
CS546: Machine Learning in NLP (Spring 2020)
http://courses.engr.illinois.edu/cs546/

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Lecture 8:
CNNs; Self-Attention

CS546 Machine Learning in NLP

Today’s class
Quick overview of CNNs for text classification
(also FastText)

Introduction to transformers (self-attention)

Admin

2

CS546 Machine Learning in NLP

Short Paper Reviews
For 10 lectures where papers are discussed, you will
have to submit a review of one of the papers that was
discussed in class. 

—Due to the size of the class, we can largely grade you for
completion (although we will spot-check your answers)
— You will have to submit the reviews through Compass.
— In the past, we’ve used a LaTeX template for this,  
but we may switch to tests inside Compass 

We encourage you to get into the habit of taking notes about
the papers you read. Hopefully this will get you started!

3

CS546 Machine Learning in NLP

Short paper reviews
In Compass2G: three short papers reviews are out
Do them by March 15 (end of day)

4

CS546 Machine Learning in NLP

Questions
What is the topic of this paper?

What are the main claims made in this paper?

What are the main findings/results in this paper that justify the claims?

What do you see as the main contributions of this paper to the field?

This is your chance to critique this paper. Do you agree with the
claims (based on what is in this paper, or, perhaps, based on other
papers you have read)? Is there anything that could have/should have
been done differently/better, or added to the paper?

Is there anything in this paper that you don't understand

What is this paper's impact?

Does this paper use any special techniques ("tricks of the
trade") during training (or perhaps model definition or testing) that
are or may be important?

5

CS546 Machine Learning in NLP

Paper presentations
02/21 BERT, GPT-2 etc. continued

02/26 Deep Learning for Graphs

03/04 Neural Generation

03/06 Neural Summarization

03/11 Neural Machine Translation

03/13 Neural Sequence Labeling

03/25 Neural Structure Prediction

03/27 Neural Question Answering

04/01 More on Neural Question Answering

04/03 Multimodal NLP

04/08 Neural Dialogue

04/10 More on Neural Dialogue

04/17 Intro to GANs in NLP

04/22 More on GANs in NLP

04/24 Reinforcement Learning in NLP

04/29 Fairness/Ethics in NLP

05/01 Deep Learning in Low Resource Settings

6

CS546 Machine Learning in NLP

Paper presentations
Everybody needs to prepare a 15-minute oral
presentation and a two-page writeup about one
research paper to be shared with the class.

NB: This paper shouldn’t come from your own research group,
nor can it be a paper you presented in your qualifying exam.
-We will send out a sign-up sheet with dates and papers for
each class.
-You will have to come to my office hours the Monday of the
week when you’re presenting with your slides to show them
to me, otherwise you will only get half credit for your
presentation.
-You have one week after your presentation to send in your
writeup (so that you can reflect any in-class discussion)

7

CS546 Machine Learning in NLP

Grading criteria for presentations
— Clarity of exposition and presentation
— Analysis (don’t just regurgitate what’s in the paper)
— Quality of slides (and effort that went into making
them — just re-using other people’s slides is not
enough)

8

CS546 Machine Learning in NLP

Research projects
You will have to complete a sizable research project.

Due to the size of the class, you will have to work in
groups (we’re aiming for 3–4 students/team).

There will be several milestones:
— Initial proposal (Feb 28)
— Intermediate report and presentation
— Final report and presentation

We have applied for accounts and GPU hours on
BlueWaters for these projects.

9

CS546 Machine Learning in NLP

Research projects
The aim is for each team to produce something  
that could be submitted to a conference: 

— You should aim to make an actual contribution  
 to research
— Your presentation should be sufficiently polished

If you build on existing research, talk to me,  
and loop your advisor in as well if necessary.
 
If you’re doing related projects in other classes,  
let me and the other professor know.

10

CS546 Machine Learning in NLP

Convolutional Neural
Nets (CNNs)

11

CS546 Machine Learning in NLP

CNNs for images
2D (and 3D) CNNs are standard neural models for vision tasks. 

— Inspired by receptive fields in visual cortex: individual
neurons respond to small regions (patches) of the visual field
— Neocognitron (Fukushima, 1980): CNN with convolutional and
downsampling (pooling) layers 
— In CNNs: parameter sharing among neurons within same
convolutional layer, possibly followed by fully connected layers
for classification purposes
— CNNs handle images of varying sizes with fixed # parameters
— Can be trained by backprop and gradient descent 
— Typical CNNs combine convolution with nonlinear activations
(ReLU) and (max)pooling

12

CS546 Machine Learning in NLP

(2D) CNNs
An image is a 2D (width × height) matrix of pixels (e.g. RGB values)
=> it is a 3D tensor: color channels (“depth”) × width × height

Each convolutional layer returns a 3d tensor, and is defined by:
— the depth (#filters) of its output
— a filter size (the square size of the input regions for each filter),
— a stride (the step size for how to slide filters across the input)
— zero padding (how many 0s are added around edges of input)

=> Filter size, stride, zero padding define the width/height of the output

Each unit in a convolutional layer
— receives input from a square region/patch (across w×h)  
 in the preceding layer (across all depth channels)
— returns the dot product of the input activations and its weights
Within a layer, all units at the same depth use the same weights
Convolutional layers are often followed by ReLU activations
http://cs231n.github.io/convolutional-networks/

13

CS546 Machine Learning in NLP

Pooling Layers
Pooling layers reduce the size of the representation, and are often
used following a pair of conv+ReLU layers

Each pooling layer returns a 3D tensor of the same depth as its
input (but with smaller height & width) and is defined by
— a filter size (what region gets reduced to a single value)
— a stride (step size for sliding the window across the input)
— a pooling function (max pooling, avg pooling, min pooling, …)

Pooling units don’t have weights, but simply return the maximum/
minimum/average value of their inputs

Typically, pooling layers only receive input from a single channel.
So they don’t reduce the depth (#channels).

14

CS546 Machine Learning in NLP

Other tricks
1x1 conv layers:

can be used to decrease/increase #channels (depth)
don’t affect width or height of the input

Dropout to prevent overfitting:
set values of units to 0 with probability p

15

CS546 Machine Learning in NLP

1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

We can use a 1D CNN to slide a window of n tokens across:
— filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog  

CNNs (w/ ReLU and maxpool) are used for text classification
16

CS546 Machine Learning in NLP

Understanding CNNs for text classification
Jacovi et al.’18 https://www.aclweb.org/anthology/W18-5408/

— Different filters detect (suppress) different types of ngrams
— Max-pooling removes irrelevant n-grams
— Filters can produce erroneous output  
 (abnormally high activations) on artificial input
— In a single-layer CNN with maxpooling, each filter output  
 can be traced back to a single input ngram
— the slots (positions) in a filter are used to check whether
specific types of words are present or absent in the input
— each filter can also be associated with a class it predicts

17

CS546 Machine Learning in NLP

FastText

18

CS546 Machine Learning in NLP

Fasttext
Library for word embeddings and text classification,
based on:

Joulin et al. (2014) Bag of tricks for efficient text
classification https://arxiv.org/pdf/1607.01759.pdf

Text classification model, consisting of:
— static word embeddings and ngram features
— that get averaged together in one hidden layer
— hierarchical softmax output over class labels

Bojanowski et al. (2016) Enriching word vectors with
subword information https://arxiv.org/pdf/1607.04606.pdf

Skipgram model where each word is a sum of character ngram
embeddings and its own embedding
Each word is deterministically mapped to ngrams

19

CS546 Machine Learning in NLP

From Self-Attention to
Transformers

20

http://peterbloem.nl/blog/transformers

CS546 Machine Learning in NLP

Attention mechanisms
Compute a probability distribution over the
encoder’s hidden states that depends on the decoder’s current

Compute a weighted avg. of the encoder’s :

that gets then used with , e.g. in

— Hard attention (degenerate case, non-differentiable):  
 is a one-hot vector 

— Soft attention (general case): is not a one-hot
 — is the dot product (no learned parameters)
 — (learn a bilinear matrix W)
 — concat. hidden states

α = (α1t, . . . , αSt)
h(s) h(t)

αts =
exp(s(h(t), h(s)))

∑s′ �exp(s(h(t), h(s′�)))
h(s) c(t) = ∑

s=1..S

αtsh(s)

h(t) o(t) = tanh(W1h(t) + W2c(t))

α

α
s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
21

CS546 Machine Learning in NLP

Self-Attention
Attention so far (in seq2seq architectures):

In the decoder (which has access to the complete input
sequence), compute attention weights over encoder positions  
that depend on each decoder position  

Self-attention:
If the encoder has access to the complete input sequence,  
we can also compute attention weights over encoder positions
that depend on each encoder position

22

For each decoder position t,
 compute an attention weight for each encoder position s
 renormalize these weights (that depend on t) w/ softmax 
 to obtain a new weighted avg. of the input sequence vectors

self-attention:
encoder

CS546 Machine Learning in NLP

Self-attention
Given T k-dimensional input vectors x(1)…x(i)…x(T),  
compute T k-dimensional output vectors y(1)…y(i)…y(T)  

where each y(i) is a weighted average of the input vectors, and
where the weights wij depend on y(i) and x(j)  

Computing weights wij naively:  
use dot product:  

 followed by softmax:

y(i) = ∑
j=1..T

wijx(j)

w′�ij = ∑
k

x(i)
k x(j)

k

wij =
exp(w′�ij)

∑j exp(w′�ij)

23

CS546 Machine Learning in NLP

Queries, keys, values
Let’s add learnable parameters (weight matrices),  
and turn each vector into three versions:

— Query vector
— Key vector:
— Value vector:

The attention weight of the j-th position to compute the new output  
for the i-th position depends on the query of i and the key of j:

The new output vector for the i-th position depends on  
the attention weights and value vectors of all input positions j:  

k × k
x(i)

q(i) = Wqx(i)

k(i) = Wkx(i)

v(i) = Wvx(i)

w(i)
j =

exp(q(i)k(j))
∑j exp(q(i)k(j))

=
exp(∑l q(i)

l k(j)
l)

∑j exp(∑l q(i)
l k(j)

l)

y(i) = ∑
j=1..T

w(i)
j v(j)

24

CS546 Machine Learning in NLP

Scaling attention weights
Value of dot product grows with vector dimension k
To scale back the dot product, divide by :k

w(i)
j =

exp(q(i)k(j))/ (k)

∑j (exp(q(i)k(j))/ k)

25

CS546 Machine Learning in NLP

Multi-head attention
Just like we use multiple filters in CNNs,  
we can use multiple attention heads that each have
their own sets of key/value/query matrices.

Narrow self-attention:
predefine subsets of dimensions that each attention
head applies to

Wide/full self-attention:
each attention head uses all dimensions.

26

