CS546: Machine Learning in NLP (Spring 2020)

http.//courses.engr.illinois.edu/cs546/

Lecture 5:
Recurrent Architectures

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Today’s class

How to use RNNSs for various NLP tasks
— architectures
— training

Different RNN architectures:
— Vanilla (Elman) RNNs

— LSTMs

— GRUs

Attention mechanisms

Do the differences between the architectures matter?

CS546 Machine Learning in NLP 2

RNNs in NLP

CS546 Machine Learning in NLP

Recurrent Neural Nets (RNNSs)

The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length
sequences?

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in

their internal structure:

basic RNNs (Elman nets)
LSTMs

GRUs

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNSs)

Basic RNN: Modify the standard feedforward
architecture (which predicts a string wo...wnone word
at a time) such that the output of the current step (wi)
IS given as additional input to the next time step

(when predicting the output for wi1).
“Output” — typically (the last) hidden layer.

output m output QQQ) [QQQ] QQQ] QQQJ

igden [@Q@) hicven [QOOHOOOHOOSH OO
i (OO0 v [000) [000) 000

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier) 5

Basic RNNs

Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden

layer at the previous time step

output
hidden

input Jrre]

CS447: Natural Language Processing (J. Hockenmaier) 6

Basic RNNs

Each time step t corresponds to a feedforward net whose
hidden layer h() gets input from the layer below (x() and from
the output of the hidden layer at the previous time step h(t1)

C Vi)
(I
C Ny)
T
C Nt) C Xt)

Computing the hidden state at time t: h®Y = g(Uh(t_l) + Wx?)

The i-the element of hx. AV = g< Z h(f Dy Z W x(f>>
J

CS447: Natural Language Processing (J. Hockenmaier) 7

A basic RNN unrolled in time

\j

CS447: Natural Language Processing (J. Hockenmaier)

RNN variants: LSTMs, GRUs

Long Short Term Memory networks (LSTMs) are RNNs with
a more complex architecture to combine the last hidden state
with the current input.

Gated Recurrent Units (GRUs) are a simplification of LSTMs

Both contain “Gates” to control how much of the input or past
hidden state to forget or remember

A gate performs element-wise multiplication of
a) the output of a d-dimensional sigmoid layer
(all elements between 0 and 1), and
b) an d-dimensional input vector
Result: a d-dimensional output vector which is like the input,
except some dimensions have been (partially) “forgotten”

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language modeling

If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string wowi...wn Wit

(wWhere wo = <s>, and w1 = <\s>), feed in w; as input
at time step 1 and compute

CS447: Natural Language Processing (J. Hockenmaier) 10

RNNs for language generation

To generate a string wowi...wn Wns1 (Where wo = <s>,
and wni1 = <\s>), give wo as first input, and then pick
the next word according to the computed probability

Pw;|wy...w;_)
Feed this word in as input into the next layer.
Greedy decoding: always pick the word with the
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution

CS447: Natural Language Processing (J. Hockenmaier) 11

RNNSs for generation

AKA “autoregressive generation”

N //\I //I
| | Vi |
sampledword (_In_ D1 (—a)| Choe D1 (7 D
| I
: ' '
| I
| |
| | |
| | |
l | RNN |
| | |
A : A | A | A
| I
Embedding 00000 : 0-:0-:00) | @0 : oo): @0 ::0::00
|
| | |
| I
Input Word < <S>)I (In >| a)I hole)
| / | P o
| / \// | /
4

CS447: Natural Language Processing (J. Hockenmaier)

12

RNNSs for sequence labeling

In sequence labeling, we want to assign a label or tag
ti to each word w;

Now the output layer gives a distribution over the T
possible tags.

The hidden layer contains information about the
previous words and the previous tags.

To compute the probability of a tag sequence t;...t, for
a given string wi...wyfeed in wi (and possibly ti.1) as
iInput at time step i and compute P(til wi...wi.1, t1...ti.1)

CS447: Natural Language Processing (J. Hockenmaier) 13

Basic RNNs for sequence labeling

Each time step has a distribution over output classes

{ [LU;DDDD N Duﬂiﬂiuu N DD[L‘;LDD }[EEDHZDDD N DDH:.%:.DD }

RNN

C Janet) (will Y(C back) (the) (bill)

Extension: add a CRF layer to capture dependencies
among labels of adjacent tokens.

CS447: Natural Language Processing (J. Hockenmaier) 14

RNNSs for sequence classification

If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the

sequence as input to a feedforward net:

o
—
&
C

RNN

H

X > %% HY(C X3)

CS447: Natural Language Processing (J. Hockenmaier)

15

Stacked RNNs

We can create an RNN that has “vertical” depth
(at each time step) by stacking multiple RNNSs:

C_Ya
C_viy HC vy (Y D, Y
A A A
RNN 3
A A A A
RNN 2
A A A A
RNN 1
A A A A
C X4) C Xo) C X3) (Xn)

CS447: Natural Language Processing (J. Hockenmaier) 16

Bidirectional RNNs

Unless we need to generate a sequence, we can run two RNNs
over the input sequence — one in the forward direction,

and one in the backward direction.
Their hidden states will capture different context information

C v HC ¥ HC Y3

11 1 , i

RNN 2 (Right to Left) <

RNN 1 (Left to Right) ¢ >
X HC X HC X3) GER"D
- - . h® — Kh® (t) - -
Hidden state of biRNN: hbi = hfw D hbW where @ is typically

concatenation (or element-wise addition, multiplication)

CS447: Natural Language Processing (J. Hockenmaier) 17

Bidirectional RNNs for sequence
classification

Combine the hidden state of the last word of the
forward RNN and the hidden state of the first word of
the backward RNN into a single vector

S
—
L\
E—

C X1) (X5) (C X3) (Xn)

CS447: Natural Language Processing (J. Hockenmaier) 18

Training RNNSs for generation

Maximum likelihood estimation (MLE):
Given training samples y(l)y(z). : .y(T), find the parameters 6*
that assign the largest probability to these training samples:

0* = argmax,P,(y\Vy? .. y@D) = argmax, H Py(y @y . yl=by
=1..T

Since Pe(y(l)y(z). ..y is factored into Pe(y(t) |y y=by,
we can train models with the objective that they assign a higher
probability to each actually occurring word y®, given the
corresponding prefix y.. .y~ from the training data,

than any other word in V:

Vi=1,,,|V|P9()’(t) |y(1)---y(t_1)) > Pg(yl-|y(1)...y(t_1))
This is also called teacher forcing.

CS546 Machine Learning in NLP 19

Problems with teacher forcing

Exposure bias:
When we train an RNN for sequence generation, the prefix

yD. .y that we condition on comes from the original data
When we use an RNN for sequence generation, the prefix
y(l). . .y(t_l) that we condition on is also generated by the RNN,

— The model is run on data that may look quite different from

the data it was trained on.
— The model is not trained to predict the best next token within

a generated sequence, or to predict the best sequence
— Errors at earlier time-steps propagate through the sequence.

CS546 Machine Learning in NLP 20

Remedies

Minimum risk training:
(Shen et al. 2016, https://www.aclweb.org/anthology/P16-1159.pdf)

— define a loss function (e.g. negative BLEU) to compare
generated sequences against gold sequences

— objective: minimize risk (expected loss on training data) such that
candidates outputs that have a smaller loss (higher BLEU score) have a
higher probability.

Reinforcement learning-based approaches:
(Ranzato et al. 2016 https://arxiv.org/pdf/1511.06732.pdf)
— use BLEU as a reward (i.e. like MRT)
— perhaps pre-train model first with standard teacher forcing.

GAN-based approaches (“professor forcing”)
(Goyal et al. 2016, http://papers.nips.cc/paper/6099-professor-forcing-a-
new-algorithm-for-training-recurrent-networks.pdf)

— combine standard RNN with an adversarial model that aims to
distinguish original from generated sequences

CS546 Machine Learning in NLP 21

Beam-Search
Decoding

CS447: Natural Language Processing (J. Hockenmaier)

Beam Decoding (width=4)

__

Keep the 4 best options around
at each time step.

. Operate breadth-first.
-7 >! Reduce beam width every time a
der | Sequence is completed (EOS)

/ v N N — .
(eSS emn | (L) | s

\ -

—— EOS Beam search with beam width = 4
1 2 3 4 5 6 /

Encoder-Decoder
Architectures
(Seq2seq)

RNN for Autocompletion

/\ s
/] /\ | /l

(there)u C lived)I C ﬂ)l (hobblt)l C </S> D sampled Words

C&‘ﬂ“@ Softmax

L +— +—— +— > = = =] RNN
A A i [| Y | / | A | A
[v | !
| ' | '
| : | :
| |
@0 06::00) 4@ : CLXx Xy 1) i @8- 0::00) : : @8- 0::00) Embeddings
|
' | : |
Chole) C in) (C the) (ground)I (there)| C lived): (a): hobbit)
N | P | s I,
'// L// \// _”
" Yy
Prefix Autogenerated completion

CS447: Natural Language Processing (J. Hockenmaier) 25

An RNN for Machine Translation

-~ -~ / 77
v v M / /
(D! C 5| G | (T >| m Cun | Chobbit)

HESESES

)
@%wm

3
| |
| |
| |
| |
| |
| |
| |
| |
! |
l

|
|

|
| |
|
|
|
|
|
|
|
|
|
|
|
\

|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
I I
I I
LN] LN] LN] LN] LN] LN] LN] LN] LN] | [X) |
@0 & 00 0 (519 @0 00 @@ --g 00 00 9 ..I @0 00 I
I I
I I
I I
there lived a hobbit </s>)| vivait un hobbit
C O i)(/()(()CD|CD /@:(p
/ / / I s s | -
Y Y
Source Target

CS447: Natural Language Processing (J. Hockenmaier) 26

Encoder-Decoder (seg2seq) model

Task: Read an input sequence and return an output
sequence
-Machine translation: translate source into target language
- Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

Encoder

- 000000000

447 Natural Language Processing

000

. Hockenmaier) %

Encoder-Decoder (seg2seq) model

Encoder RNN:

reads in the input sequence
passes its last hidden state to the initial hidden state
of the decoder

Decoder RNN:

generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings

CS447: Natural Language Processing (J. Hockenmaier) 28

Attention Mechanisms

CS546 Machine Learning in NLP

A more general view of seq2seq

In general, we any function over the encoder’s output
can be used as a representation of the context we
want to condition the decoder on.

/(M)
Encoder

We can feed the context in at any time step during
decoding (not just at the beginning).

CS447: Natural Language Processing (J. Hockenmaier) 30

Attention mechanism

Basic idea: Feed a d-dimensional representation of the entire
(arbitrary-length) input sequence into the decoder
at each time step during decoding.

This representation of the input can be a weighted average of
the encoder’s representation of the input (i.e. its output)

The weights of each encoder output element tell us how much
attention we should pay to different parts of the input sequence

Since different parts of the input may be more or less important
for different parts of the output, we want to vary the weights over
the input during the decoding process.

(Cf. Word alignments in machine translation)

CS447: Natural Language Processing (J. Hockenmaier) 31

Attention mechanisms

We want to condition the output generation of the decoder on
a context-dependent representation of the input sequence.

Attention computes a probability distribution over the
encoder’s hidden states that depends on the decoder’s
current hidden state

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted
average of the encoder’s hidden state vectors.

This context-dependent embedding of the input sequence
is fed into the output of the decoder RNN.

CS447: Natural Language Processing (J. Hockenmaier) 32

Attention mechanisms

— Define a distribution a = (¢, . . . , ag,) over the S

elements of the input sequence that depends on the current

output element t (with) a,=1;v, 0<a,<1)
s=1..8

— Use this distribution to compute a weighted average of the
input: Z a0, and feed that into the decoder.

Je suis étudiant </s>
s=1..5 S U S

attention

hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

I am a student <s> Je suis étudiant

CS546 Machine Learning in NLP 33

Attention mechanisms

Je

attention [
vector

context
vector

attentio
we ghts

T

a student <s> Je suis étudiant

suis étudiant </s>

exp (score(hy, h))

h:: current hidden state of decoder (target)
h’s: output of the encoder for word s (source)
Attention weights ass: distribution over h’s

ais depends on score(ht, h’s)
Context vector ¢i: weighted average of h’s
Attention vector ai: computed by feedforward
layer over ctand h

Os =

C: = E C‘Hfshs
S

a; —

score(hy, hy) = {

CS447: Natural Language Processing (J. Hockenmaier)

> 2 _, exp (score(hy, hy))

f(eg, hy) = tanh(We[cy; hy))

h Wh,
v, tanh (Wih, + Wah,)

Attention weights] (1)
Context vector] (2)
Attention vector] (3)
[Luong’s multiplicative style]
[Bahdanau’s additive style]
hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention
34

Recurrent
architectures:
RNNs and LSTMs

CS546 Machine Learning in NLP

From BRNNs to LSTMs

In Vanilla (Elman) RNNSs, the current hidden state depends
on the previous hidden state and on the input:

h, = g(W,[h,_,x,] + b,) with e.g. g=tanh
These models suffer from the vanishing gradient problem:
they can’t be trained effectively on long sequences.

LSTMs (Long Short-Term Memory networks) were
introduced by Hochreiter and Schmidhuber to overcome
this problem.

— They introduce an additional cell state that also gets
passed through the network and updated at each time step
— LSTMs define four different layers (gates) that read in
the previous hidden state and current input.

CS546 Machine Learning in NLP 36

Long Short Term Memory Networks (LSTMs)

& D,

A

ALl

\

>

& ® &)

&
T

!

A

)

. . https://colah.github.io/posts/2015-08-Understanding-LSTMs/
At time 7, the LSTM cell reads in
— a c-dimensional previous cell state vector ¢,_

— an h-dimensional previous hidden state vector h,_

— a d-dimensional current input vector X,
At time 1, the LSTM cell returns

— a c-dimensional previous cell state vector €,
— an h-dimensional previous hidden state vector h,

(which may also be passed to an output layer)

CS546 Machine Learning in NLP

37

LSTM operations

The forget gate is a fully connected layer with sigmoid that reads in h,_; and X,
It returns a c-dimensional vector f, of values between 0 and 1 that indicate which values
of the previous cell state we remember: f, = o(W/h,_,,x,] + by)

ft is multiplied (element-wise) with ¢,_; to compute how much of ¢,_; we remember

We compute a new intermediate cell state via a fully connected layer that reads in h,_
and X, and uses the tanh activation function to return a real-valued c-dimensional vector

¢, = tanh(W,[h,_,x,] + b,)
The input gate is another fully connected layer with sigmoid activation that reads in
h,_, and X, and returns a c-dimensional vector f, (of values btw 0 and 1) to indicate

which values of the cell state we will update with €¢,: i, = (W [h,_,,x,] + b))
i, is multiplied (element-wise) with €, to compute how much of €, we use

The new cell stateisc, =, ®@ ¢,_; + 1, ® ¢,

We also compute an intermediate output 0, = o(W, [h,_,,x,] + D)
The new hidden state gets computed by h, = 0, ® tanh(c,)

CS546 Machine Learning in NLP 38

