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Today’s class: RNN architectures
RNNs are among the workhorses of neural NLP:
— Basic RNNs are rarely used
— LSTMs and GRUs are commonly used. 
What’s the difference between these variants?  

RNN odds and ends:
— Character RNNs
— Attention mechanisms (LSTMs/GRUs)
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Character RNNs and BPE
Character RNNs:
— Each input element is one character: ’t’,’h’, ‘e’,…
— Can be used to replace word embeddings,  
     or to compute embeddings for rare/unknown words 

(in languages with an alphabet, like English…) 
see e.g. http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
(in Chinese, RNNs can be used directly on characters without word 
segmentation; the equivalent of “character RNNs” might be models that 
decompose characters into radicals/strokes)

Byte Pair Encoding (BPE):
— Learn which character sequences are common  
    in the language (‘ing’, ‘pre’, ‘at’, …)
— Split input into these sequences and learn 
embeddings for these sequences  
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Attention mechanisms
Compute a probability distribution  over the 
encoder’s hidden states  that depends on the decoder’s current  

  

Compute a weighted avg. of the encoder’s :  

that gets then used with , e.g. in 

— Hard attention (degenerate case, non-differentiable):  
      is a one-hot vector 

— Soft attention (general case):   is not a one-hot
 —  is the dot product (no learned parameters)
 —   (learn a bilinear matrix W)
 —    concat. hidden states

α = (α1t, . . . , αSt)
h(s) h(t)

αts =
exp(s(h(t), h(s)))

∑s′ �exp(s(h(t), h(s′�)))
h(s) c(t) = ∑

s=1..S

αtsh(s)

h(t) o(t) = tanh(W1h(t) + W2c(t))

α

α
s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
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Activation functions
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Recap: Activation functions
Sigmoid (logistic function):  
 σ(x) = 1/(1 + e−x)  
Returns values bound above and below  
in the  range  

Hyperbolic tangent:   
tanh(x) = (e2x −1)/(e2x+1) 
Returns values bound above and below  
in the  range  
 
Rectified Linear Unit:     
ReLU(x) = max(0, x)
Returns values bound below  
in the  range

[0,1]

[−1, +1]

[0, +∞]
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From RNNs to LSTMs
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From RNNs to LSTMs
In Vanilla (Elman) RNNs, the current hidden state   
is a nonlinear function of the previous hidden state  
and the current input :

  

With g=tanh (the original definition): 
⇒ Models suffer from the vanishing gradient problem:  
they can’t be trained effectively on long sequences.

With g=ReLU  
⇒ Models suffer from the exploding gradient problem:  
they can’t be trained effectively on long sequences.

h(t)

h(t−1)

x(t)

h(t) = g(Wh[h(t−1), x(t)] + bh)
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From RNNs to LSTMs
LSTMs (Long Short-Term Memory networks) were 
introduced by Hochreiter and Schmidhuber to overcome 
this problem. 

— They introduce an additional cell state that also gets 
passed through the network and updated at each time step

— LSTMs define three different gates that read in the 
previous hidden state and current input to decide how 
much of the past hidden and cell states to keep. 

— This gating mechanism mitigates the vanishing/
exploding gradient problems of traditional RNNs
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Gating mechanisms
Gates are trainable layers with a sigmoid activation function  
often determined by the current input  and the (last) hidden state  eg.:
                     

 is a vector of (Bernoulli) probabilities ( )
Unlike traditional (0,1) gates, neural gates are differentiable (we can train them)  

 is combined with another vector  (of the same dimensionality) 
by element-wise multiplication (Hadamard product): 
— If , ,  and if , 
— Each  is associated with its own set of trainable parameters  
     and determines how much of  to keep or forget

Gates are used to form linear combinations of vectors :
— Linear interpolation (coupled gates): 
— Addition of two gates: 

x(t) h(t−1)

g(t)
k = σ(Wkx(t) + Ukh(t−1) + bk)

g ∀i : 0 ≤ gi ≤ 1

g u
v = g ⊗ u

gi ≈ 0 vi ≈ 0 gi ≈ 1 vi ≈ ui
gi

ui

u, v
w = g ⊗ u + (1 − g) ⊗ v

w = g1 ⊗ u + g2 ⊗ v
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Long Short Term Memory Networks (LSTMs)

At time , the LSTM cell reads in 
— a c-dimensional previous cell state vector 
— an h-dimensional previous hidden state vector 
— a d-dimensional current input vector 
At time , the LSTM cell returns
— a c-dimensional new cell state vector 
— an h-dimensional new hidden state vector   
    (which may also be passed to an output layer)

t
c(t−1)

h(t−1)

x(t)

t
c(t)

h(t)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

c(t-1) c(t)

h(t-1) h(t-1)
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LSTM operations

Based on the previous cell state  and hidden state   
and the current input , the LSTM computes: 

1) A new intermediate cell state  that depends on  and : 
 

2) Three gates (which each depend on  and )
a) The forget gate  decides  

  how much of the last  to remember in the cell state: 
b) The input gate  decides  

  how much of the intermediate  to use in the new cell state:  
c) The output gate  decides  

  how much of the new  to use in  

3) The new cell state  is a linear combination of 
cell states  and  that depends on forget gate  and input gate 
4) The new hidden state 

c(t−1) h(t−1)

x(t)

c̃(t) h(t−1) x(t)

c̃(t) = tanh(Wc[h(t−1), x(t)] + bc)

h(t−1) x(t)

f(t) = σ(Wf[h(t−1), x(t)] + bf )
c(t−1) f(t) ⊗ c(t−1)

i(t) = σ(Wi[h(t−1), x(t)] + bi)
c̃(t) i(t) ⊗ c̃(t)

o(t) = σ(Wo[h(t−1), x(t)] + bo)
c(t) h(t) = o(t) ⊗ tanh(c(t))

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

c(t−1) c̃(t) f(t) i(t)
h(t) = o(t) ⊗ tanh(c(t))
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LSTM summary

Based on , , and , the LSTM computes: 

— Intermediate cell state     
— Forget gate                      

— Input gate                         
— New (final) cell state        
 
— Output gate                     
— New hidden state            

 and  are passed on to the next time step.

c(t−1) h(t−1) x(t)

c̃(t) = tanh(Wc[h(t−1), x(t)] + bc)
f(t) = σ(Wf[h(t−1), x(t)] + bf )
i(t) = σ(Wi[h(t−1), x(t)] + bi)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

o(t) = σ(Wo[h(t−1), x(t)] + bo)
h(t) = o(t) ⊗ tanh(c(t))

c(t) h(t)
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Gated Recurrent Units 
(GRUs)

14

Cho et al. (2014) Learning Phrase Representations using RNN 
Encoder-Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078.pdf 
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GRU definition
Based on , and , the GRU computes: 

— a reset gate  to determine how much of  to keep in 
       

— an intermediate hidden state  that depends on  and 
     

— an update gate  to determine how much of  to keep in  
      

— a new hidden state  as a linear interpolation of  and   
    with weights determined by the update gate  
     

h(t−1) x(t)

r(t) h(t−1) h̃(t)

r(t) = σ(Wrx(t) + Urh(t−1) + br)

h̃(t) x(t) r(t) ⊗ h(t−1)

h̃(t) = ϕ(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)

z(t) h(t−1) h(t)

z(t) = σ(Wzx(t) + Uzh(t−1) + br)

h(t) h(t−1) h̃(t)

z(t)

h(t) = z(t) ⊗ h(t−1) + (1 − z(t)) ⊗ h̃(t)
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Expressive power of 
RNN, LSTM, GRU

16

Weiss, Goldberg, Yahav (2018)  
On the Practical Computational Power  

of Finite Precision RNNs for Language Recognition  
https://www.aclweb.org/anthology/P18-2117.pdf
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Models
Basic RNNs: 
Simple (Elman) SRNN: 
IRNN:                            

Gated RNNs (GRUs and LSTMs)
Gates : each element is a probability
NB: a gate can return  or  by setting its matrices to 0 and b=0 or b=1
GRU with gates  
         hidden state  
                              
NB: GRU reduces to SRNN with 

LSTM with gates ,  
           memory cell    
                                 
           hidden state   for  = identity or tanh
NB: LSTM reduces to SRNN with  

h(t) = tanh(Wx(t) + Uh(t−1) + b)
h(t) = ReLU(Wx(t) + Uh(t−1) + b)

g(t)
k = σ(Wkx(t) + Ukh(t−1) + bk)

0 1
r(t), z(t)

h̃(t) = tanh(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)
h(t) = z(t) ⊗ c(t−1) + (1 − z(t)) ⊗ h̃(t−1)

r = 1, z = 0

f(t), i(t), o(t)

c̃(t) = tanh(Wcx(t) + Uch(t−1) + bc)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

h(t) = o(t) ⊗ ϕ(c(t)) ϕ
f = 0, i = 1, o = 1

17
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Simplified k-Counter Machines (SKCM)
A finite-state automaton with k counters

Depending on the input, in each step, each counter can be:
 — incremented (INC) by a fixed amount
 — decremented (DEC) by a fixed amoung
 — or left as is

State transitions and accept/reject decisions  
can compare each counter to 0 (COMP0)

SKCMs can recognize  (context-free) and  (context-
sensitive), but not palindromes ( ) (also 
context-free)

anbn anbncn

S → x ∣ aSa ∣ bSb

18
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LSTMs and Counting
LSTMs can be used to implement an SKCM: 
— k dimensions of the memory cell c(t) are counters
— Non-counting steps:  
    Set ij(t)=0, fj(t)=1 to leave counter unmodified:
    
— Counting steps:  
     Set ij(t)=1, fj(t)=1 to increment/decrement cell:
     
— Reset counter to 0:
     Set ij(t)=0, fj(t)=0 to increment/decrement cell:
     
— Comparing counters to 0:  
      and  are both 0 iff 

c(t)
j = 1 ⋅ c(t−1)

j + 0 ⋅ c̃(t)
j = c(t−1)

j

c(t)
j = 1 ⋅ c(t−1)

j + 1 ⋅ c̃(t)
j = c(t−1)

j + c̃(t)
j

c(t)
j = 0 ⋅ c(t−1)

j + 0 ⋅ c̃(t)
j = 0

h(t)
j = o(t)

j c(t)
j h(t)

j = o(t)
j tanh(c(t)

j ) c(t)
j = 0
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Simple RNNs and Counting
Update: 

The tanh() activation function means the activation 
lies within [-1,+1]
With finite precision, counting can only be achieved 
within a narrow range (and will be unstable)

Simple RNNs have poor generalization capabilities for 
counting

h(t)
i = tanh(∑

j

Wijx(t)
j + ∑

j

Uijh(t−1)
j + bi)

20
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IRNNs and counting
Update: 

 
The ReLU maps all negative numbers to 0,  
but leaves positive numbers unchanged
 
Finite-precision IRNNs can perform unbounded counting by 
representing each counter as two dimensions:
— INC increments one dimension
— DEC increments the other dimension
— COMP0 compares their difference to 0.

But: IRNNs are difficult to train because  
they have exploding gradients. So they don’t work well.

h(t) = ReLU(Wx(t) + Uh(t−1) + b)
= max(0, Wx(t) + Uh(t−1) + b)

21
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GRUs and counting
Updates

   

Finite-precision GRUs cannot implement unbounded 
counting because the tanh squashing and linear 
interpolation restrict hidden state values to [-1,1]

GRUs can learn counting up to a finite bound seen in 
training, but won’t generalize beyond that.
Counting requires setting gates and hidden states to 
precise non-saturated values that are difficult to find

h̃(t) = tanh(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)
h(t) = z(t) ⊗ c(t−1) + (1 − z(t)) ⊗ h̃(t−1)

22
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Summary 
— Simple RNN and GRU cannot represent unbounded counting 
(mostly because they use tanh and linear interpolation)
—IRNN and LSTM can represent unbounded counting

Claims about other LSTM variants
— Coupling the input and forget gates  
    by setting  also removes their counting ability
—“Peephole connections” where gates read cell states 
    ‘essentially’ uses identity as activation function, and allows  
comparing counters in a stable way 
   
 Peephole connections: feed cell states into gates 

 

i = (1 − f)

f(t) = σ(Wf x(t) + Uf h(t−1) + Vf c(t−1) + bf )
i(t) = σ(Wix(t) + Uih(t−1) + Vic(t−1) + bi)
o(t) = σ(Wox(t) + Uoh(t−1) + Voc(t) + bo)

23
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Experiments
Setup: 
—Train models to recognize strings in a language  
(binary classification: accept if input string is in the language, 
reject otherwise)
—Each model has one layer, and a hidden size of 10
—Training on  up to n=100, on  up to n=50

Results: 
— Counting mechanisms are not precise; fail for very large n
— But LSTMs can be trained to recognize  and   
     for much greater n than seen during training. 
— These trained LSTMs do use per-dimension counters
— GRUs can also be trained to recognize  and   
     but without counting dimensions, and much poorer 
     generalization (they fail even on some training examples)

anbn anbncn

anbn anbncn

anbn anbncn
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LSTM GRU

anbn  

models on  

a1000b1000

anbncn 

models on 
a100b100c100

LSTM vs GRU: activations

25
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(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.
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ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.


