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(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type to a single vector 

— these vectors are typically dense and have much 
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the 
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of 
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed 
size vocabulary (so an UNK token is still required)
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Word2Vec Embeddings
Main idea: 
Use a classifier to predict which words appear in the 
context of (i.e. near) a target word (or vice versa)
This classifier induces a dense vector representation of 
words (embedding)

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pre-trained embeddings can be downloaded)
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Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax
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Word2Vec architectures
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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CBOW: predict target from context 
(CBOW=Continuous Bag of Words)
 Training sentence:
 ... lemon, a tablespoon of apricot jam   a   pinch ... 
                          c1        c2     t        c3    c4

Given the surrounding context words (tablespoon, of, 
jam, a), predict the target word (apricot).

Input: each context word is a one-hot vector  
Projection layer: map each one-hot vector down to a dense 
D-dimensional vector, and average these vectors
Output: predict the target word with softmax
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Skipgram: predict context from target 
 Training sentence:
 ... lemon, a tablespoon of apricot jam   a   pinch ... 
                          c1        c2     t        c3    c4

Given the target word (apricot), predict the 
surrounding context words (tablespoon, of, jam, a),

Input: each target word is a one-hot vector  
Projection layer: map each one-hot vector down to a dense 
D-dimensional vector, and average these vectors
Output: predict the context word with softmax
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Skipgram

8

One-hot 
encoding 
of target 

word

wi

Score of 
context 

word
wj

p(wc |wt) ∝ exp(wc ⋅ wt)

The rows in the weight matrix for the hidden layer correspond to the weights for 
each hidden unit.  
The columns in the weight matrix from input to the hidden layer correspond to the 
input vectors for each (target) word [typically, those are used as word2vec vectors]
The rows in the weight matrix from the hidden to the output layer correspond to the 
output vectors for each (context) word [typically, those are ignored]

w11 … w1T … w1V… … … … …
wh1 … whT … whV… … … … …
wH1 … wHT … wHV

w11 … w1h … w1H… … … … …
wC1 … wCh … wCH… … … … …
wV1 … wVh … wVH
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Negative sampling
Skipgram aims to optimize the avg log probability of the data: 

 
But computing the partition function  is very expensive

— This can be mitigated by hierarchical softmax  
(represent each wt+j  by Huffman encoding, and predict the sequence of nodes 
in the resulting binary tree via softmax).
— Noise Contrastive Estimation is an alternative to (hierarchical) softmax 
that aims to distinguish actual data points wt+j  from noise via logistic regression
— But we just want good word representations, so we do something simpler: 
 
Negative Sampling instead aims to optimize

         with 

1
T

T

∑
t=1

∑
−c≤ j≤c, j≠0

log p(wt+j ∣ wt) =
1
T

T

∑
t=1

∑
−c≤ j≤c, j≠0

log( exp(wt+jwt)

∑V
k=1 exp(wkwt) )

V

∑
k=1

exp(wkwt)

log σ(wT ⋅ wc) +
k

∑
i=1

Ewi∼P(w)[log σ(−wTwi)] σ(x) =
1

1 + exp(−x)
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Skip-Gram Training data
 Training sentence:
 ... lemon, a tablespoon of apricot jam   a   pinch ... 
                          c1              c2     t        c3    c4

 Training data: input/output pairs centering on apricot 
 Assume a +/- 2 word window  (in reality: use +/- 10 words)
 Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
 For each positive example, sample k negative examples,  
using noise words (according to [adjusted] unigram probability)
 (apricot, aardvark), (apricot, puddle)… 
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P(Y | X) with Logistic Regression
The sigmoid lies between 0 and 1 and is used  
in (binary) logistic regression  

Logistic regression for binary classification ( ):

Parameters to learn: one feature weight vector w and one bias term b 

σ(x) =
1

1 + exp(−x)

y ∈ {0,1}
P( Y=1 ∣ x ) = σ(wx + b) =

1
1 + exp( −(wx + b))
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Back to word2vec
Skipgram with negative sampling also uses the sigmoid,  
but requires two sets of parameters that are multiplied together 
(for target and context vectors)  

We can view word2vec as training a binary classifier for the 
decision whether c is an actual context word for t.
 
The probability that c is a positive (real) context word for t: 

P( D = +  | t, c) 
The probability that c is a negative (sampled) context word for t: 
P( D = −  | t, c) = 1 − P(D = + | t, c)

log σ(wT ⋅ wc) +
k

∑
i=1

Ewi∼P(w)[log σ(−wTwi)]
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Should be high for 
actual context words

Should be low for 
sampled context words

Negative Sampling

13
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Negative Sampling
Basic idea: 
— For each actual (positive) target-context word pair,  
sample k negative examples consisting of the target word and 
a randomly sampled word.
— Train a model to predict a high conditional probability for 
the actual (positive)context words, and a low conditional 
probability for the sampled (negative) context words.  

This can be reformulated as (approximated by) predicting 
whether a word-context pair comes from the actual (positive) 
data, or from the sampled (negative) data:

log σ(wT ⋅ wc) +
k

∑
i=1

Ewi∼P(w)[log σ(−wTwi)]
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Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:  
P( D = 1 | t, c ) defined by sigmoid: 
 

 
P( D = 0 | t, c ) = 1 — P( D = 0 | t, c )
P( D = 1 | t, c ) should be high when (t, c) ∈ D+, and low when 
(t,c) ∈ D-
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Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from? 
Word2Vec: for each good pair (w,c), sample k words and add 
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words and performs better)
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Word2Vec: Negative Sampling
Training objective: 
Maximize log-likelihood of training data D+ ∪ D-:
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L (Q,D,D0) = Â
(w,c)2D

logP(D = 1|w,c)

+ Â
(w,c)2D0

logP(D = 0|w,c)
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Skip-Gram with negative sampling
Train a binary classifier that decides whether a target 
word t appears in the context of other words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
that don’t appear in its context as negative examples
— Train a (variant of a) binary logistic regression classifier 
with two sets of weights (target and context embeddings) to 
distinguish these cases
— The weights of this classifier depend on the similarity of t 
and the words in c1..k

Use the target embeddings to represent t 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The Skip-Gram classifier
Use logistic regression to predict whether the pair (t, c) (target 
word t and a context word c), is a positive or negative example:

Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity
To capture the entire context window c1..k, assume the words in 
c1:k are independent (multiply) and take the log:  

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).
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In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).
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Where do we get vectors t, c from?
Iterative approach (gradient descent): 
Assume an initial set of vectors, and then adjust them 
during training to maximize the probability of the 
training examples. 
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Summary: How to learn word2vec (skip-gram) embeddings

For a vocabulary of size V: Start with two sets of V random 
300-dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting 
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.
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Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied is closest in meaning to: 
imposed, believed, requested, correlated 

22



CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts: 
Sunnydale 

Evernight 
 
C = ±5 The nearest words to Hogwarts: 
Dumbledore 

Malfoy 

halfblood
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Vectors “capture concepts”

24
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Analogy pairs 
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Analogy: Embeddings capture 
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = 
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = 
vector(‘Rome’)

26
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Word2vec results
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Word2Vec and distributional similarities
Why does the word2vec objective yield sensible results?  

Levy and Goldberg (NIPS 2014): 
Skipgram with negative sampling can be seen as  
a weighted factorization of a word-context PMI matrix.
=> It is actually very similar to traditional distributional 
approaches!

Levy, Goldberg and Dagan (TACL 2015) suggest tricks that can 
be applied to traditional approaches that yield similar results on 
these lexical tests. 
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Using Word 
Embeddings

29
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Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is 
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows 
of E’ = ET  (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and 
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific 
words)
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More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of 
K outcomes, e.g. POS tags, etc.) and learn an embedding 
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range 
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use 
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task
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Dense embeddings you can download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/
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Traditional 
Distributional 
similarities and PMI
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Distributional similarities
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN  

in an N-dimensional vector space.
-Each dimension corresponds to a particular context cn

-Each element wn of w captures the degree to which  
the word w is associated with the context cn.
-  wn depends on the co-occurrence counts of w and cn 

The similarity of words w and u is given by the 
similarity of their vectors w and u 
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Using nearby words as contexts
-Decide on a fixed vocabulary of N context words c1..cN

Context words should occur frequently enough in your corpus that you get 
reliable co-occurrence counts, but you should ignore words that are too 
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)   

-Define what ‘nearby’ means
 For example: w appears near c if c appears within ±5 words of w  

-Get co-occurrence counts of words w and contexts c 

-Define how to transform co-occurrence counts  
of words w and contexts c into vector elements wn
For example: compute (positive) PMI of words and contexts 

-Define how to compute the similarity of word vectors
For example: use the cosine of their angles.
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Defining and counting co-occurrence
Defining co-occurrences:
-Within a fixed window: vi occurs  within ±n words of w
-Within the same sentence: requires sentence boundaries
-By grammatical relations:  
vi occurs as a subject/object/modifier/… of verb w  
(requires parsing - and separate features for each relation) 

Counting co-occurrences:
- fi  as binary features (1,0): w does/does not occur with vi
- fi  as frequencies: w occurs n times with vi
- fi  as probabilities:  
e.g. fi is the probability that vi is the subject of w.
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Getting co-occurrence counts
Co-occurrence as a binary feature:

Does word w ever appear in the context c?  (1 = yes/0 = no)

Co-occurrence as a frequency count:
How often does word w appear in the context c? (0…n times)

 
 
 
 
Typically: 10K-100K dimensions (contexts), very sparse vectors
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arts boil data function large sugar water
apricot 0 1 0 0 1 1 1

pineapple 0 1 0 0 1 1 1

digital 0 0 1 1 1 0 0

information 0 0 1 1 1 0 0

arts boil data function large sugar water
apricot 0 1 0 0 5 2 7

pineapple 0 2 0 0 10 8 5

digital 0 0 31 8 20 0 0

information 0 0 35 23 5 0 0
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Counts vs PMI
Sometimes, low co-occurrences counts are very 
informative, and high co-occurrence counts are not:
-Any word is going to have relatively high co-occurrence 
counts with very common contexts (e.g. “it”, “anything”, “is”, 
etc.), but this won’t tell us much about what that word means. 
-We need to identify when co-occurrence counts are more 
likely than we would expect by chance. 

We therefore want to use PMI values instead of raw 
frequency counts: 

 
But this requires us to define p(w, c), p(w) and p(c) 
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PMI(w, c) = log
p(w, c)

p(w)p(c)



CS447: Natural Language Processing (J. Hockenmaier)

Pointwise mutual information (PMI)
Recall that two events x, y are independent  
if their joint probability is equal to the product of their 
individual probabilities: 

x,y are independent iff p(x,y) = p(x)p(y)
x,y are independent iff p(x,y)∕p(x)p(y) = 1

 
In NLP, we often use the pointwise mutual information 
(PMI) of two outcomes/events (e.g. words): 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PMI(x, y) = log
p(X = x, Y = y)

p(X = x)p(Y = y)



CS447: Natural Language Processing (J. Hockenmaier)

Positive Pointwise Mutual Information
PMI is negative when words co-occur less than 
expected by chance.

This is unreliable without huge corpora:
With P(w1) ≈ P(w2) ≈ 10-6, we can’t estimate whether P(w1,w2) 
is significantly different from 10-12

 
We often just use positive PMI values,  
and replace all PMI values < 0 with 0:

Positive Pointwise Mutual Information (PPMI):
PPMI(w,c) = PMI(w,c) if PMI(w,c) > 0  

                   = 0             if PMI(w,c) ≤ 0
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Frequencies vs. PMI
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Count PMI

bunch beer 2 12.34

tea 2 11.75

liquid 2 10.53

champagne 4 11.75

anything 3 5.15

it 3 1.25

Objects of ‘drink’ (Lin, 1998)


