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CS546 Machine Learning in NLP

Welcome to CS546!
Julia Hockenmaier (Instructor)

juliahmr@illinois.edu
Office hours: Monday, 11am—12:30pm, 3324 Siebel

 
Zhenbang Wang (TA)

zw11@illinois.edu 
Office hours: TBD 

Class website:
https://courses.grainger.illinois.edu/cs546 
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CS546 Machine Learning in NLP

What will you learn  
in this class?
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CS546: Machine Learning in NLP
Questions you should be able to answer after CS546:

What Machine Learning (ML) techniques and tools work well 
for which Natural Language Processing (NLP) tasks?
What are the challenges in applying ML to NLP tasks?

What we’re aiming to cover in CS546 this year:
Focus on neural approaches (“deep learning”) to NLP
Background and current research
Overview of different types of neural models and NLP tasks

What you need to do in CS546: 
Read, present and discuss research paper(s)
Do a research project
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Prerequisites
CS447 Introduction to NLP (or equivalent)

Basic understanding of NLP tasks and models
 
CS446 Machine Learning (or equivalent)

Basic understanding of ML

Python programming
Most neural network toolkits use it (Tensorflow, Pytorch)

5



CS546 Machine Learning in NLP

How will we run this 
class? 
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CS546 Machine Learning in NLP

This class consists of…
… lectures

Wednesdays/Fridays, 3:30-4:45, DCL1310
Many of these will be paper presentations by students

… office hours
TA office hours are intended for hands-on help with projects
My office hours are mainly intended for paper presentations

… research projects
These can be done in groups of up to four students

… a Compass page
For grades and to submit reports and paper reviews

… a Piazza page
For discussions and to find teammates for projects

… a website https://courses.grainger.illinois.edu/cs546
For slides, syllabus etc. 
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CS546 Machine Learning in NLP

Assessment
Your grade will consist of
… 35%:  your presentation of a research paper in class
… 50%:  your research project
… 10%:  your written reviews of research papers  
               (graded mostly for completion)
… 5%:    your participation in class
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Paper presentations
Everybody needs to prepare a 15-minute oral 
presentation and a two-page writeup about one 
research paper to be shared with the class. 

NB: This paper shouldn’t come from your own research group, 
nor can it be a paper you presented in your qualifying exam.
-We will send out a sign-up sheet with dates and papers for 
each class. 
-You will have to come to my office hours the Monday of the 
week when you’re presenting with your slides to show them 
to me, otherwise you will only get half credit for your 
presentation.
-You have one week after your presentation to send in your 
writeup (so that you can reflect any in-class discussion)
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Short Paper Reviews
For 10 lectures where papers are discussed, you will 
have to submit a review of one of the papers that was 
discussed in class. 

—Due to the size of the class, we can largely grade you for 
completion (although we will spot-check your answers)
— You will have to submit the reviews through Compass. 
— In the past, we’ve used a LaTeX template for this,  
but we may switch to tests inside Compass 

We encourage you to get into the habit of taking notes about 
the papers you read. Hopefully this will get you started!
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Research projects
You will have to complete a sizable research project.

Due to the size of the class, you will have to work in 
groups (we’re aiming for 3–4 students/team). 

There will be several milestones:
— Initial proposal
— Intermediate report and presentation
— Final report and presentation

We have applied for accounts and GPU hours on 
BlueWaters for these projects.

11



CS546 Machine Learning in NLP

Research projects
The aim is for each team to produce something  
that could be submitted to a conference: 

— You should aim to make an actual contribution  
     to research
— Your presentation should be sufficiently polished

If you build on existing research, talk to me,  
and loop your advisor in as well if necessary. 
 
If you’re doing related projects in other classes,  
let me and the other professor know. 
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DRES accommodations
If you need any disability related accommodations, 
talk to DRES (http://disability.illinois.edu, 
disability@illinois.edu, phone 333-4603)

If you are concerned you have a disability-related condition 
that is impacting your academic progress, there are academic 
screening appointments available on campus that can help 
diagnosis a previously undiagnosed disability by visiting the 
DRES website and selecting “Sign-Up for an Academic 
Screening” at the bottom of the page.”

Come and talk to me as well, especially once you 
have a letter of accommodation from DRES.

Do this early enough so that we can take your requirements 
into account
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What is NLP?
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NLP in the news…
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IBM’s Watson wins at Jeopardy!
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Machine Translation

17
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Dialog systems, chatbots, digital assistants
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ELIZA: a computer therapist from 1966
Computer: TELL ME MORE ABOUT YOUR FAMILY
Human: My mother takes care of me.
Computer: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
Human: My father.
Computer: YOUR FATHER
Human: You are like my father in some ways.
Computer: WHAT RESEMBLANCE DO YOU SEE
Human: You are not very aggressive but I think you don't want me to 
notice that.
Computer: WHAT MAKES YOU THINK I AM NOT VERY 
AGGRESSIVE
Human: You don't argue with me.
Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU
Human: You are afraid of me. 
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People really trusted this system:
Weizenbaum: “I had not realized ... that extremely short 
exposures to a relatively simple computer program could 
induce powerful delusional thinking in quite normal people”

ELIZA was based on a cascade of finite-state transducers:
Human: You don't argue with me.

1. Replace you with I and me with  you:
           I don't argue with you.

2. Replace <...> with Why do you think <...>: 
    Why do you think I don't argue with you.

Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU  

— How could you break a system like ELIZA?
— Where do you see the ELIZA effect today?

The ELIZA effect

20



CS546 Machine Learning in NLP

Have chatbots developed their own 
language? 

https://code.facebook.com/posts/1686672014972296/deal-or-
no-deal-training-ai-bots-to-negotiate/

Bob: “I can can I I everything else.”
Alice: “Balls have zero to me to me to me to me to me to me to 
me to me to.”

No, not really… 
http://www.snopes.com/facebook-ai-developed-own-language/

21



CS546 Machine Learning in NLP

How well does that Barbie do?

Barbie: “Do you have any sisters?’’ 
Child:   “Yeah, I only have one.’’ 
Barbie: “What’s something nice that your sister does for you?’’ 
Child:   “She does nothing nice to me’’  
Barbie: “Well, what is the last nice thing your sister did?’’ 
Child:   “She helped me with my project  
                 — and then she destroyed it.’’ 
Barbie:  “Oh, yeah, tell me more!’’ 
Child:    “That’s it, Barbie,’’ 
Barbie:  “Have you told your sister lately how cool she is?’’ 
Child:    “No. She is not cool,’’  
Barbie:  “You never know, she might appreciate hearing it’’ 

(Thanks to Barbara Grosz for pointing out the example from the NYT) 
https://www.nytimes.com/2015/09/20/magazine/barbie-wants-to-get-to-know-your-child.html
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What is the current state of NLP?
Lots of commercial applications and interest.

Some applications are working pretty well already,  
others not so much.

A lot of hype around “deep learning” and “AI” 
-Neural nets are powerful classifiers and sequence models
-Public libraries (Tensorflow, Pytorch, etc..) and datasets  
make it easy for anybody to get a model up and running
- “End-to-end” models put into question whether we still need 
the traditional NLP pipeline that this class is built around
-We’re still in the middle of this paradigm shift
-But many of the fundamental problems haven’t gone away

23



CS546 Machine Learning in NLP

Examples of NLP applications  
(What can NLP be used for?)

Natural language (and speech) interfaces
Search/IR, database access, image search, image description
Dialog systems (e.g. customer service, robots, cars, tutoring), 
chatbots

Information extraction, summarization, translation 
Process (large amounts of) text automatically to obtain 
meaning/knowledge contained in the text
Translate text automatically from one language to another

Convenience, social science
Grammar/style checking, automate email filing, autograding 
Identify/analyze trends, opinions, etc. (e.g. in social media)

24



CS546 Machine Learning in NLP

Examples of NLP tasks 
(What capabilities do NLP systems need?)

Natural language understanding
Extract information (e.g. about entities or events) from text
Translate raw text into a meaning representation
Reason about information given in text
Execute NL instructions

Natural language generation and summarization
Translate database entries or meaning representations to raw 
natural language text
Produce (appropriate) utterances/responses in a dialog
Summarize (newspaper or scientific) articles, describe images  

Natural language translation
Translate one natural language to another
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The NLP (NLU) Pipeline
A (traditional) NLP system may use some or all  
of the following steps:  

Tokenizer/Segmenter
to identify words and sentences

Morphological analyzer/POS-tagger
to identify the part of speech and structure of words

Word sense disambiguation
to identify the meaning of words 

Syntactic/semantic Parser
to obtain the structure and meaning of sentences

Coreference resolution/discourse model
to keep track of the various entities and events mentioned
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NLP Pipeline: Assumptions
Each step in the NLP pipeline embellishes the input 
with explicit information about its linguistic structure 

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,…. 

Each step in the NLP pipeline requires its own explicit 
(“symbolic”) output representation:

POS tagging requires a POS tag set 
(e.g. NN=common noun singular, NNS = common noun plural, …)
Syntactic parsing requires constituent or dependency labels
(e.g. NP = noun phrase, or nsubj = nominal subject) 

These representations should capture linguistically 
appropriate generalizations/abstractions

Designing these representations requires linguistic expertise 
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NLP Pipeline: Shortcomings
Each step in the pipeline relies on a learned model 
that will return the most likely representations
-This requires a lot of annotated training data for each step
-Annotation is expensive and sometimes difficult  
(people are not 100% accurate)
-These models are never 100% accurate
-Models make more mistakes if their input contains mistakes

How do we know that we have captured the “right” 
generalizations when designing representations? 
-Some representations are easier to predict than others
-Some representations are more useful for the next steps  
in the pipeline than others
-But we won’t know how easy/useful a representation is until 
we have a model that we can plug into a particular pipeline 
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NLP research questions redux
How do you represent (or predict) words?

Do you treat words in the input as atomic categories, as 
continuous vectors, or as structured objects?
How do you handle rare/unseen words, typos, spelling 
variants, morphological information?
Lexical semantics: do you capture word meanings/senses?

How do you represent (or predict) word sequences?
Sequences = sentences, paragraphs, documents, dialogs,…
As a vector, or as a structured object?

How do you represent (or predict) structures?
Structures = labeled sequences, trees, graphs, formal 
languages (e.g. DB records/queries, logical representations)
How do you represent “meaning”? 
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Why does NLP  
need ML?
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Two core problems for NLP
Ambiguity: Natural language is highly ambiguous
-Words have multiple senses and different POS
-Sentences have a myriad of possible parses
-etc.

Coverage (compounded by Zipf’s Law)
-Any (wide-coverage) NLP system will come across words or 
constructions that did not occur during training. 
-We need to be able to generalize from the seen events during 
training to unseen events that occur during testing (i.e. when 
we actually use the system).
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Statistical models for NLP
NLP makes heavy use of statistical models as a way 
to handle both the ambiguity and the coverage issues.
-Probabilistic models (e.g. HMMs, MEMMs, CRFs, PCFGs)
-Other machine learning-based classifiers 

Basic approach:
-Decide which output is desired  
(may depend on available labeled training data)
-Decide what kind of model to use
-Define features that could be useful (this may require further 
processing steps, i.e. a pipeline)
-Train and evaluate the model.
- Iterate: refine/improve the model and/or the features, etc.

 
32



CS546 Machine Learning in NLP

Example: Language Modeling
A language model defines a distribution P(w) over the 
strings w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the 
probability word by word: 
     P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption 
that wi  depends only on the preceding n−1 words: 
    P(wi | w1…wi−1) :=  P(wi | wi−n+1…wi−1)
We know that this independence assumption is invalid 
(there are many long-range dependencies), but it is 
computationally and statistically necessary

(we can’t store or estimate larger models)
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Motivation for neural approaches 
to NLP: Markov assumptions

Traditional sequence models (n-gram language 
models, HMMs, MEMMs, CRFs) make rigid Markov 
assumptions (bigram/trigram/n-gram). 

Recurrent neural nets (RNNs, LSTMs) and 
transformers can capture arbitrary-length histories 
without requiring more parameters. 
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Features in statistical NLP
Many statistical NLP systems use explicit features:
-Words (does the word “river” occur in this sentence?)
-POS tags
-Chunk information, NER labels
-Parse trees or syntactic dependencies  
(e.g. for semantic role labeling, etc.) 

Feature design is usually a big component of building 
any particular NLP system.

Which features are useful for a particular task and model typically requires 
experimentation, but there are a number of commonly used ones (words, POS 
tags, syntactic dependencies, NER labels, etc.)
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Motivation for neural approaches to NLP:  
Features can be brittle

Word-based features:
How do we handle unseen/rare words? 

Many features are produced by other NLP systems 
(POS tags, dependencies, NER output, etc.)
These systems are often trained on labeled data.

Producing labeled data can be very expensive.
We typically don’t have enough labeled data from the domain 
of interest.
We might not get accurate features for our domain of interest.
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Features in neural approaches
Many of the current successful neural approaches  
to NLP do not use traditional discrete features.
— End-to-end models: no pipeline!

Words in the input are often represented as dense 
vectors (aka. word embeddings, e.g. word2vec)

Traditional approaches: each word in the vocabulary is a 
separate feature. No generalization across words that have 
similar meanings. 
Neural approaches: Words with similar meanings have similar 
vectors. Models generalize across words with similar meanings

Other kinds of features (POS tags, dependencies, 
etc.) are often ignored. 
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Neural approaches to 
NLP
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What is “deep learning”? 
Neural networks, typically with several hidden layers 

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision 
(ImageNet) and speech recognition over the last 
several years.

Neural nets have been around for decades. 
Why have they suddenly made a comeback?

Fast computers (GPUs!) and (very) large datasets have made 
it possible to train these very complex models.  
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What are neural nets?
Simplest variant: single-layer feedforward net

40

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary 
classification tasks: 
Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:
K output units (a vector)
Each output unit  
yi = class i
Return argmaxi(yi)
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Multiclass models: softmax(yi)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax 
function, which maps real-valued vectors in RN into a distribution 
over the N outputs
For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)

(NB: This is just logistic regression)
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Single-layer feedforward networks
Single-layer (linear) feedforward network 

y  = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward  networks:
Pass wx + b through a non-linear activation function,      
e.g. y  = tanh(wx + b)
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Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x) 

Useful for output units (probabilities)  [0,1] range
Hyperbolic tangent:  tanh(x) = (e2x −1)/(e2x+1) 

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
     htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit:    ReLU(x) = max(0, x)

Useful for internal units  
 
 

Softmax: softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
Special case for output units (multiclass classification)
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Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

44

Input layer: vector x

 Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Challenges in using NNs for NLP
In NLP, the input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from 
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length 
vector. How do you represent a variable-length 
sequence as a vector?

With recurrent neural nets: read in one word at the time to 
predict a vector, use that vector and the next word to predict a 
new vector, etc.;
With convolutional nets: use a sliding (fixed-length) window)
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How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context 
from a word) to get a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs, GRUs, LSTMs) to 
predict word sequences (or to obtain context-sensitive 
embeddings (ELMO)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source 
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Convolutional neural nets
Used e.g. for text classification

Transformers
46
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Neural Language 
Models
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What is a language model?
Probability distribution over the strings in a language, 
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only 
preceding n−1 words: 

P(wi | w1…wi-1)  =def  P(wi | wi−n+1…wi−1)
  

To handle variable length strings, we assume each string starts 
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉
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An n-gram model  P(w | w1…wk)  
— The vocabulary V contains n types (incl. UNK, BOS, EOS) 
— We want to condition each word on k preceding words 

— [Naive] Each input word wi ∈ V (that we’re conditioning on)  
     is an n-dimensional one-hot vector v(w) = (0,…0, 1,0….0)
— Our input layer x = [v(w1),…,v(wk)] has n×k elements  
— To predict the probability over output words,  
     the output layer is a softmax over n elements  
            P(w | w1…wk) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters, 
one for h and one for the output
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Naive neural n-gram model
Architecture:

Input Layer:            x = [v(w1)….v(wk)]
                                v(w): a one-hot vector of size dim(V) = |V|
Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Weight matrices and biases: 
                            first layer: W1 ∈ Rk·dim(V)×dim(h)      b1 ∈ Rdim(h)

                            second layer: W2 ∈ Rdim(h)×|V|              b2 ∈ R|V|
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How many parameters do we need to learn?

Traditional n-gram model: dim(V)k parameters

With dim(V) = 10,000 and k=3: 1,000,000,000,000 

Naive neural n-gram model (one-hot encoding of vocabulary): 

#parameters going to hidden layer: k∙dim(V)∙dim(h),  
with dim(h) = 300, dim(V) = 10,000 and k=3:  9,000,000

plus #parameters going to output layer: dim(h)∙dim(V)

with dim(h) = 300, dim(V) = 10,000: 3,000,000


The neural model requires still a lot of parameters,  
but far fewer than the traditional n-gram model
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Naive neural n-gram models
Advantages over traditional n-gram models:  

— The hidden layer captures interactions among context words 
 

— Increasing the order of the n-gram requires only a small linear 
increase in the number of parameters. 


dim(W1) goes from k·dim(emb)×dim(h) to (k+1)·dim(emb)×dim(h)
A traditional k-gram model requires dim(V)k parameters

— Increasing the vocabulary also leads only to a linear increase 
in the number of parameters 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Better neural language models
Naive neural models have similar shortcomings  
as standard n-gram models

— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts 
— N-gram Markov (independence) assumptions are too strict 

Better neural language models overcome these by…
 
… using word embeddings instead of one-hots as input:  
Instead of representing context words as distinct, discrete symbols (i.e. very high-
dimensional one-hot vectors), use a dense low-dimensional vector representation 
where similar words have similar vectors [next] 

… using recurrent nets instead of feedforward nets:  
Instead of a fixed-length (n-gram) context, use recurrent nets to encode variable-
lengths contexts [later class]
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Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward 
architecture (which predicts a string w0…wn one word 
at a time) such that the output of the current step (wi) 
is given as additional input to the next time step 
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

54

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net



CS546 Machine Learning in NLP

Word Embeddings (e.g. word2vec)
Main idea: 
If you use a feedforward network to predict the 
probability of words that appear in the context of (near) 
an input word, the hidden layer of that network provides 
a dense vector representation of the input word. 

Words that appear in similar contexts (that have high 
distributional similarity) wils have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pretrained embeddings can be downloaded)
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Sequence-to-sequence 
(seq2seq) models
Task (e.g. machine translation):

Given one variable length sequence as input,  
return another variable length sequence as output

Main idea:
Use one RNN to encode the input sequence (“encoder”)
Feed the last hidden state as input to a second RNN 
(“decoder”) that then generates the output sequence. 
Use attention mechanisms (e.g. to focus on certain parts of the 
input when generating output)
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Transformers 
Non-recurrent architecture for seq2seq tasks:

— Also has an encoder and a decoder, but these process the 
input at once  
(decoder may mask future outputs to generate output 
sequentially) 
— May use positional embeddings to capture sequence 
information
— May use multiple self-attention (attention within a sequence) 
mechanisms in parallel  
— Can be (pre)trained on very large amounts of data, and then 
fine-tuned for specific tasks
— Yields state-of-the-art context-dependent encodings (BERT) 
and language models (GPT-2)
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Syllabus for this class
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Admin
You will receive an email with a link to a Google form 
where you can sign up for slots to present. 

— Please sign up for at least three slots so that I have some 
flexibility in assigning you to a presentation

We will give you one week to fill this in. 

You will have to meet with me the Monday before 
your presentation to go over your slides.
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Grading criteria for presentations
— Clarity of exposition and presentation
— Analysis (don’t just regurgitate what’s in the paper)
— Quality of slides (and effort that went into making 
them — just re-using other people’s slides is not 
enough)
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