CS546: Machine Learning in NLP (Spring 2020)

http.//courses.engr.illinois.edu/cs546/

Lecture 4:
Static word embeddings

Julia Hockenmaier
juliahmr@illinois.edu

3324 Siebel Center

Office hours: Monday, 11am—12:30pm

(Static) Word Embeddings

A (static) word embedding is a function that maps
each word type to a single vector

— these vectors are typically dense and have much
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the
same string of letters may have different senses
(dining table vs. a table of contents) or parts of
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed
size vocabulary (so an UNK token is still required)

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec Embeddings

Main idea:

Use a classifier to predict which words appear in the
context of (i.e. near) a target word (or vice versa)

This classifier induces a dense vector representation of
words (embedding)

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec (Mikolov et al. 2013)

The first really influential dense word embeddings

Two ways to think about Word2Vec:

— a simplification of neural language models
— a binary logistic regression classifier

Variants of Word2Vec

— Two different context representations: CBOW or Skip-Gram

— Two different optimization objectives:
Negative sampling (NS) or hierarchical softmax

CS447: Natural Language Processing (J. Hockenmaier) 4

Word2Vec architectures

INPUT PROJECTION OUTPUT

w(t-2)
w(t-1)

\SUM
w(t+1) 7’
w(t+2)

CBOW

CS546 Machine Learning in NLP

INPUT PROJECTION OUTPUT

o [H

]

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

CBOW: predict target from context

(CBOW=Continuous Bag of Words)
Training sentence:
tablespoon of apricot jam a
ci c2 t c3 c4

Given the surrounding context words (tablespoon, of,
jam, a), predict the target word (apricot).

Input: each context word is a one-hot vector
Projection layer: map each one-hot vector down to a dense
D-dimensional vector, and average these vectors

Output: predict the target word with softmax

CS546 Machine Learning in NLP 6

Skipgram: predict context from target

Training sentence:
tablespoon of apricot jam a
ci c2 t c3 c4

Given the target word (apricot), predict the
surrounding context words (tablespoon, of, jam, a),

Input: each target word is a one-hot vector
Projection layer: map each one-hot vector down to a dense
D-dimensional vector, and average these vectors

Output: predict the context word with softmax

CS546 Machine Learning in NLP 7

Skipgram

One-hot
encoding

v
O Wy e Whpp .- Wy

of target
word

O
O

(N

DQOQOQOO

Score of
context
word

POw, | ;) o exp(w, - W)

each hidden unit.

The rows in the weight matrix for the hidden layer correspond to the weights for

The columns in the weight matrix from input to the hidden layer correspond to the
input vectors for each (target) word [typically, those are used as word2vec vectors]
The rows in the weight matrix from the hidden to the output layer correspond to the
output vectors for each (context) word [typically, those are ignored]

N -
CS546 Machine Learning in NLP

Negative sampling
Sklpgram aims to optlmlze the avg log probability of the data:

_Z Z log p(w,; | w) = — Z Z 10g< evxp(wtﬂwt))

z k=1 eXp(WkWt)

=1 —c<j<c,j#0 t— —c<j<c,j#0
1%
But computing the partition function Z exp(w,w,) is very expensive
k=1

— This can be mitigated by hierarchical softmax

(represent each wyj by Huffman encoding, and predict the sequence of nodes
in the resulting binary tree via softmax).

— Noise Contrastive Estimation is an alternative to (hierarchical) softmax
that aims to distinguish actual data points wtj from noise via logistic regression

— But we just want good word representations, so we do something simpler:

Negative Sampling instead aims to optimize

| 1
logo(wy-w,.) + Zl E,, pow) llog o (_WTWi)] With o(x) = -— Xp(—x)

CS546 Machine Learning in NLP 9

Skip-Gram Training data

Training sentence:
tablespoon of apricot jam a
ci c2 t c3 c4

Training data: input/output pairs centering on apricot
Assume a +/- 2 word window (in reality: use +/- 10 words)
Positive examples:

(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)

For each positive example, sample k negative examples,
using noise words (according to [adjusted] unigram probability)

(apricot, aardvark), (apricot, puddle)...

CS546 Machine Learning in NLP 10

P(Y | X) with Logistic Regression

The sigmoid lies between 0 and 1 and is used
in (binary) logistic regression

1 g Y=1/(1+e™)

o(x) =

I + exp(—x)

Logistic regression for binary classification (y € {0,1}):
P(Y=1|X)=o(WXx+Db) =

1 + exp(—(Wx + D))

Parameters to learn: one feature weight vector w and one bias term b

CS546 Machine Learning in NLP

11

Back to word2vec

Skipgram with negative sampling also uses the sigmoid,
but requires two sets of parameters that are multiplied together
(for target and context vectors)

k
logo(wy-w,) + Z E, pow) [log a(—wTWi)]
i=1

We can view word2vec as training a binary classifier for the
decision whether c is an actual context word for t.

The probability that ¢ is a positive (real) context word for t:
P(D=+ |t)

The probability that ¢ is a negative (sampled) context word for
P(D=- |t,c)=1-P(D=+|tc)

CS546 Machine Learning in NLP 12

Negative Samplmg

logo(w,-w,.) + 2 E, ~P(W) log o(—w, - w;)
=1 - i

1 £ 1
=log< >+ E, pon |10
I +exp(—w,-w,) Z‘ ~H)[g<1+eXP(Wr°Wi))]

1 1
= lo og + EW_N W lo 1 —
L+ exp(—w; - w,) Z:, ~H)[g< 1+exp(—wt-wl-)>]

4 4
= log|lP(D =+ | w,, w,) |+ Z WinP() [log(l —|P(D =+ |w;,w))
Should be high for Should be low for
actual context words eampled context words

CS546 Ma

Negative Sampling

Basic idea:
— For each actual (positive) target-context word pair,
sample k negative examples consisting of the target word and

a randomly sampled word.
— Train a model to predict a high conditional probability for

the actual (positive)context words, and a low conditional
probability for the sampled (negative) context words.

This can be reformulated as (approximated by) predicting
whether a word-context pair comes from the actual (positive)
data, or from the sampled (negative) data:

k
log G(WT . WC) + Z EWZ-NP(W) [lOg 6(_WTWZ):|
i=1

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling

Distinguish “good” (correct) word-context pairs (D=1),
from “bad” ones (D=0)

Probabilistic objective:
P(D=11t,c)defined by sigmoid:

1
P(D=1|w,c) =

14+ exp(—s(w,c))

P(D=0It,c)=1—P(D=0It,c)
P(D=11t,c)should be high when (t, c) € D+, and low when
(t,c) € D-

CS546 Machine Learning in NLP 15

Word2Vec: Negative Sampling

Training data: D+ u D-

D+ = actual examples from training data

Where do we get D- from?

Word2Vec: for each good pair (w,c), sample k words and add
each w; as a negative example (w;,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency

or according to smoothed variant where freq’(w) = freq(w)0-75
(This gives more weight to rare words and performs better)

CS546 Machine Learning in NLP 16

Word2Vec: Negative Sampling

Training objective:
Maximize log-likelihood of training data D+ u D-:

Z(©,D,D')= Y logP(D=1|w.c)

+) logP(D=0|w,c)
(w,c)eD’

CS546 Machine Learning in NLP 17

Skip-Gram with negative sampling

Train a binary classifier that decides whether a target

word t appears in the context of other words ¢1.«
— Context: the set of k words near (surrounding) t

— Treat the target word t and any word that actually appears
In its context in a real corpus as positive examples

— Treat the target word t and randomly sampled words
that don’t appear in its context as negative examples

— Train a (variant of a) binary logistic regression classifier
with two sets of weights (target and context embeddings) to
distinguish these cases

— The weights of this classifier depend on the similarity of t
and the words in ¢1.x

Use the target embeddings to represent ¢

CS546 Machine Learning in NLP 18

The Skip-Gram classifier

Use logistic regression to predict whether the pair (¢, ¢) (target
word t and a context word c), is a positive or negative example:

1 P(—|t,c) = 1—P(+|t,c)
P(+|t,c) = e
(Hlte) = T2 -
Assume that t and c are represented as vectors,
so that their dot product tc captures their similarity
To capture the entire context window c1.k, assume the words in
c1x are independent (multiply) and take the log:

k
—Hl‘ Clk H1_|_e—f6‘z

k
log P(+t,c1:1) Zlog 1—|—€_t'cl

CS546 Machine Learning in NLP 19

Where do we get vectors t, ¢ from?

lterative approach (gradient descent):

Assume an initial set of vectors, and then adjust them
during training to maximize the probability of the
training examples.

CS546 Machine Learning in NLP 20

Summary: How to learn word2vec (skip-gram) embeddings

For a vocabulary of size V: Start with two sets of V random
300-dimensional vectors as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples

Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

CS546 Machine Learning in NLP

Evaluating embeddings

Compare to human scores on word

similarity-type tasks:
WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)

Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)

TOEFL dataset: Levied is closest in meaning to:
imposed, believed, requested, correlated

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings

Similarity depends on window size C

C = £2 The nearest words to Hogwarts:
Sunnydale

Evernight

C = +5 The nearest words to Hogwarts:
Dumbledore

Malfoy
halfblood

CS447: Natural Language Processing (J. Hockenmaier)

Vectors “capture concepts”

Country and Capital Vectors Projected by PCA

2 I [R [[I
Chinas
»Beijing
15 F Russias 7]
Japanx<
1 L »Moscow 1
Turkey< >Ankara >Z|-Oky0
0.5 _
Polang«
0r Germxanyx 4
France “Warsaw
s >Berlin
-0.5 Italy< Paris -
Greece< < =Athens
1 Spains Rome -
i “ Madrid i
-1.5 | Portugal JLisbon
_2 | | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

Analogy pairs

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter

Adjective to adverb
Opposite
Comparative
Superlative

Present Participle
Nationality adjective
Past tense

Plural nouns

Plural verbs

apparent apparently
possibly impossibly

great greater
easy easiest
think thinking
Switzerland Swiss
walking walked
mouse mice
work works

rapid rapidly
ethical unethical
tough tougher
lucky luckiest
read reading

Cambodia Cambodian

swimming swam
dollar dollars
speak speaks

CS546 Machine Learning in NLP

25

Analogy: Embeddings capture
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

WOMAN QUEENS
AUNT

VAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

CS447: Natural Language Processing (J. Hockenmaier)

Word2vec results

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist

Sarkozy - France

Italy: Rome
small: larger
Baltimore: Maryland

Messi: midfielder
Berlusconi: Italy

Japan: Tokyo

cold: colder

Dallas: Texas
Mozart: violinist

Merkel: Germany

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter

Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza
CS546 Machine Learning in NLP 27

Word2Vec and distributional similarities

Why does the word2vec objective yield sensible results?

Levy and Goldberg (NIPS 2014):

Skipgram with negative sampling can be seen as
a weighted factorization of a word-context PMI matrix.

=> |t is actually very similar to traditional distributional
approaches!

Levy, Goldberg and Dagan (TACL 2015) suggest tricks that can

be applied to traditional approaches that yield similar results on
these lexical tests.

CS546 Machine Learning in NLP 28

Using Word
Embeddings

CS447: Natural Language Processing (J. Hockenmaier)

Using pre-trained embeddings

Assume you have pre-trained embeddings E.
How do you use them in your model?

- Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.

- Option 2: Keep E fixed, but add another hidden layer that is
learned for your task

- Option 3: Learn matrix T € dim(emb)xdim(emb) and use rows
of E'= ET (adapts all embeddings, not specific words)
- Option 4: Keep E fixed, but learn matrix A e R!VIxdim(emb) gnd

use E'=E + AorE’=ET + A (this learns to adapt specific
words)

CS546 Machine Learning in NLP 30

More on embeddings

Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of
K outcomes, e.g. POS tags, etc.) and learn an embedding
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.

Initialization matters: use random weights, but in special range
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use

Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

CS546 Machine Learning in NLP 31

Dense embeddings you can download!

Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext hitp://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

CS546 Machine Learning in NLP

Traditional
Distributional
similarities and PMI

CS546 Machine Learning in NLP

Distributional similarities

Distributional similarities use the set of contexts
In which words appear to measure their similarity.

They represent each word w as a vector w
w=(wWi,..., wn) ERN
iIn an N-dimensional vector space.

- Each dimension corresponds to a particular context c,

-Each element w, of w captures the degree to which
the word w is associated with the context c,.

- wn depends on the co-occurrence counts of w and c,

The similarity of words w and u is given by the
similarity of their vectors w and u

CS447: Natural Language Processing (J. Hockenmaier) 34

Using nearby words as contexts

-Decide on a fixed vocabulary of N context words c+..cn

Context words should occur frequently enough in your corpus that you get
reliable co-occurrence counts, but you should ignore words that are too
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)

-Define what ‘nearby’ means
For example: w appears near c if c appears within £5 words of w

- Get co-occurrence counts of words w and contexts ¢

- Define how to transform co-occurrence counts
of words w and contexts c¢ into vector elements wy,
For example: compute (positive) PMI of words and contexts

- Define how to compute the similarity of word vectors
For example: use the cosine of their angles.

CS447: Natural Language Processing (J. Hockenmaier)

35

Defining and counting co-occurrence

Defining co-occurrences:
- Within a fixed window: v; occurs within +n words of w
- Within the same sentence: requires sentence boundaries

- By grammatical relations:
Vi OCccurs as a subject/object/modifier/... of verb w
(requires parsing - and separate features for each relation)

Counting co-occurrences:
- ; as binary features (1,0): w does/does not occur with v;
- f, as frequencies: w occurs n times with v;
- f, as probabilities:
e.g. fiis the probability that v;is the subject of w.

CS447: Natural Language Processing (J. Hockenmaier) 36

Getting co-occurrence counts

Co-occurrence as a binary feature:
Does word w ever appear in the context c? (1 = yes/O = no)

arts | boil|data |function|large |sugar | water
apricot 0|1 0 0 1 1 1
pineapple | 0O | 1 0 0 1 1 1
digital OO0 1 1 1 0 0
information| 0 | O 1 1 1 0 0

Co-occurrence as a frequency count:
How often does word w appear in the context c? (0...n times)

arts |boil|data |function |large |sugar | water
apricot 0|1 0 0 5 2 7
pineapple | 0 | 2 0 0 10 8 5
digital O]0 [31 8 20 0 0
information| 0 | O | 35 23 5 0 0

Typically: 10K-100K dimensions (contexts), very sparse vectors

CS447: Natural Language Processing (J. Hockenmaier) 37

Counts vs PMI

Sometimes, low co-occurrences counts are very

informative, and high co-occurrence counts are not:
- Any word is going to have relatively high co-occurrence

b I 11

counts with very common contexts (e.g. “it”, “anything”, “is”,
etc.), but this won'’t tell us much about what that word means.

-We need to identify when co-occurrence counts are more
likely than we would expect by chance.

We therefore want to use PMI values instead of raw
frequency counts:

PMI(w,¢) — log 2029

p(w)p(c)
But this requires us to define p(w, ¢), p(w) and p(c)

CS447: Natural Language Processing (J. Hockenmaier) 38

Pointwise mutual information (PMlI)

Recall that two events x, y are independent
iIf their joint probability is equal to the product of their
individual probabillities:

x,y are independent iff p(x.,y) = p(X)p(y)

x,y are independent iff p(x,y)/pX)p(y) = 1

In NLP, we often use the pointwise mutual information
(PMI) of two outcomes/events (e.g. words):

p(X =z,Y =y)

PMI(x,y) = log p(X =z)p(Y =y)

CS447: Natural Language Processing (J. Hockenmaier) 39

Positive Pointwise Mutual Information

PMI is negative when words co-occur less than

expected by chance.
This is unreliable without huge corpora:
With P(w+) = P(w2) = 106, we can’t estimate whether P(w1,w>)
IS significantly different from 10-12

We often just use positive PMI values,
and replace all PMI values < 0 with O;

Positive Pointwise Mutual Information (PPMI):

PPMI(w,c) = PMI(w,c) if PMI(w,c) > 0
=0 it PMI(w,c) < 0

CS447: Natural Language Processing (J. Hockenmaier) 40

Frequencies vs. PMI

Objects of ‘drink’ (Lin, 1998)

Count PMI
bunch beer 2 12.34
tea 2 11.75
liquid 2 10.53
champagne 4 11.75
anything 3 5.15
it 3 1.25

CS447: Natural Language Processing (J

. Hockenmaier)

41

