CS546: Machine Learning in NLP (Spring 2020)

http.//courses.engr.illinois.edu/cs546/

Lecture 3:

From neural language models
to static word embeddings

Julia Hockenmaier
juliahmr@illinois.edu

3324 Siebel Center

Office hours: Monday, 11am—12:30pm

Today'’s lecture

How does NLP use neural nets (wrap-up)

Neural language models:

— Feedforward nets
— Recurrent nets

From words to vectors: Word2Vec

CS546 Machine Learning in NLP

What are neural nets?

Simplest variant: single-layer feedforward net

For binary Output unit: scalar y

classification tasks: T
Single output unit O Input layer: vector x

Return 1ify>0.5
Return O otherwise

For multiclass Output layer: vector y
classification tasks:

K output units (a vector)) Input layer: vector x
Each output unit

yi =class |

Return argmaxi(yi)

CS546 Machine Learning in NLP

Multiclass models: softmax(y;)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmax;(y;)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution

over the N outputs
For a vector z = (zo...zx): P(i) = softmax(zi) = exp(zi) / Yx=0.x exp(zx)
(NB: This is just logistic regression)

CS546 Machine Learning in NLP 4

Single-layer feedforward networks

Single-layer (linear) feedforward network
y = WX + b (binary classification)
W is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron)
(the output yis a linear function of the input x)

Single-layer non-linear feedforward networks:

Pass wx + b through a non-linear activation function,
e.g. y =tanh(wx + b)

CS546 Machine Learning in NLP 5

Nonlinear activation functions

Sigmoid (logistic function): o(x) = 1/(1 + e¥)
Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x-1)/(e2*+1)
Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
htanh(x) = -1 for x < -1, 1 for x > 1, X otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)
Useful for internal units

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0

-0.5 -0.5 -0.5 -0.5

-1.0 - - -

1.0 1.0 1.0
6 -4 -2 0 2 46 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

Softmax: softmax(zi) = exp(zi) / Y k=0.x exp(zx)
Special case for output units (multiclass classification)

CS546 Machine Learning in NLP 6

Multi-layer feedforward networks

We can generalize this to multi-layer feedforward nets

Output layer: vector y
Hidden layer: vector hn

Hidden layer: vector hy

Input layer: vector x

CS546 Machine Learning in NLP 7

Challenges in using NNs for NLP

In NLP, the input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.

We typically want to learn a mapping (embedding) from
discrete words (input) to dense vectors.
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length
vector. How do you represent a variable-length

sequence as a vector?
With recurrent neural nets: read in one word at the time to
predict a vector, use that vector and the next word to predict a
new vector, etc.;

With convolutional nets: use a sliding (fixed-length) window)
CS546 Machine Learning in NLP 8

How does NLP use NNs?

Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context
from a word) to get a dense vector representation of each word

Neural language models:

Use recurrent neural networks (RNNs, GRUs, LSTMs) to

predict word sequences (or to obtain context-sensitive
embeddings (ELMO)

Sequence-to-sequence (seqg2seq) models:

From machine translation: use one RNN to encode source
string, and another RNN to decode this into a target string.

Also used for automatic image captioning, etc.
Convolutional neural nets

Used e.g. for text classification
Transformers

CS546 Machine Learning in NLP 9

Neural Language
Models

CS546 Machine Learning in NLP

What is a language model?

Probability distribution over the strings in a language,
typically factored into distributions P(w;il ...)
for each word:

P(w) =P(wi...wp) = [Ii P(Wi l wi...Wi1)

N-gram models assume each word depends only
preceding n—1 words:
P(wil wi...Wi-1) =det P(Wi | Wicn+1...Wi-1)

To handle variable length strings, we assume each string starts
with n—1 start-of-sentence symbols (BOS), or (S)

and ends in a special end-of-sentence symbol (EOS) or {\S)

CS546 Machine Learning in NLP 11

A naive neural n-gram model P(w | wi...wn.1)

— The vocabulary V contains v types (incl. UNK, BOS, EOS)
— We want to condition each word on n-1 preceding words

— [Naive] Each input word w; € V (that we’re conditioning on)
Is an v-dimensional one-hot vector v(w) =(0,...0,1,0....0)
— Our input layer x = [v(W1),...,v(wn-1)] has (n-1)xv elements
— To predict the probability over output words,
the output layer is a softmax over v elements
P(w | wi...wn-1) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters,
one for h and one for the output

CS546 Machine Learning in NLP 12

Naive neural n-gram model

Architecture:
Input Layer: X = [V(W1)....V(Wn-1)]

v(w): a one-hot vector of size v=dim(V) = |VI
Hidden Layer: h = g(xW! + b!)

Output Layer: P(w | wi...wn.1) = softmax(hW2 + b2)

Parameters:
Weight matrices and biases:
first layer: W1 € Rm-Dxvxdimth) — p1 & Rdim(h)
second layer: W2 & Rdim(h)xv b2 &RV

CS447: Natural Language Processing (J. Hockenmaier) 13

How many parameters do we need to learn?

Traditional n-gram model: dim(V)" parameters
With dim(V) = 10,000 and n=3: 1,000,000,000,000

Naive neural n-gram model (one-hot encoding of vocabulary):

#parameters going to hidden layer: (n-1)-dim(V)-dim(h),
with dim(h) = 300, dim(V) = 10,000 and n-1=2: 6,000,000

plus #parameters going to output layer: dim(h)-dim(V)
with dim(h) = 300, dim(V) = 10,000: 3,000,000

The neural model requires still a lot of parameters,
but far fewer than the traditional n-gram model

CS546 Machine Learning in NLP 14

Naive neural n-gram models

Advantages over traditional n-gram models:

— The hidden layer captures interactions among context words

— Increasing the order of the n-gram requires only a small linear

increase in the number of parameters.
dim(WT) goes from (n-1) - dim(emb)xdim(h) to n - dim(emb)xdim(h)
A traditional k-gram model requires dim(V)k parameters

— Increasing the vocabulary also leads only to a linear increase
in the number of parameters

CS546 Machine Learning in NLP 15

Better neural language models

Naive neural models have similar shortcomings

as standard n-gram models
— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts
— N-gram Markov (independence) assumptions are too strict

Better neural language models overcome these by...

... using word embeddings instead of one-hots as input:
Instead of representing context words as distinct, discrete symbols (i.e. very high-
dimensional one-hot vectors), use a dense low-dimensional vector representation

where similar words have similar vectors [next]

... using recurrent nets instead of feedforward nets:
Instead of a fixed-length (n-gram) context, use recurrent nets to encode variable-

lengths contexts [later class]

CS546 Machine Learning in NLP 16

Recurrent neural networks (RNNSs)

Basic RNN: Modify the standard feedforward
architecture (which predicts a string wo...wnone word
at a time) such that the output of the current step (wi)
IS given as additional input to the next time step

(when predicting the output for wi1).
“Output” — typically (the last) hidden layer.

output m output QQQ) [QQQ] QQQ] QQQJ

e @@ hiosen[OOOHOOOHOOSH00O)
i @O0 v [000) [000) [000) @00

Feedforward Net Recurrent Net

CS546 Machine Learning in NLP 17

Word Embeddings (e.g. word2vec)

Main idea:

If you use a feedforward network to predict the
probability of words that appear in the context of (near)
an input word, the hidden layer of that network provides
a dense vector representation of the input word.

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pretrained embeddings can be downloaded)

CS546 Machine Learning in NLP 18

From words to
vectors

CS447: Natural Language Processing (J. Hockenmaier)

From words to vectors

We typically think of words as atomic symbols,
but neural nets require input in vector form.

Naive solution: one-hot encoding (dim(x) = IVI)
“a’=(1,0,0,...0), “aardvark” = (0,1,0,...,0),

Very high-dimensional, very sparse vectors (most elements 0)
No ability to generalize across similar words

Still requires a lot of parameters.
How do we obtain low-dimensional, dense vectors?

Low-dimensional => our models need far fewer parameters
Dense => lots of elements are non-zero

We also want words that are similar to have similar vectors

CS447: Natural Language Processing (J. Hockenmaier) 20

The Distributional Hypothesis

Zellig Harris (1954):

“oculist and eye-doctor ... occur in almost the same
environments”

“If A and B have almost identical environments we say that
they are synonyms.”

John R. Firth 1957:

You shall know a word by the company it keeps.

The contexts in which a word appears

tells us a lot about what it means.
Words that appear in similar contexts have similar meanings

CS447: Natural Language Processing (J. Hockenmaier) 21

Why do we care about word contexts?

What is tezglino?

A bottle of tezgiiino is on the table.
Everybody likes tezgiiino.
Tezgiiino makes you drunk.

We make tezgliino out of corn.
(Lin, 1998; Nida, 1975)

The contexts in which a word appears
tells us a lot about what it means.

CS447: Natural Language Processing (J. Hockenmaier)

22

Vector representations of words

“Traditional” distributional similarity approaches

represent words as sparse vectors
- Each dimension represents one specific context

-Vector entries are based on word-context co-occurrence
statistics

Alternative, dense vector representations:

-We can use Singular Value Decomposition to turn these
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use classifiers or neural models to explicitly
learn a dense vector representation (embedding)
(word2vec, Glove, etc.)
Sparse vectors = most entries are zero
Dense vectors = most entries are non-zero

CS447: Natural Language Processing (J. Hockenmaier) 23

(Static) Word Embeddings

A (static) word embedding is a function that maps
each word type to a single vector

— these vectors are typically dense and have much
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the
same string of letters may have different senses
(dining table vs. a table of contents) or parts of
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed

size vocabulary (so an UNK token is still required)
CS447: Natural Language Processing (J. Hockenmaier) 24

Word2Vec Embeddings

Main idea:

Use a classifier to predict which words appear in the
context of (i.e. near) a target word (or vice versa)

This classifier induces a dense vector representation of
words (embedding)

Words that appear in similar contexts (that have high
distributional similarity) will have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pre-trained embeddings can be downloaded)

CS447: Natural Language Processing (J. Hockenmaier) 25

Word2Vec (Mikolov et al. 2013)

The first really influential dense word embeddings

Two ways to think about Word2Vec:

— a simplification of neural language models
— a binary logistic regression classifier

Variants of Word2Vec

— Two different context representations: CBOW or Skip-Gram

— Two different optimization objectives:
Negative sampling (NS) or hierarchical softmax

CS447: Natural Language Processing (J. Hockenmaier) 26

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) w(t-2)
w(t-1) w(t-1)
\\SUM
H w(t) w(t) H
w(t+1) 7/(w(t+1)
w(t+2) w(t+2)
cBOwW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

CS546 Machine Learning in NLP 27

CBOW

(CBOW=Continuous Bag of Words)
Training sentence:
tablespoon of apricot jam a
o c2 t c3 c4

Given the surrounding context words (tablespoon, of,
jam, a), predict the target word (apricot).

Input: each context word is a one-hot vector
Projection layer: map each one-hot vector down to a dense
D-dimensional vector, and average these vectors

Output: predict the target word with softmax

CS546 Machine Learning in NLP 28

Skip-Gram with negative sampling

Train a binary classifier that decides whether a target

word t appears in the context of other words ¢1.«
— Context: the set of k words near (surrounding) t

— Treat the target word t and any word that actually appears
In its context in a real corpus as positive examples

— Treat the target word t and randomly sampled words
that don’t appear in its context as negative examples

— Train a binary logistic regression classifier to distinguish
these cases

— The weights of this classifier depend on the similarity of t
and the words in ¢1.«

Use the weights of this classifier as embeddings for ¢

CS447: Natural Language Processing (J. Hockenmaier) 29

Skip-Gram Goal

Given a tuple (t,c) = target, context

(apricot, Jam)
(apricot, aardvark)

Return the probability that c is a real
context word:

P(D=+ |t)

P(D=- |t,c)=1-P(D=+ |t)

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data

Training sentence:
tablespoon of apricot jam a
o c2 t c3 c4

Training data: input/output pairs centering on apricot
Assume a +/- 2 word window (in reality: use +/- 10 words)

Positive examples:
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)

For each positive example, create k negative examples,
using noise words:

(apricot, aardvark), (apricot, puddle)...

CS447: Natural Language Processing (J. Hockenmaier) 31

Word2Vec: Negative Sampling

Training data: D+ u D-

D+ = actual examples from training data

Where do we get D- from?
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add

each w; as a negative example (w;,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency

or according to smoothed variant where freq’(w) = freq(w)0-7°
(This gives more weight to rare words)

CS447: Natural Language Processing (J. Hockenmaier) 32

Word2Vec: Negative Sampling

Training objective:
Maximize log-likelihood of training data D+ u D-:

Z(©,D,D')= Y logP(D=1|w.c)

+) logP(D=0|w,c)
(w,c)eD’

CS447: Natural Language Processing (J. Hockenmaier) 33

How to compute p(+ 1 t, c)?

Intuition:

Words are likely to appear near similar words

Model similarity with dot-product!
Similarity(t,c) ot - c

Problem:

Dot product is not a probability!
(Neither is cosine)

CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a
probability

The sigmoid lies between 0 and 1:

| |
o(x) = .

) I +exp(—x) 7= //

. - % ,
1
P(+|t,c) =
1+ exp(—t-c)
P(—|tc)=1— exp(—t-c)

1 + exp(—t-c) B 1 + exp(—t-c)

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling

Distinguish “good” (correct) word-context pairs (D=1),
from “bad” ones (D=0)

Probabilistic objective:
P(D=11t,c)defined by sigmoid:

1
P(D=1|w,c) =

14+ exp(—s(w,c))

P(D=0It,c)=1—P(D=0It,c)
P(D=11t,c)should be high when (t, c) € D+, and low when
(t,c) € D-

CS447: Natural Language Processing (J. Hockenmaier) 36

The Skip-Gram classifier

Use logistic regression to predict whether the pair (¢, ¢) (target
word t and a context word c), is a positive or negative example:

1 P(—|t,c) = 1—P(+|t,c)
PO = T -

Assume that t and c are represented as vectors,
so that their dot product tc captures their similarity

To capture the entire context window c1.k, assume the words in

c1x are independent (multiply) and take the log:
k
1
P(—Htacl:k) — H

1 +et¢
i=1

log P(+|t,c1:x) ZlogH_e_tcl

CS447: Natural Language Processmg (J. Hockenmaier) 37

Where do we get vectors t, ¢ from?

lterative approach (gradient descent):

Assume an initial set of vectors, and then adjust them
during training to maximize the probability of the
training examples.

CS447: Natural Language Processing (J. Hockenmaier) 38

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don'’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples

Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings

Compare to human scores on word

similarity-type tasks:
WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)

TOEFL dataset: Levied is closest in meaning to: imposed,
believed, requested, correlated

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings

Similarity depends on window size C

C = +2 The nearest words to Hogwarts:
Sunnydale

Evernight

C = +5 The nearest words to Hogwarts:
Dumbledore

Malfoy
halfblood

CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

WOMAN QUEENS
AUNT

VAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

CS447: Natural Language Processing (J. Hockenmaier)

Using Word
Embeddings

CS447: Natural Language Processing (J. Hockenmaier)

Using pre-trained embeddings

Assume you have pre-trained embeddings E.
How do you use them in your model?

- Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.

- Option 2: Keep E fixed, but add another hidden layer that is
learned for your task

- Option 3: Learn matrix T € dim(emb)xdim(emb) and use rows
of E'= ET (adapts all embeddings, not specific words)
- Option 4: Keep E fixed, but learn matrix A e R!VIxdim(emb) gnd

use E'=E + AorE’=ET + A (this learns to adapt specific
words)

CS447: Natural Language Processing (J. Hockenmaier) 44

More on embeddings

Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of
K outcomes, e.g. POS tags, etc.) and learn an embedding
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.

Initialization matters: use random weights, but in special range
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use

Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

CS447: Natural Language Processing (J. Hockenmaier) 45

Dense embeddings you can
download!

Word2vec (Mikolov et al.)

https://code.google.com/archive/p/word2vec/
Fasttext hitp://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

CS447: Natural Language Processing (J. Hockenmaier)

