: h(k)v = ReLU
(∑

u∈N(v)
(W (k−1)h

(k−1)
u + b(k−1))

)



Capturing Edge Information

Figure 9: Syntax graphs have directionality and edges have different
meanings based on their syntax

Solution - Have separate weights for each type of edge

h
(k)
v = ReLU

( ∑
u∈N(v)

(W
(k−1)
dir(u,v)h

(k−1)
u + b

(k−1)
L(u,v))

)

I dir(u, v) ∈ {backward(1), self-loop(2), forward(3)}
I L(u, v) captures both directionality and syntax function
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Weighting Importance to Different Syntax

Figure 10: Some edges are more important than others

Solution - Use sigmoid to express weighted importance

g
(k−1)
u,v = σ(h
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Figure 10: Some edges are more important than others
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Final Version of GCN

Node features are computed as a weighted non-linear combination
of neighbors within k hops.

h
(k)
v = ReLU

( ∑
u∈N(v)

g
(k−1)
u,v

(
W

(k−1)
dir(u,v)h

(k−1)
u + b

(k−1)
L(u,v)

))

Remark
Similar to a multi-layer perceptron



Architecture

Figure 11: Architecture of new model

Remarks
I Relies on external

syntactic parser and
predicate identifier.

I Layer after the GCN
is just another
feed-forward network
with a softmax for
semantic role
classification.



LSTMs and GCNs compliment each other

Figure 12: engines is physically far away from makes but syntactically
adjacent to it

LSTMs (RNNs) efficiently capture physically close dependencies.
GCNs can efficiently capture physically far away dependencies
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Results
Precision, recall, and F1 scores for the CoNLL-2009 English and
Chinese datasets

Figure 13: English Results

Figure 14: Chinese Results

Remark
I Beats previous best results by 0.6%− 1.9%
I k = 1 works best
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Criticism

Syntactic graph parsing is similar to semantic role labeling because
their graph structures look nearly the same. Could probably make
at least a decent hand-made algorithm to perform SRL given
syntax dependency graph. Would like to see comparison between
hand-made algorithm vs. neural net.

Figure 15: SRL and Syntactic are nearly identical


