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Wrap-up: 
Syllabus for this class
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Admin
You will receive an email with a link to a Google form 
where you can sign up for slots to present. 

— Please sign up for at least three slots so that I have some 
flexibility in assigning you to a presentation

We will give you one week to fill this in. 

You will have to meet with me the Monday before 
your presentation to go over your slides.
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Grading criteria for presentations
— Clarity of exposition and presentation
— Analysis  
    (don’t just regurgitate what’s in the paper)
— Quality of slides  
    (and effort that went into making them  
    — just re-using other people’s slides is not enough)
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Why does NLP  
need ML?
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NLP research questions redux
How do you represent (or predict) words?

Do you treat words in the input as atomic categories, as 
continuous vectors, or as structured objects?
How do you handle rare/unseen words, typos, spelling 
variants, morphological information?
Lexical semantics: do you capture word meanings/senses?

How do you represent (or predict) word sequences?
Sequences = sentences, paragraphs, documents, dialogs,…
As a vector, or as a structured object?

How do you represent (or predict) structures?
Structures = labeled sequences, trees, graphs, formal 
languages (e.g. DB records/queries, logical representations)
How do you represent “meaning”? 
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Two core problems for NLP
Ambiguity: Natural language is highly ambiguous
-Words have multiple senses and different POS
-Sentences have a myriad of possible parses
-etc.

Coverage (compounded by Zipf’s Law)
-Any (wide-coverage) NLP system will come across words or 
constructions that did not occur during training. 
-We need to be able to generalize from the seen events during 
training to unseen events that occur during testing (i.e. when 
we actually use the system).
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The coverage 
problem 
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Zipf’s law: the long tail
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In natural language:
-A small number of events (e.g. words) occur with high frequency
-A large number of events occur with very low frequency
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A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times? 

the r-th most 
common word wr  
has P(wr) ∝ 1/r
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Implications of Zipf’s Law for NLP
The good: 

Any text will contain a number of words that are very common.
We have seen these words often enough that we know (almost) 
everything about them. These words will help us get at the 
structure (and possibly meaning) of this text.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them 
often enough to know everything about them. They may occur 
with a meaning or a part of speech we haven’t seen before. 

The ugly:
Any text will contain a number of words that are unknown to us. 
We have never seen them before, but we still need to get at the 
structure (and meaning) of these texts. 
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Dealing with the bad and the ugly
Our systems need to be able to generalize  
from what they have seen to unseen events.

There are two (complementary) approaches  
to generalization:

— Linguistics provides us with insights about the rules and   
structures in language that we can exploit in the (symbolic)   
representations we use
 E.g.: a finite set of grammar rules is enough to describe an infinite language  

— Machine Learning/Statistics allows us to learn models 
(and/or representations) from real data that often work well 
empirically on unseen data
 E.g. most statistical or neural NLP
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How do we represent words?
Option 1: Words are atomic symbols 

Can’t capture syntactic/semantic relations between words 

— Each (surface) word form is its own symbol
— Map different forms of a word to the same symbol
-Lemmatization: map each word to its lemma  
(esp. in English, the lemma is still a word in the language,  
but lemmatized text is no longer grammatical)
-Stemming: remove endings that differ among word forms  
(no guarantee that the resulting symbol is an actual word)
-Normalization: map all variants of the same word (form) to 
the same canonical variant (e.g. lowercase everything, 
normalize spellings, perhaps spell-check)
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How do we represent words?
Option 2: Represent the structure of each word

 “books” => “book N pl” (or “book V 3rd sg”)
 
This requires a morphological analyzer
The output is often a lemma plus morphological information
This is particularly useful for highly inflected languages  
(less so for English or Chinese)

Aims: 
— the lemma/stem captures core (semantic) information  
— reduce the vocabulary of highly inflected languages
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How do we represent words?
Option 3: Each word is a (high-dimensional) vector
Advantage: Neural nets need vectors as input!

How do we represent words as vectors?
— Naive solution:  
     as one-hot vectors
— Distributional similarity solution:  
     as very high-dimensional sparse vectors
— Static word embedding solution (word2vec etc.): 
     by a dictionary that maps words to  
     fixed lower-dimensional dense vectors
— Dynamic embedding solution (Elmo etc.): 
     Compute context-dependent dense embeddings
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How do we represent unknown words?
Systems that use machine learning may need to have 
a unique representation of each word. 

Option 1: the UNK token
Replace all rare words (in your training data)  
with an UNK token (for Unknown word).
Replace all unknown words that you come across after training 
(including rare training words) with the same UNK token  

Option 2: substring-based representations
Represent (rare and unknown) words as sequences of 
characters or substrings
-Byte Pair Encoding: learn which character sequences are 
common in the vocabulary of your language 
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The ambiguity problem
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“I made her duck”
What does this sentence mean?

“duck”: noun or verb?
“make”: “cook X” or “cause X to do Y” ?
“her”: “for her” or “belonging to her” ?  

Language has different kinds of ambiguity, e.g.:
Structural ambiguity

“I eat sushi with tuna” vs. “I eat sushi with chopsticks”
“I saw the man with the telescope on the hill”

Lexical (word sense) ambiguity
“I went to the bank”:  financial institution or river bank?

Referential ambiguity 
“John saw Jim. He was drinking coffee.”
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Task: Part-of-speech-tagging

19

Open the pod door, Hal.

       Verb   Det  Noun Noun ,  Name .
      Open  the  pod   door  ,  Hal    .

open:  
verb, adjective, or noun?

   Verb: open the door
   Adjective: the open door
   Noun: in the open
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We want to know the most likely tags T   
for the sentence S  
 

We need to define a statistical model of P(T | S), e.g.:   
 
 
 
 

We need to estimate the parameters of P(T |S), e.g.: 
      P( ti =V | ti-1 =N ) = 0.3

How do we decide?
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“I made her duck cassoulet”
(Cassoulet = a French bean casserole)

The second major problem in NLP is coverage:
We will always encounter unfamiliar words  
and constructions. 

Our models need to be able to deal with this.

This means that our models need to be able  
to generalize from what they have been trained on  
to what they will be used on.
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Statistical NLP
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The last big paradigm shift
Starting in the early 1990s, NLP became very 
empirical and data-driven due to 

— success of statistical methods in machine translation  
(IBM systems)
— availability of large(ish) annotated corpora  
(Susanne Treebank, Penn Treebank, etc.)

Advantages over rule-based approaches: 
— Common benchmarks to compare models against
— Empirical (objective) evaluation is possible
— Better coverage 
— Principled way to handle ambiguity 
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Statistical models for NLP
NLP makes heavy use of statistical models as a way 
to handle both the ambiguity and the coverage issues.
-Probabilistic models (e.g. HMMs, MEMMs, CRFs, PCFGs)
-Other machine learning-based classifiers 

Basic approach:
-Decide which output is desired  
(may depend on available labeled training data)
-Decide what kind of model to use
-Define features that could be useful (this may require further 
processing steps, i.e. a pipeline)
-Train and evaluate the model.
- Iterate: refine/improve the model and/or the features, etc.
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Example: Language Modeling
A language model defines a distribution P(w) over the 
strings w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the 
probability word by word: 
     P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption 
that wi  depends only on the preceding n−1 words: 
    P(wi | w1…wi−1) :=  P(wi | wi−n+1…wi−1)
We know that this independence assumption is invalid 
(there are many long-range dependencies), but it is 
computationally and statistically necessary

(we can’t store or estimate larger models)
25
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Features in statistical NLP
Many statistical NLP systems use explicit features:
-Words (does the word “river” occur in this sentence?)
-POS tags
-Chunk information, NER labels
-Parse trees or syntactic dependencies  
(e.g. for semantic role labeling, etc.) 

Feature design is usually a big component of building 
any particular NLP system.

Which features are useful for a particular task and model typically requires 
experimentation, but there are a number of commonly used ones (words, POS 
tags, syntactic dependencies, NER labels, etc.)
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Neural approaches to 
NLP
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Motivation for neural approaches 
to NLP: Markov assumptions

Traditional sequence models (n-gram language 
models, HMMs, MEMMs, CRFs) make rigid Markov 
assumptions (bigram/trigram/n-gram). 

Recurrent neural nets (RNNs, LSTMs) and 
transformers can capture arbitrary-length histories 
without requiring more parameters. 
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Motivation for neural approaches to NLP:  
Features can be brittle

Word-based features:
How do we handle unseen/rare words? 

Many features are produced by other NLP systems 
(POS tags, dependencies, NER output, etc.)
These systems are often trained on labeled data.

Producing labeled data can be very expensive.
We typically don’t have enough labeled data from the domain 
of interest.
We might not get accurate features for our domain of interest.
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Features in neural approaches
Many of the current successful neural approaches  
to NLP do not use traditional discrete features.
— End-to-end models: no pipeline!

Words in the input are often represented as dense 
vectors (aka. word embeddings, e.g. word2vec)

Traditional approaches: each word in the vocabulary is a 
separate feature. No generalization across words that have 
similar meanings. 
Neural approaches: Words with similar meanings have similar 
vectors. Models generalize across words with similar meanings

Other kinds of features (POS tags, dependencies, 
etc.) are often ignored. 
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What is “deep learning”? 
Neural networks, typically with several hidden layers 

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision 
(ImageNet) and speech recognition over the last 
several years.

Neural nets have been around for decades. 
Why have they suddenly made a comeback?

Fast computers (GPUs!) and (very) large datasets have made 
it possible to train these very complex models.  
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What are neural nets?
Simplest variant: single-layer feedforward net
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Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary 
classification tasks: 
Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:
K output units (a vector)
Each output unit  
yi = class i
Return argmaxi(yi)



CS546 Machine Learning in NLP

Multiclass models: softmax(yi)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax 
function, which maps real-valued vectors in RN into a distribution 
over the N outputs
For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)

(NB: This is just logistic regression)
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Single-layer feedforward networks
Single-layer (linear) feedforward network 

y  = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward  networks:
Pass wx + b through a non-linear activation function,      
e.g. y  = tanh(wx + b)
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Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x) 

Useful for output units (probabilities)  [0,1] range
Hyperbolic tangent:  tanh(x) = (e2x −1)/(e2x+1) 

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
     htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit:    ReLU(x) = max(0, x)

Useful for internal units  
 
 

Softmax: softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
Special case for output units (multiclass classification)
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Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

36

Input layer: vector x

 Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Challenges in using NNs for NLP
In NLP, the input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from 
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length 
vector. How do you represent a variable-length 
sequence as a vector?

With recurrent neural nets: read in one word at the time to 
predict a vector, use that vector and the next word to predict a 
new vector, etc.;
With convolutional nets: use a sliding (fixed-length) window)
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How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context 
from a word) to get a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs, GRUs, LSTMs) to 
predict word sequences (or to obtain context-sensitive 
embeddings (ELMO)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source 
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Convolutional neural nets
Used e.g. for text classification

Transformers
38
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Neural Language 
Models

39
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What is a language model?
Probability distribution over the strings in a language, 
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only 
preceding n−1 words: 

P(wi | w1…wi-1)  =def  P(wi | wi−n+1…wi−1)
  

To handle variable length strings, we assume each string starts 
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉
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An n-gram model  P(w | w1…wk)  
— The vocabulary V contains n types (incl. UNK, BOS, EOS) 
— We want to condition each word on k preceding words 

— [Naive] Each input word wi ∈ V (that we’re conditioning on)  
     is an n-dimensional one-hot vector v(w) = (0,…0, 1,0….0)
— Our input layer x = [v(w1),…,v(wk)] has n×k elements  
— To predict the probability over output words,  
     the output layer is a softmax over n elements  
            P(w | w1…wk) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters, 
one for h and one for the output

41
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Naive neural n-gram model
Architecture:

Input Layer:            x = [v(w1)….v(wk)]
                                v(w): a one-hot vector of size dim(V) = |V|
Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Weight matrices and biases: 
                            first layer: W1 ∈ Rk·dim(V)×dim(h)      b1 ∈ Rdim(h)

                            second layer: W2 ∈ Rdim(h)×|V|              b2 ∈ R|V|

42
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How many parameters do we need to learn?

Traditional n-gram model: dim(V)k parameters

With dim(V) = 10,000 and k=3: 1,000,000,000,000 

Naive neural n-gram model (one-hot encoding of vocabulary): 

#parameters going to hidden layer: k∙dim(V)∙dim(h),  
with dim(h) = 300, dim(V) = 10,000 and k=3:  9,000,000

plus #parameters going to output layer: dim(h)∙dim(V)

with dim(h) = 300, dim(V) = 10,000: 3,000,000


The neural model requires still a lot of parameters,  
but far fewer than the traditional n-gram model
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Naive neural n-gram models
Advantages over traditional n-gram models:  

— The hidden layer captures interactions among context words 
 

— Increasing the order of the n-gram requires only a small linear 
increase in the number of parameters. 


dim(W1) goes from k·dim(emb)×dim(h) to (k+1)·dim(emb)×dim(h)
A traditional k-gram model requires dim(V)k parameters

— Increasing the vocabulary also leads only to a linear increase 
in the number of parameters 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Better neural language models
Naive neural models have similar shortcomings  
as standard n-gram models

— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts 
— N-gram Markov (independence) assumptions are too strict 

Better neural language models overcome these by…
 
… using word embeddings instead of one-hots as input:  
Instead of representing context words as distinct, discrete symbols (i.e. very high-
dimensional one-hot vectors), use a dense low-dimensional vector representation 
where similar words have similar vectors [next] 

… using recurrent nets instead of feedforward nets:  
Instead of a fixed-length (n-gram) context, use recurrent nets to encode variable-
lengths contexts [later class]
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Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward 
architecture (which predicts a string w0…wn one word 
at a time) such that the output of the current step (wi) 
is given as additional input to the next time step 
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

46
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Word Embeddings (e.g. word2vec)
Main idea: 
If you use a feedforward network to predict the 
probability of words that appear in the context of (near) 
an input word, the hidden layer of that network provides 
a dense vector representation of the input word. 

Words that appear in similar contexts (that have high 
distributional similarity) wils have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pretrained embeddings can be downloaded)
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Sequence-to-sequence 
(seq2seq) models
Task (e.g. machine translation):

Given one variable length sequence as input,  
return another variable length sequence as output

Main idea:
Use one RNN to encode the input sequence (“encoder”)
Feed the last hidden state as input to a second RNN 
(“decoder”) that then generates the output sequence. 
Use attention mechanisms (e.g. to focus on certain parts of the 
input when generating output)
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Transformers 
Non-recurrent architecture for seq2seq tasks:

— Also has an encoder and a decoder, but these process the 
input at once  
(decoder may mask future outputs to generate output 
sequentially) 
— May use positional embeddings to capture sequence 
information
— May use multiple self-attention (attention within a sequence) 
mechanisms in parallel  
— Can be (pre)trained on very large amounts of data, and then 
fine-tuned for specific tasks
— Yields state-of-the-art context-dependent encodings (BERT) 
and language models (GPT-2)
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