
CS546: Machine Learning in NLP (Spring 2020)
http://courses.engr.illinois.edu/cs546/

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Lecture 6:  
RNN wrap-up

CS546 Machine Learning in NLP

Today’s class: RNN architectures
RNNs are among the workhorses of neural NLP:
— Basic RNNs are rarely used
— LSTMs and GRUs are commonly used.
What’s the difference between these variants?  

RNN odds and ends:
— Character RNNs
— Attention mechanisms (LSTMs/GRUs)

2

CS546 Machine Learning in NLP

Character RNNs and BPE
Character RNNs:
— Each input element is one character: ’t’,’h’, ‘e’,…
— Can be used to replace word embeddings,  
 or to compute embeddings for rare/unknown words

(in languages with an alphabet, like English…) 
see e.g. http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
(in Chinese, RNNs can be used directly on characters without word
segmentation; the equivalent of “character RNNs” might be models that
decompose characters into radicals/strokes)

Byte Pair Encoding (BPE):
— Learn which character sequences are common  
 in the language (‘ing’, ‘pre’, ‘at’, …)
— Split input into these sequences and learn
embeddings for these sequences

3

CS546 Machine Learning in NLP

Attention mechanisms
Compute a probability distribution over the
encoder’s hidden states that depends on the decoder’s current

Compute a weighted avg. of the encoder’s :

that gets then used with , e.g. in

— Hard attention (degenerate case, non-differentiable):  
 is a one-hot vector 

— Soft attention (general case): is not a one-hot
 — is the dot product (no learned parameters)
 — (learn a bilinear matrix W)
 — concat. hidden states

α = (α1t, . . . , αSt)
h(s) h(t)

αts =
exp(s(h(t), h(s)))

∑s′ �exp(s(h(t), h(s′�)))
h(s) c(t) = ∑

s=1..S

αtsh(s)

h(t) o(t) = tanh(W1h(t) + W2c(t))

α

α
s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
4

CS546 Machine Learning in NLP

Activation functions

5

CS546 Machine Learning in NLP

Recap: Activation functions
Sigmoid (logistic function):  
 σ(x) = 1/(1 + e−x)  
Returns values bound above and below  
in the range  

Hyperbolic tangent:  
tanh(x) = (e2x −1)/(e2x+1)
Returns values bound above and below  
in the range  
 
Rectified Linear Unit:  
ReLU(x) = max(0, x)
Returns values bound below  
in the range

[0,1]

[−1, +1]

[0, +∞]

6

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2 -1 0 1 2 3

1/(1+exp(-x))
tanh(x)

max(0,x)

CS546 Machine Learning in NLP

From RNNs to LSTMs

7

CS546 Machine Learning in NLP

From RNNs to LSTMs
In Vanilla (Elman) RNNs, the current hidden state  
is a nonlinear function of the previous hidden state  
and the current input :

  

With g=tanh (the original definition): 
⇒ Models suffer from the vanishing gradient problem:  
they can’t be trained effectively on long sequences.

With g=ReLU  
⇒ Models suffer from the exploding gradient problem:  
they can’t be trained effectively on long sequences.

h(t)

h(t−1)

x(t)

h(t) = g(Wh[h(t−1), x(t)] + bh)

8

CS546 Machine Learning in NLP

From RNNs to LSTMs
LSTMs (Long Short-Term Memory networks) were
introduced by Hochreiter and Schmidhuber to overcome
this problem.

— They introduce an additional cell state that also gets
passed through the network and updated at each time step

— LSTMs define three different gates that read in the
previous hidden state and current input to decide how
much of the past hidden and cell states to keep.

— This gating mechanism mitigates the vanishing/
exploding gradient problems of traditional RNNs

9

CS546 Machine Learning in NLP

Gating mechanisms
Gates are trainable layers with a sigmoid activation function  
often determined by the current input and the (last) hidden state eg.:

 is a vector of (Bernoulli) probabilities ()
Unlike traditional (0,1) gates, neural gates are differentiable (we can train them)  

 is combined with another vector (of the same dimensionality)
by element-wise multiplication (Hadamard product):
— If , , and if ,
— Each is associated with its own set of trainable parameters  
 and determines how much of to keep or forget

Gates are used to form linear combinations of vectors :
— Linear interpolation (coupled gates):
— Addition of two gates:

x(t) h(t−1)

g(t)
k = σ(Wkx(t) + Ukh(t−1) + bk)

g ∀i : 0 ≤ gi ≤ 1

g u
v = g ⊗ u

gi ≈ 0 vi ≈ 0 gi ≈ 1 vi ≈ ui
gi

ui

u, v
w = g ⊗ u + (1 − g) ⊗ v

w = g1 ⊗ u + g2 ⊗ v
10

CS546 Machine Learning in NLP

Long Short Term Memory Networks (LSTMs)

At time , the LSTM cell reads in
— a c-dimensional previous cell state vector
— an h-dimensional previous hidden state vector
— a d-dimensional current input vector
At time , the LSTM cell returns
— a c-dimensional new cell state vector
— an h-dimensional new hidden state vector  
 (which may also be passed to an output layer)

t
c(t−1)

h(t−1)

x(t)

t
c(t)

h(t)

11

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

c(t-1) c(t)

h(t-1) h(t-1)

CS546 Machine Learning in NLP

LSTM operations

Based on the previous cell state and hidden state  
and the current input , the LSTM computes: 

1) A new intermediate cell state that depends on and :
 

2) Three gates (which each depend on and)
a) The forget gate decides  

 how much of the last to remember in the cell state:
b) The input gate decides  

 how much of the intermediate to use in the new cell state:
c) The output gate decides  

 how much of the new to use in  

3) The new cell state is a linear combination of
cell states and that depends on forget gate and input gate
4) The new hidden state

c(t−1) h(t−1)

x(t)

c̃(t) h(t−1) x(t)

c̃(t) = tanh(Wc[h(t−1), x(t)] + bc)

h(t−1) x(t)

f(t) = σ(Wf[h(t−1), x(t)] + bf)
c(t−1) f(t) ⊗ c(t−1)

i(t) = σ(Wi[h(t−1), x(t)] + bi)
c̃(t) i(t) ⊗ c̃(t)

o(t) = σ(Wo[h(t−1), x(t)] + bo)
c(t) h(t) = o(t) ⊗ tanh(c(t))

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

c(t−1) c̃(t) f(t) i(t)
h(t) = o(t) ⊗ tanh(c(t))

12

CS546 Machine Learning in NLP

LSTM summary

Based on , , and , the LSTM computes: 

— Intermediate cell state
— Forget gate

— Input gate
— New (final) cell state
 
— Output gate
— New hidden state

 and are passed on to the next time step.

c(t−1) h(t−1) x(t)

c̃(t) = tanh(Wc[h(t−1), x(t)] + bc)
f(t) = σ(Wf[h(t−1), x(t)] + bf)
i(t) = σ(Wi[h(t−1), x(t)] + bi)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

o(t) = σ(Wo[h(t−1), x(t)] + bo)
h(t) = o(t) ⊗ tanh(c(t))

c(t) h(t)

13

CS546 Machine Learning in NLP

Gated Recurrent Units
(GRUs)

14

Cho et al. (2014) Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078.pdf

CS546 Machine Learning in NLP

GRU definition
Based on , and , the GRU computes: 

— a reset gate to determine how much of to keep in
  

— an intermediate hidden state that depends on and

— an update gate to determine how much of to keep in  

— a new hidden state as a linear interpolation of and  
 with weights determined by the update gate  

h(t−1) x(t)

r(t) h(t−1) h̃(t)

r(t) = σ(Wrx(t) + Urh(t−1) + br)

h̃(t) x(t) r(t) ⊗ h(t−1)

h̃(t) = ϕ(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)

z(t) h(t−1) h(t)

z(t) = σ(Wzx(t) + Uzh(t−1) + br)

h(t) h(t−1) h̃(t)

z(t)

h(t) = z(t) ⊗ h(t−1) + (1 − z(t)) ⊗ h̃(t)

15

CS546 Machine Learning in NLP

Expressive power of
RNN, LSTM, GRU

16

Weiss, Goldberg, Yahav (2018)  
On the Practical Computational Power  

of Finite Precision RNNs for Language Recognition  
https://www.aclweb.org/anthology/P18-2117.pdf

CS546 Machine Learning in NLP

Models
Basic RNNs:
Simple (Elman) SRNN:
IRNN:

Gated RNNs (GRUs and LSTMs)
Gates : each element is a probability
NB: a gate can return or by setting its matrices to 0 and b=0 or b=1
GRU with gates  
 hidden state

NB: GRU reduces to SRNN with

LSTM with gates ,  
 memory cell  

 hidden state for = identity or tanh
NB: LSTM reduces to SRNN with

h(t) = tanh(Wx(t) + Uh(t−1) + b)
h(t) = ReLU(Wx(t) + Uh(t−1) + b)

g(t)
k = σ(Wkx(t) + Ukh(t−1) + bk)

0 1
r(t), z(t)

h̃(t) = tanh(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)
h(t) = z(t) ⊗ c(t−1) + (1 − z(t)) ⊗ h̃(t−1)

r = 1, z = 0

f(t), i(t), o(t)

c̃(t) = tanh(Wcx(t) + Uch(t−1) + bc)
c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

h(t) = o(t) ⊗ ϕ(c(t)) ϕ
f = 0, i = 1, o = 1

17

CS546 Machine Learning in NLP

Simplified k-Counter Machines (SKCM)
A finite-state automaton with k counters

Depending on the input, in each step, each counter can be:
 — incremented (INC) by a fixed amount
 — decremented (DEC) by a fixed amoung
 — or left as is

State transitions and accept/reject decisions  
can compare each counter to 0 (COMP0)

SKCMs can recognize (context-free) and (context-
sensitive), but not palindromes () (also
context-free)

anbn anbncn

S → x ∣ aSa ∣ bSb

18

CS546 Machine Learning in NLP

LSTMs and Counting
LSTMs can be used to implement an SKCM:
— k dimensions of the memory cell c(t) are counters
— Non-counting steps:  
 Set ij(t)=0, fj(t)=1 to leave counter unmodified:

— Counting steps:  
 Set ij(t)=1, fj(t)=1 to increment/decrement cell:

— Reset counter to 0:
 Set ij(t)=0, fj(t)=0 to increment/decrement cell:

— Comparing counters to 0:
 and are both 0 iff

c(t)
j = 1 ⋅ c(t−1)

j + 0 ⋅ c̃(t)
j = c(t−1)

j

c(t)
j = 1 ⋅ c(t−1)

j + 1 ⋅ c̃(t)
j = c(t−1)

j + c̃(t)
j

c(t)
j = 0 ⋅ c(t−1)

j + 0 ⋅ c̃(t)
j = 0

h(t)
j = o(t)

j c(t)
j h(t)

j = o(t)
j tanh(c(t)

j) c(t)
j = 0

19

CS546 Machine Learning in NLP

Simple RNNs and Counting
Update:

The tanh() activation function means the activation
lies within [-1,+1]
With finite precision, counting can only be achieved
within a narrow range (and will be unstable)

Simple RNNs have poor generalization capabilities for
counting

h(t)
i = tanh(∑

j

Wijx(t)
j + ∑

j

Uijh(t−1)
j + bi)

20

CS546 Machine Learning in NLP

IRNNs and counting
Update:

 
The ReLU maps all negative numbers to 0,  
but leaves positive numbers unchanged
 
Finite-precision IRNNs can perform unbounded counting by
representing each counter as two dimensions:
— INC increments one dimension
— DEC increments the other dimension
— COMP0 compares their difference to 0.

But: IRNNs are difficult to train because  
they have exploding gradients. So they don’t work well.

h(t) = ReLU(Wx(t) + Uh(t−1) + b)
= max(0, Wx(t) + Uh(t−1) + b)

21

CS546 Machine Learning in NLP

GRUs and counting
Updates

Finite-precision GRUs cannot implement unbounded
counting because the tanh squashing and linear
interpolation restrict hidden state values to [-1,1]

GRUs can learn counting up to a finite bound seen in
training, but won’t generalize beyond that.
Counting requires setting gates and hidden states to
precise non-saturated values that are difficult to find

h̃(t) = tanh(Whx(t) + Uh(r(t) ⊗ h(t−1)) + br)
h(t) = z(t) ⊗ c(t−1) + (1 − z(t)) ⊗ h̃(t−1)

22

CS546 Machine Learning in NLP

Summary
— Simple RNN and GRU cannot represent unbounded counting
(mostly because they use tanh and linear interpolation)
—IRNN and LSTM can represent unbounded counting

Claims about other LSTM variants
— Coupling the input and forget gates  
 by setting also removes their counting ability
—“Peephole connections” where gates read cell states 
 ‘essentially’ uses identity as activation function, and allows
comparing counters in a stable way 
  
 Peephole connections: feed cell states into gates

i = (1 − f)

f(t) = σ(Wf x(t) + Uf h(t−1) + Vf c(t−1) + bf)
i(t) = σ(Wix(t) + Uih(t−1) + Vic(t−1) + bi)
o(t) = σ(Wox(t) + Uoh(t−1) + Voc(t) + bo)

23

CS546 Machine Learning in NLP

Experiments
Setup:
—Train models to recognize strings in a language  
(binary classification: accept if input string is in the language,
reject otherwise)
—Each model has one layer, and a hidden size of 10
—Training on up to n=100, on up to n=50

Results:
— Counting mechanisms are not precise; fail for very large n
— But LSTMs can be trained to recognize and  
 for much greater n than seen during training.
— These trained LSTMs do use per-dimension counters
— GRUs can also be trained to recognize and  
 but without counting dimensions, and much poorer 
 generalization (they fail even on some training examples)

anbn anbncn

anbn anbncn

anbn anbncn

24

CS546 Machine Learning in NLP

LSTM GRU

anbn  

models on  

a1000b1000

anbncn

models on 
a100b100c100

LSTM vs GRU: activations

25

741

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.

741

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.

741

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.

741

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.

