
CS546: Machine Learning in NLP (Spring 2020)
http://courses.engr.illinois.edu/cs546/

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Lecture 3:
From neural language models 
to static word embeddings



CS546 Machine Learning in NLP

Today’s lecture
How does NLP use neural nets (wrap-up)

Neural language models:
— Feedforward nets
— Recurrent nets

From words to vectors: Word2Vec

2



CS546 Machine Learning in NLP

What are neural nets?
Simplest variant: single-layer feedforward net

3

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary 
classification tasks: 
Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:
K output units (a vector)
Each output unit  
yi = class i
Return argmaxi(yi)



CS546 Machine Learning in NLP

Multiclass models: softmax(yi)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax 
function, which maps real-valued vectors in RN into a distribution 
over the N outputs
For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)

(NB: This is just logistic regression)

4



CS546 Machine Learning in NLP

Single-layer feedforward networks
Single-layer (linear) feedforward network 

y  = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward  networks:
Pass wx + b through a non-linear activation function,      
e.g. y  = tanh(wx + b)

5



CS546 Machine Learning in NLP

Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x) 

Useful for output units (probabilities)  [0,1] range
Hyperbolic tangent:  tanh(x) = (e2x −1)/(e2x+1) 

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
     htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit:    ReLU(x) = max(0, x)

Useful for internal units  
 
 

Softmax: softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
Special case for output units (multiclass classification)

6

�� �� '&&%�'038"3% /&63"- /&5803,4
UJNFT UP QSPEVDF FYDFMMFOU SFTVMUT�ŉ ɩF 3F-6 VOJU DMJQT FBDI WBMVF x < 0 BU �� %FTQJUF JUT TJN�
QMJDJUZ
 JU QFSGPSNT XFMM GPS NBOZ UBTLT
 FTQFDJBMMZ XIFO DPNCJOFE XJUI UIF ESPQPVU SFHVMBSJ[BUJPO
UFDIOJRVF 	TFF 4FDUJPO ���
�

3F-6.x/ D NBY.0; x/ D
(

0 x < 0

x PUIFSXJTF: 	���


"T B SVMF PG UIVNC
 CPUI 3F-6 BOE UBOI VOJUT XPSL XFMM
 BOE TJHOJmDBOUMZ PVUQFSGPSN UIF
TJHNPJE� :PV NBZ XBOU UP FYQFSJNFOU XJUI CPUI UBOI BOE 3F-6 BDUJWBUJPOT
 BT FBDI POF NBZ
QFSGPSN CFUUFS JO EJĊFSFOU TFUUJOHT�

'JHVSF ��� TIPXT UIF TIBQFT PG UIF EJĊFSFOU BDUJWBUJPOT GVODUJPOT
 UPHFUIFS XJUI UIF TIBQFT
PG UIFJS EFSJWBUJWFT�

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

!f

!x

!f

!x

!f

!x

!f

!x

'JHVSF ���� "DUJWBUJPO GVODUJPOT 	UPQ
 BOE UIFJS EFSJWBUJWFT 	CPUUPN
�

��� -044 '6/$5*0/4
8IFO USBJOJOH B OFVSBM OFUXPSL 	NPSF PO USBJOJOH JO $IBQUFS �

 NVDI MJLF XIFO USBJOJOH B
MJOFBS DMBTTJmFS
 POF EFmOFT B MPTT GVODUJPO L. Oy; y/
 TUBUJOH UIF MPTT PG QSFEJDUJOH Oy XIFO UIF
USVF PVUQVU JT y � ɩF USBJOJOH PCKFDUJWF JT UIFO UP NJOJNJ[F UIF MPTT BDSPTT UIF EJĊFSFOU USBJOJOH
FYBNQMFT� ɩF MPTT L. Oy; y/ BTTJHOT B OVNFSJDBM TDPSF 	B TDBMBS
 UP UIF OFUXPSL�T PVUQVU Oy HJWFO
UIF USVF FYQFDUFE PVUQVU y � ɩF MPTT GVODUJPOT EJTDVTTFE GPS MJOFBS NPEFMT JO 4FDUJPO ����� BSF
SFMFWBOU BOE XJEFMZ VTFE BMTP GPS OFVSBM OFUXPSLT� 'PS GVSUIFS EJTDVTTJPO PO MPTT GVODUJPOT JO UIF
ŉɩF UFDIOJDBM BEWBOUBHFT PG UIF 3F-6 PWFS UIF TJHNPJE BOE UBOI BDUJWBUJPO GVODUJPOT JT UIBU JU EPFT OPU JOWPMWF FYQFOTJWF�
UP�DPNQVUF GVODUJPOT
 BOE NPSF JNQPSUBOUMZ UIBU JU EPFT OPU TBUVSBUF� ɩF TJHNPJE BOE UBOI BDUJWBUJPO BSF DBQQFE BU 1
 BOE
UIF HSBEJFOUT BU UIJT SFHJPO PG UIF GVODUJPOT BSF OFBS [FSP
 ESJWJOH UIF FOUJSF HSBEJFOU OFBS [FSP� ɩF 3F-6 BDUJWBUJPO EPFT
OPU IBWF UIJT QSPCMFN
 NBLJOH JU FTQFDJBMMZ TVJUBCMF GPS OFUXPSLT XJUI NVMUJQMF MBZFST
 XIJDI BSF TVTDFQUJCMF UP UIF WBOJTIJOH
HSBEJFOUT QSPCMFN XIFO USBJOFE XJUI UIF TBUVSBUJOH VOJUT�



CS546 Machine Learning in NLP

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

7

Input layer: vector x

 Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 



CS546 Machine Learning in NLP

Challenges in using NNs for NLP
In NLP, the input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from 
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length 
vector. How do you represent a variable-length 
sequence as a vector?

With recurrent neural nets: read in one word at the time to 
predict a vector, use that vector and the next word to predict a 
new vector, etc.;
With convolutional nets: use a sliding (fixed-length) window)

8



CS546 Machine Learning in NLP

How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context 
from a word) to get a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs, GRUs, LSTMs) to 
predict word sequences (or to obtain context-sensitive 
embeddings (ELMO)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source 
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Convolutional neural nets
Used e.g. for text classification

Transformers
9



CS546 Machine Learning in NLP

Neural Language 
Models

10



CS546 Machine Learning in NLP

What is a language model?
Probability distribution over the strings in a language, 
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only 
preceding n−1 words: 

P(wi | w1…wi-1)  =def  P(wi | wi−n+1…wi−1)
  

To handle variable length strings, we assume each string starts 
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉

11



CS546 Machine Learning in NLP

A naive neural n-gram model  P(w | w1…wn-1)

— The vocabulary V contains v types (incl. UNK, BOS, EOS) 
— We want to condition each word on n-1 preceding words 

— [Naive] Each input word wi ∈ V (that we’re conditioning on)  
     is an v-dimensional one-hot vector v(w) = (0,…0, 1,0….0)
— Our input layer x = [v(w1),…,v(wn-1)] has (n-1)×v elements 
— To predict the probability over output words,  
     the output layer is a softmax over v elements  
            P(w | w1…wn-1) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters, 
one for h and one for the output

12



CS447: Natural Language Processing (J. Hockenmaier)

Naive neural n-gram model
Architecture:

Input Layer:            x = [v(w1)….v(wn-1)]
                                v(w): a one-hot vector of size v = dim(V) = |V|
Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wn-1) = softmax(hW2 + b2)

Parameters:
Weight matrices and biases: 
                            first layer: W1 ∈ R(n-1)×v×dim(h)      b1 ∈ Rdim(h)

                            second layer: W2 ∈ Rdim(h)×v              b2 ∈ Rv

13



CS546 Machine Learning in NLP

How many parameters do we need to learn?

Traditional n-gram model: dim(V)n parameters

With dim(V) = 10,000 and n=3: 1,000,000,000,000 

Naive neural n-gram model (one-hot encoding of vocabulary): 

#parameters going to hidden layer: (n-1)∙dim(V)∙dim(h),  
with dim(h) = 300, dim(V) = 10,000 and n-1=2:  6,000,000

plus #parameters going to output layer: dim(h)∙dim(V)

with dim(h) = 300, dim(V) = 10,000: 3,000,000


The neural model requires still a lot of parameters,  
but far fewer than the traditional n-gram model


14



CS546 Machine Learning in NLP

Naive neural n-gram models
Advantages over traditional n-gram models:  

— The hidden layer captures interactions among context words 
 

— Increasing the order of the n-gram requires only a small linear 
increase in the number of parameters. 


dim(W1) goes from (n-1)·dim(emb)×dim(h) to n·dim(emb)×dim(h)
A traditional k-gram model requires dim(V)k parameters

— Increasing the vocabulary also leads only to a linear increase 
in the number of parameters 

15



CS546 Machine Learning in NLP

Better neural language models
Naive neural models have similar shortcomings  
as standard n-gram models

— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts 
— N-gram Markov (independence) assumptions are too strict 

Better neural language models overcome these by…
 
… using word embeddings instead of one-hots as input:  
Instead of representing context words as distinct, discrete symbols (i.e. very high-
dimensional one-hot vectors), use a dense low-dimensional vector representation 
where similar words have similar vectors [next] 

… using recurrent nets instead of feedforward nets:  
Instead of a fixed-length (n-gram) context, use recurrent nets to encode variable-
lengths contexts [later class]

16



CS546 Machine Learning in NLP

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward 
architecture (which predicts a string w0…wn one word 
at a time) such that the output of the current step (wi) 
is given as additional input to the next time step 
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

17

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net



CS546 Machine Learning in NLP

Word Embeddings (e.g. word2vec)
Main idea: 
If you use a feedforward network to predict the 
probability of words that appear in the context of (near) 
an input word, the hidden layer of that network provides 
a dense vector representation of the input word. 

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pretrained embeddings can be downloaded)

18



CS447: Natural Language Processing (J. Hockenmaier)

From words to 
vectors

19



CS447: Natural Language Processing (J. Hockenmaier)

From words to vectors
We typically think of words as atomic symbols,  
but neural nets require input in vector form.

Naive solution: one-hot encoding (dim(x) = |V| )
“a” = (1,0,0,…0), “aardvark” = (0,1,0,…,0), ….
Very high-dimensional, very sparse vectors (most elements 0) 
No ability to generalize across similar words
Still requires a lot of parameters. 

How do we obtain low-dimensional, dense vectors?
Low-dimensional => our models need far fewer parameters
Dense => lots of elements are non-zero
We also want words that are similar to have similar vectors

20



CS447: Natural Language Processing (J. Hockenmaier)

The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same 
environments”
“If A and B have almost identical environments we say that 
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

21



CS447: Natural Language Processing (J. Hockenmaier)

Why do we care about word contexts?
What is tezgüino?
A bottle of tezgüino is on the table.  
Everybody likes tezgüino. 
Tezgüino makes you drunk.  
We make tezgüino out of corn.  
(Lin, 1998; Nida, 1975)

The contexts in which a word appears  
tells us a lot about what it means.  

22



CS447: Natural Language Processing (J. Hockenmaier)

Vector representations of words
“Traditional” distributional similarity approaches 
represent words as sparse vectors
-Each dimension represents one specific context 
-Vector entries are based on word-context co-occurrence 
statistics

 
Alternative, dense vector representations: 
-We can use Singular Value Decomposition to turn these 
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use classifiers or neural models to explicitly 
learn a dense vector representation (embedding)  
(word2vec, Glove, etc.) 
Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero

23



CS447: Natural Language Processing (J. Hockenmaier)

(Static) Word Embeddings
A (static) word embedding is a function that maps 
each word type to a single vector 

— these vectors are typically dense and have much 
lower dimensionality than the size of the vocabulary

— this mapping function typically ignores that the 
same string of letters may have different senses  
(dining table vs. a table of contents) or parts of 
speech (to table a motion vs. a table)

— this mapping function typically assumes a fixed 
size vocabulary (so an UNK token is still required)

24



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec Embeddings
Main idea: 
Use a classifier to predict which words appear in the 
context of (i.e. near) a target word (or vice versa)
This classifier induces a dense vector representation of 
words (embedding)

Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pre-trained embeddings can be downloaded)

25



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec (Mikolov et al. 2013)
The first really influential dense word embeddings  

Two ways to think about Word2Vec:
— a simplification of neural language models
— a binary logistic regression classifier  

Variants of Word2Vec
— Two different context representations: CBOW or Skip-Gram
— Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

 

26



CS546 Machine Learning in NLP 27

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5



CS546 Machine Learning in NLP

CBOW 
(CBOW=Continuous Bag of Words)
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1        c2     t        c3    c4

Given the surrounding context words (tablespoon, of, 
jam, a), predict the target word (apricot).

Input: each context word is a one-hot vector  
Projection layer: map each one-hot vector down to a dense 
D-dimensional vector, and average these vectors
Output: predict the target word with softmax

28



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram with negative sampling
Train a binary classifier that decides whether a target 
word t appears in the context of other words c1..k

— Context: the set of k words near (surrounding) t
— Treat the target word t and any word that actually appears  
in its context in a real corpus as positive examples
— Treat the target word t and randomly sampled words  
that don’t appear in its context as negative examples
— Train a binary logistic regression classifier to distinguish  
these cases
— The weights of this classifier depend on the similarity of t 
and the words in c1..k 

Use the weights of this classifier as embeddings for t 

29



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal
Given a tuple (t,c)  = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real 
context word:
P( D = +  | t, c) 
P( D = −  | t, c) = 1 − P(D = + | t, c)

11/27/18
30



CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window  (in reality: use +/- 10 words)
	Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	For each positive example, create k negative examples,  
using noise words: 
	(apricot, aardvark), (apricot, puddle)… 

31



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from? 
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add 
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)

32



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Training objective: 
Maximize log-likelihood of training data D+ ∪ D-:

33

L (Q,D,D0) = Â
(w,c)2D

logP(D = 1|w,c)

+ Â
(w,c)2D0

logP(D = 0|w,c)



CS447: Natural Language Processing (J. Hockenmaier)

How to compute p(+ | t, c)?
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!

Similarity(t,c)  ∝ t · c
Problem:
Dot product is not a probability! 
(Neither is cosine)
	 		

34



CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a 
probability
The sigmoid lies between 0 and 1:

 
 
 
 

35

σ(x) =
1

1 + exp(−x)

P( + | t, c) =
1

1 + exp(−t ⋅ c)

P( − | t, c) = 1 −
1

1 + exp(−t ⋅ c)
=

exp(−t ⋅ c)
1 + exp(−t ⋅ c)



CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:  
P( D = 1 | t, c ) defined by sigmoid: 
 

 
P( D = 0 | t, c ) = 1 — P( D = 0 | t, c )
P( D = 1 | t, c ) should be high when (t, c) ∈ D+, and low when 
(t,c) ∈ D-

36

P(D = 1|w,c) = 1
1+ exp(�s(w,c))



CS447: Natural Language Processing (J. Hockenmaier)

The Skip-Gram classifier
Use logistic regression to predict whether the pair (t, c) (target 
word t and a context word c), is a positive or negative example:

Assume that t and c are represented as vectors,  
so that their dot product tc captures their similarity

To capture the entire context window c1..k, assume the words in 
c1:k are independent (multiply) and take the log:  

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

20 CHAPTER 6 • VECTOR SEMANTICS

The probability that word c is not a real context word for t is just 1 minus
Eq. 6.23:

P(�|t,c) = 1�P(+|t,c) (6.24)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on similarity: a word is likely to occur near
the target if its embedding is similar to the target embedding. How can we compute
similarity between embeddings? Recall that two vectors are similar if they have a
high dot product (cosine, the most popular similarity metric, is just a normalized dot
product). In other words:

Similarity(t,c)⇡ t · c (6.25)

Of course, the dot product t · c is not a probability, it’s just a number ranging from
0 to •. (Recall, for that matter, that cosine isn’t a probability either). To turn the
dot product into a probability, we’ll use the logistic or sigmoid function s(x), the
fundamental core of logistic regression:

s(x) =
1

1+ e�x (6.26)

The probability that word c is a real context word for target word t is thus computed
as:

P(+|t,c) =
1

1+ e�t·c (6.27)

The sigmoid function just returns a number between 0 and 1, so to make it a proba-
bility we’ll need to make sure that the total probability of the two possible events (c
being a context word, and c not being a context word) sum to 1.

The probability that word c is not a real context word for t is thus:

P(�|t,c) = 1�P(+|t,c)

=
e�t·c

1+ e�t·c (6.28)

Equation 6.27 give us the probability for one word, but we need to take account of
the multiple context words in the window. Skip-gram makes the strong but very
useful simplifying assumption that all context words are independent, allowing us to
just multiply their probabilities:

P(+|t,c1:k) =
kY

i=1

1
1+ e�t·ci

(6.29)

logP(+|t,c1:k) =
kX

i=1

log
1

1+ e�t·ci
(6.30)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
t and its context window of k words c1:k, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each word target and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

37



CS447: Natural Language Processing (J. Hockenmaier)

Where do we get vectors t, c from?
Iterative approach (gradient descent): 
Assume an initial set of vectors, and then adjust them 
during training to maximize the probability of the 
training examples. 

38



CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram) 
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting 
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

39



CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

40



CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood

41



CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture 
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = 
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = 
vector(‘Rome’)

42



CS447: Natural Language Processing (J. Hockenmaier)

Using Word 
Embeddings

43



CS447: Natural Language Processing (J. Hockenmaier)

Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is 
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows 
of E’ = ET  (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and 
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific 
words)

44



CS447: Natural Language Processing (J. Hockenmaier)

More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of 
K outcomes, e.g. POS tags, etc.) and learn an embedding 
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range 
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use 
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

45



CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can 
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

46


