
CS546: Machine Learning in NLP (Spring 2020)
http://courses.engr.illinois.edu/cs546/

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Office hours: Monday, 11am—12:30pm

Lecture 1
Introduction/Admin

CS546 Machine Learning in NLP

Welcome to CS546!
Julia Hockenmaier (Instructor)

juliahmr@illinois.edu
Office hours: Monday, 11am—12:30pm, 3324 Siebel

 
Zhenbang Wang (TA)

zw11@illinois.edu
Office hours: TBD

Class website:
https://courses.grainger.illinois.edu/cs546

2

CS546 Machine Learning in NLP

What will you learn  
in this class?

3

CS546 Machine Learning in NLP

CS546: Machine Learning in NLP
Questions you should be able to answer after CS546:

What Machine Learning (ML) techniques and tools work well
for which Natural Language Processing (NLP) tasks?
What are the challenges in applying ML to NLP tasks?

What we’re aiming to cover in CS546 this year:
Focus on neural approaches (“deep learning”) to NLP
Background and current research
Overview of different types of neural models and NLP tasks

What you need to do in CS546:
Read, present and discuss research paper(s)
Do a research project

4

CS546 Machine Learning in NLP

Prerequisites
CS447 Introduction to NLP (or equivalent)

Basic understanding of NLP tasks and models
 
CS446 Machine Learning (or equivalent)

Basic understanding of ML

Python programming
Most neural network toolkits use it (Tensorflow, Pytorch)

5

CS546 Machine Learning in NLP

How will we run this
class?

6

CS546 Machine Learning in NLP

This class consists of…
… lectures

Wednesdays/Fridays, 3:30-4:45, DCL1310
Many of these will be paper presentations by students

… office hours
TA office hours are intended for hands-on help with projects
My office hours are mainly intended for paper presentations

… research projects
These can be done in groups of up to four students

… a Compass page
For grades and to submit reports and paper reviews

… a Piazza page
For discussions and to find teammates for projects

… a website https://courses.grainger.illinois.edu/cs546
For slides, syllabus etc.

7

CS546 Machine Learning in NLP

Assessment
Your grade will consist of
… 35%: your presentation of a research paper in class
… 50%: your research project
… 10%: your written reviews of research papers  
 (graded mostly for completion)
… 5%: your participation in class

8

CS546 Machine Learning in NLP

Paper presentations
Everybody needs to prepare a 15-minute oral
presentation and a two-page writeup about one
research paper to be shared with the class.

NB: This paper shouldn’t come from your own research group,
nor can it be a paper you presented in your qualifying exam.
-We will send out a sign-up sheet with dates and papers for
each class.
-You will have to come to my office hours the Monday of the
week when you’re presenting with your slides to show them
to me, otherwise you will only get half credit for your
presentation.
-You have one week after your presentation to send in your
writeup (so that you can reflect any in-class discussion)

9

CS546 Machine Learning in NLP

Short Paper Reviews
For 10 lectures where papers are discussed, you will
have to submit a review of one of the papers that was
discussed in class. 

—Due to the size of the class, we can largely grade you for
completion (although we will spot-check your answers)
— You will have to submit the reviews through Compass.
— In the past, we’ve used a LaTeX template for this,  
but we may switch to tests inside Compass 

We encourage you to get into the habit of taking notes about
the papers you read. Hopefully this will get you started!

10

CS546 Machine Learning in NLP

Research projects
You will have to complete a sizable research project.

Due to the size of the class, you will have to work in
groups (we’re aiming for 3–4 students/team).

There will be several milestones:
— Initial proposal
— Intermediate report and presentation
— Final report and presentation

We have applied for accounts and GPU hours on
BlueWaters for these projects.

11

CS546 Machine Learning in NLP

Research projects
The aim is for each team to produce something  
that could be submitted to a conference: 

— You should aim to make an actual contribution  
 to research
— Your presentation should be sufficiently polished

If you build on existing research, talk to me,  
and loop your advisor in as well if necessary.
 
If you’re doing related projects in other classes,  
let me and the other professor know.

12

CS546 Machine Learning in NLP

DRES accommodations
If you need any disability related accommodations, 
talk to DRES (http://disability.illinois.edu,
disability@illinois.edu, phone 333-4603)

If you are concerned you have a disability-related condition
that is impacting your academic progress, there are academic
screening appointments available on campus that can help
diagnosis a previously undiagnosed disability by visiting the
DRES website and selecting “Sign-Up for an Academic
Screening” at the bottom of the page.”

Come and talk to me as well, especially once you
have a letter of accommodation from DRES.

Do this early enough so that we can take your requirements
into account

13

CS546 Machine Learning in NLP

What is NLP?

14

CS546 Machine Learning in NLP

NLP in the news…

15

CS546 Machine Learning in NLP

IBM’s Watson wins at Jeopardy!

16

CS546 Machine Learning in NLP

Machine Translation

17

Google Translate

CS546 Machine Learning in NLP

Dialog systems, chatbots, digital assistants

18

CS546 Machine Learning in NLP

ELIZA: a computer therapist from 1966
Computer: TELL ME MORE ABOUT YOUR FAMILY
Human: My mother takes care of me.
Computer: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
Human: My father.
Computer: YOUR FATHER
Human: You are like my father in some ways.
Computer: WHAT RESEMBLANCE DO YOU SEE
Human: You are not very aggressive but I think you don't want me to
notice that.
Computer: WHAT MAKES YOU THINK I AM NOT VERY
AGGRESSIVE
Human: You don't argue with me.
Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU
Human: You are afraid of me.

19

Weizenbaum (1966), ELIZA.

CS546 Machine Learning in NLP

People really trusted this system:
Weizenbaum: “I had not realized ... that extremely short
exposures to a relatively simple computer program could
induce powerful delusional thinking in quite normal people”

ELIZA was based on a cascade of finite-state transducers:
Human: You don't argue with me.

1. Replace you with I and me with you:
 I don't argue with you.

2. Replace <...> with Why do you think <...>:
 Why do you think I don't argue with you.

Computer: WHY DO YOU THINK I DON'T ARGUE WITH YOU  

— How could you break a system like ELIZA?
— Where do you see the ELIZA effect today?

The ELIZA effect

20

CS546 Machine Learning in NLP

Have chatbots developed their own
language?

https://code.facebook.com/posts/1686672014972296/deal-or-
no-deal-training-ai-bots-to-negotiate/

Bob: “I can can I I everything else.”
Alice: “Balls have zero to me to me to me to me to me to me to
me to me to.”

No, not really…
http://www.snopes.com/facebook-ai-developed-own-language/

21

CS546 Machine Learning in NLP

How well does that Barbie do?

Barbie: “Do you have any sisters?’’
Child: “Yeah, I only have one.’’
Barbie: “What’s something nice that your sister does for you?’’
Child: “She does nothing nice to me’’
Barbie: “Well, what is the last nice thing your sister did?’’
Child: “She helped me with my project  
 — and then she destroyed it.’’
Barbie: “Oh, yeah, tell me more!’’
Child: “That’s it, Barbie,’’
Barbie: “Have you told your sister lately how cool she is?’’
Child: “No. She is not cool,’’
Barbie: “You never know, she might appreciate hearing it’’

(Thanks to Barbara Grosz for pointing out the example from the NYT)
https://www.nytimes.com/2015/09/20/magazine/barbie-wants-to-get-to-know-your-child.html

22

CS546 Machine Learning in NLP

What is the current state of NLP?
Lots of commercial applications and interest.

Some applications are working pretty well already,  
others not so much.

A lot of hype around “deep learning” and “AI”
-Neural nets are powerful classifiers and sequence models
-Public libraries (Tensorflow, Pytorch, etc..) and datasets  
make it easy for anybody to get a model up and running
- “End-to-end” models put into question whether we still need
the traditional NLP pipeline that this class is built around
-We’re still in the middle of this paradigm shift
-But many of the fundamental problems haven’t gone away

23

CS546 Machine Learning in NLP

Examples of NLP applications  
(What can NLP be used for?)

Natural language (and speech) interfaces
Search/IR, database access, image search, image description
Dialog systems (e.g. customer service, robots, cars, tutoring),
chatbots

Information extraction, summarization, translation
Process (large amounts of) text automatically to obtain
meaning/knowledge contained in the text
Translate text automatically from one language to another

Convenience, social science
Grammar/style checking, automate email filing, autograding
Identify/analyze trends, opinions, etc. (e.g. in social media)

24

CS546 Machine Learning in NLP

Examples of NLP tasks 
(What capabilities do NLP systems need?)

Natural language understanding
Extract information (e.g. about entities or events) from text
Translate raw text into a meaning representation
Reason about information given in text
Execute NL instructions

Natural language generation and summarization
Translate database entries or meaning representations to raw
natural language text
Produce (appropriate) utterances/responses in a dialog
Summarize (newspaper or scientific) articles, describe images

Natural language translation
Translate one natural language to another

25

CS546 Machine Learning in NLP

The NLP (NLU) Pipeline
A (traditional) NLP system may use some or all  
of the following steps:  

Tokenizer/Segmenter
to identify words and sentences

Morphological analyzer/POS-tagger
to identify the part of speech and structure of words

Word sense disambiguation
to identify the meaning of words

Syntactic/semantic Parser
to obtain the structure and meaning of sentences

Coreference resolution/discourse model
to keep track of the various entities and events mentioned

26

CS546 Machine Learning in NLP

NLP Pipeline: Assumptions
Each step in the NLP pipeline embellishes the input
with explicit information about its linguistic structure

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,…. 

Each step in the NLP pipeline requires its own explicit
(“symbolic”) output representation:

POS tagging requires a POS tag set
(e.g. NN=common noun singular, NNS = common noun plural, …)
Syntactic parsing requires constituent or dependency labels
(e.g. NP = noun phrase, or nsubj = nominal subject) 

These representations should capture linguistically
appropriate generalizations/abstractions

Designing these representations requires linguistic expertise
27

CS546 Machine Learning in NLP

NLP Pipeline: Shortcomings
Each step in the pipeline relies on a learned model
that will return the most likely representations
-This requires a lot of annotated training data for each step
-Annotation is expensive and sometimes difficult  
(people are not 100% accurate)
-These models are never 100% accurate
-Models make more mistakes if their input contains mistakes

How do we know that we have captured the “right”
generalizations when designing representations?
-Some representations are easier to predict than others
-Some representations are more useful for the next steps  
in the pipeline than others
-But we won’t know how easy/useful a representation is until
we have a model that we can plug into a particular pipeline

28

CS546 Machine Learning in NLP

NLP research questions redux
How do you represent (or predict) words?

Do you treat words in the input as atomic categories, as
continuous vectors, or as structured objects?
How do you handle rare/unseen words, typos, spelling
variants, morphological information?
Lexical semantics: do you capture word meanings/senses?

How do you represent (or predict) word sequences?
Sequences = sentences, paragraphs, documents, dialogs,…
As a vector, or as a structured object?

How do you represent (or predict) structures?
Structures = labeled sequences, trees, graphs, formal
languages (e.g. DB records/queries, logical representations)
How do you represent “meaning”?

29

CS447: Natural Language Processing (J. Hockenmaier)

Why does NLP  
need ML?

30

CS546 Machine Learning in NLP

Two core problems for NLP
Ambiguity: Natural language is highly ambiguous
-Words have multiple senses and different POS
-Sentences have a myriad of possible parses
-etc.

Coverage (compounded by Zipf’s Law)
-Any (wide-coverage) NLP system will come across words or
constructions that did not occur during training.
-We need to be able to generalize from the seen events during
training to unseen events that occur during testing (i.e. when
we actually use the system).

31

CS546 Machine Learning in NLP

Statistical models for NLP
NLP makes heavy use of statistical models as a way
to handle both the ambiguity and the coverage issues.
-Probabilistic models (e.g. HMMs, MEMMs, CRFs, PCFGs)
-Other machine learning-based classifiers

Basic approach:
-Decide which output is desired  
(may depend on available labeled training data)
-Decide what kind of model to use
-Define features that could be useful (this may require further
processing steps, i.e. a pipeline)
-Train and evaluate the model.
- Iterate: refine/improve the model and/or the features, etc.

32

CS546 Machine Learning in NLP

Example: Language Modeling
A language model defines a distribution P(w) over the
strings w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the
probability word by word:
 P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption
that wi depends only on the preceding n−1 words:
 P(wi | w1…wi−1) := P(wi | wi−n+1…wi−1)
We know that this independence assumption is invalid
(there are many long-range dependencies), but it is
computationally and statistically necessary

(we can’t store or estimate larger models)
33

CS546 Machine Learning in NLP

Motivation for neural approaches
to NLP: Markov assumptions

Traditional sequence models (n-gram language
models, HMMs, MEMMs, CRFs) make rigid Markov
assumptions (bigram/trigram/n-gram).

Recurrent neural nets (RNNs, LSTMs) and
transformers can capture arbitrary-length histories
without requiring more parameters.

34

CS546 Machine Learning in NLP

Features in statistical NLP
Many statistical NLP systems use explicit features:
-Words (does the word “river” occur in this sentence?)
-POS tags
-Chunk information, NER labels
-Parse trees or syntactic dependencies  
(e.g. for semantic role labeling, etc.)

Feature design is usually a big component of building
any particular NLP system.

Which features are useful for a particular task and model typically requires
experimentation, but there are a number of commonly used ones (words, POS
tags, syntactic dependencies, NER labels, etc.)

 

35

CS546 Machine Learning in NLP

Motivation for neural approaches to NLP:
Features can be brittle

Word-based features:
How do we handle unseen/rare words?

Many features are produced by other NLP systems
(POS tags, dependencies, NER output, etc.)
These systems are often trained on labeled data.

Producing labeled data can be very expensive.
We typically don’t have enough labeled data from the domain
of interest.
We might not get accurate features for our domain of interest.

36

CS546 Machine Learning in NLP

Features in neural approaches
Many of the current successful neural approaches  
to NLP do not use traditional discrete features.
— End-to-end models: no pipeline!

Words in the input are often represented as dense
vectors (aka. word embeddings, e.g. word2vec)

Traditional approaches: each word in the vocabulary is a
separate feature. No generalization across words that have
similar meanings.
Neural approaches: Words with similar meanings have similar
vectors. Models generalize across words with similar meanings

Other kinds of features (POS tags, dependencies,
etc.) are often ignored.

37

CS447: Natural Language Processing (J. Hockenmaier)

Neural approaches to
NLP

38

CS546 Machine Learning in NLP

What is “deep learning”?
Neural networks, typically with several hidden layers

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision
(ImageNet) and speech recognition over the last
several years.

Neural nets have been around for decades.
Why have they suddenly made a comeback?

Fast computers (GPUs!) and (very) large datasets have made
it possible to train these very complex models.

39

CS546 Machine Learning in NLP

What are neural nets?
Simplest variant: single-layer feedforward net

40

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary
classification tasks:
Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:
K output units (a vector)
Each output unit  
yi = class i
Return argmaxi(yi)

CS546 Machine Learning in NLP

Multiclass models: softmax(yi)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution
over the N outputs
For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)

(NB: This is just logistic regression)

41

CS546 Machine Learning in NLP

Single-layer feedforward networks
Single-layer (linear) feedforward network

y = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward networks:
Pass wx + b through a non-linear activation function,
e.g. y = tanh(wx + b)

42

CS546 Machine Learning in NLP

Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x)

Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x −1)/(e2x+1)

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
 htanh(x) = −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)

Useful for internal units  
 
 

Softmax: softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
Special case for output units (multiclass classification)

43

�� �� '&&%�'038"3% /&63"- /&5803,4
UJNFT UP QSPEVDF FYDFMMFOU SFTVMUT�ŉ ɩF 3F-6 VOJU DMJQT FBDI WBMVF x < 0 BU �� %FTQJUF JUT TJN�
QMJDJUZ
 JU QFSGPSNT XFMM GPS NBOZ UBTLT
 FTQFDJBMMZ XIFO DPNCJOFE XJUI UIF ESPQPVU SFHVMBSJ[BUJPO
UFDIOJRVF 	TFF 4FDUJPO ���
�

3F-6.x/ D NBY.0; x/ D
(

0 x < 0

x PUIFSXJTF: 	���

"T B SVMF PG UIVNC
 CPUI 3F-6 BOE UBOI VOJUT XPSL XFMM
 BOE TJHOJmDBOUMZ PVUQFSGPSN UIF
TJHNPJE� :PV NBZ XBOU UP FYQFSJNFOU XJUI CPUI UBOI BOE 3F-6 BDUJWBUJPOT
 BT FBDI POF NBZ
QFSGPSN CFUUFS JO EJĊFSFOU TFUUJOHT�

'JHVSF ��� TIPXT UIF TIBQFT PG UIF EJĊFSFOU BDUJWBUJPOT GVODUJPOT
 UPHFUIFS XJUI UIF TIBQFT
PG UIFJS EFSJWBUJWFT�

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

!f

!x

!f

!x

!f

!x

!f

!x

'JHVSF ���� "DUJWBUJPO GVODUJPOT 	UPQ
 BOE UIFJS EFSJWBUJWFT 	CPUUPN
�

��� -044 '6/$5*0/4
8IFO USBJOJOH B OFVSBM OFUXPSL 	NPSF PO USBJOJOH JO $IBQUFS �

 NVDI MJLF XIFO USBJOJOH B
MJOFBS DMBTTJmFS
 POF EFmOFT B MPTT GVODUJPO L. Oy; y/
 TUBUJOH UIF MPTT PG QSFEJDUJOH Oy XIFO UIF
USVF PVUQVU JT y � ɩF USBJOJOH PCKFDUJWF JT UIFO UP NJOJNJ[F UIF MPTT BDSPTT UIF EJĊFSFOU USBJOJOH
FYBNQMFT� ɩF MPTT L. Oy; y/ BTTJHOT B OVNFSJDBM TDPSF 	B TDBMBS
 UP UIF OFUXPSL�T PVUQVU Oy HJWFO
UIF USVF FYQFDUFE PVUQVU y � ɩF MPTT GVODUJPOT EJTDVTTFE GPS MJOFBS NPEFMT JO 4FDUJPO ����� BSF
SFMFWBOU BOE XJEFMZ VTFE BMTP GPS OFVSBM OFUXPSLT� 'PS GVSUIFS EJTDVTTJPO PO MPTT GVODUJPOT JO UIF
ŉɩF UFDIOJDBM BEWBOUBHFT PG UIF 3F-6 PWFS UIF TJHNPJE BOE UBOI BDUJWBUJPO GVODUJPOT JT UIBU JU EPFT OPU JOWPMWF FYQFOTJWF�
UP�DPNQVUF GVODUJPOT
 BOE NPSF JNQPSUBOUMZ UIBU JU EPFT OPU TBUVSBUF� ɩF TJHNPJE BOE UBOI BDUJWBUJPO BSF DBQQFE BU 1
 BOE
UIF HSBEJFOUT BU UIJT SFHJPO PG UIF GVODUJPOT BSF OFBS [FSP
 ESJWJOH UIF FOUJSF HSBEJFOU OFBS [FSP� ɩF 3F-6 BDUJWBUJPO EPFT
OPU IBWF UIJT QSPCMFN
 NBLJOH JU FTQFDJBMMZ TVJUBCMF GPS OFUXPSLT XJUI NVMUJQMF MBZFST
 XIJDI BSF TVTDFQUJCMF UP UIF WBOJTIJOH
HSBEJFOUT QSPCMFN XIFO USBJOFE XJUI UIF TBUVSBUJOH VOJUT�

CS546 Machine Learning in NLP

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

44

Input layer: vector x

 Hidden layer: vector h1

Hidden layer: vector hn

Output layer: vector y

… … …
… … …
… … ….

CS546 Machine Learning in NLP

Challenges in using NNs for NLP
In NLP, the input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length
vector. How do you represent a variable-length
sequence as a vector?

With recurrent neural nets: read in one word at the time to
predict a vector, use that vector and the next word to predict a
new vector, etc.;
With convolutional nets: use a sliding (fixed-length) window)

45

CS546 Machine Learning in NLP

How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context
from a word) to get a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs, GRUs, LSTMs) to
predict word sequences (or to obtain context-sensitive
embeddings (ELMO)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Convolutional neural nets
Used e.g. for text classification

Transformers
46

CS546 Machine Learning in NLP

Neural Language
Models

47

CS546 Machine Learning in NLP

What is a language model?
Probability distribution over the strings in a language,
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only
preceding n−1 words:

P(wi | w1…wi-1) =def P(wi | wi−n+1…wi−1)

To handle variable length strings, we assume each string starts
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉

48

CS546 Machine Learning in NLP

An n-gram model P(w | w1…wk)  
— The vocabulary V contains n types (incl. UNK, BOS, EOS) 
— We want to condition each word on k preceding words 

— [Naive] Each input word wi ∈ V (that we’re conditioning on)  
 is an n-dimensional one-hot vector v(w) = (0,…0, 1,0….0)
— Our input layer x = [v(w1),…,v(wk)] has n×k elements  
— To predict the probability over output words,  
 the output layer is a softmax over n elements  
 P(w | w1…wk) = softmax(hW2 + b2)

With (say) one hidden layer h we’ll need two sets of parameters,
one for h and one for the output

49

CS447: Natural Language Processing (J. Hockenmaier)

Naive neural n-gram model
Architecture:

Input Layer: x = [v(w1)….v(wk)]
 v(w): a one-hot vector of size dim(V) = |V|
Hidden Layer: h = g(xW1 + b1)
Output Layer: P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Weight matrices and biases:
 first layer: W1 ∈ Rk·dim(V)×dim(h) b1 ∈ Rdim(h)

 second layer: W2 ∈ Rdim(h)×|V| b2 ∈ R|V|

50

CS546 Machine Learning in NLP

How many parameters do we need to learn?

Traditional n-gram model: dim(V)k parameters

With dim(V) = 10,000 and k=3: 1,000,000,000,000 

Naive neural n-gram model (one-hot encoding of vocabulary):

#parameters going to hidden layer: k∙dim(V)∙dim(h),  
with dim(h) = 300, dim(V) = 10,000 and k=3: 9,000,000

plus #parameters going to output layer: dim(h)∙dim(V)

with dim(h) = 300, dim(V) = 10,000: 3,000,000

The neural model requires still a lot of parameters,  
but far fewer than the traditional n-gram model

51

CS546 Machine Learning in NLP

Naive neural n-gram models
Advantages over traditional n-gram models:  

— The hidden layer captures interactions among context words 

— Increasing the order of the n-gram requires only a small linear
increase in the number of parameters.

dim(W1) goes from k·dim(emb)×dim(h) to (k+1)·dim(emb)×dim(h)
A traditional k-gram model requires dim(V)k parameters

— Increasing the vocabulary also leads only to a linear increase
in the number of parameters 

52

CS546 Machine Learning in NLP

Better neural language models
Naive neural models have similar shortcomings  
as standard n-gram models

— Models get very large (and sparse) as n increases
— We can’t generalize across similar contexts
— N-gram Markov (independence) assumptions are too strict 

Better neural language models overcome these by…
 
… using word embeddings instead of one-hots as input:  
Instead of representing context words as distinct, discrete symbols (i.e. very high-
dimensional one-hot vectors), use a dense low-dimensional vector representation
where similar words have similar vectors [next] 

… using recurrent nets instead of feedforward nets:  
Instead of a fixed-length (n-gram) context, use recurrent nets to encode variable-
lengths contexts [later class]

53

CS546 Machine Learning in NLP

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

54

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS546 Machine Learning in NLP

Word Embeddings (e.g. word2vec)
Main idea:
If you use a feedforward network to predict the
probability of words that appear in the context of (near)
an input word, the hidden layer of that network provides
a dense vector representation of the input word.

Words that appear in similar contexts (that have high
distributional similarity) wils have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pretrained embeddings can be downloaded)

55

CS546 Machine Learning in NLP

Sequence-to-sequence
(seq2seq) models
Task (e.g. machine translation):

Given one variable length sequence as input,  
return another variable length sequence as output

Main idea:
Use one RNN to encode the input sequence (“encoder”)
Feed the last hidden state as input to a second RNN
(“decoder”) that then generates the output sequence.
Use attention mechanisms (e.g. to focus on certain parts of the
input when generating output)

56

CS546 Machine Learning in NLP

Transformers
Non-recurrent architecture for seq2seq tasks:

— Also has an encoder and a decoder, but these process the
input at once  
(decoder may mask future outputs to generate output
sequentially) 
— May use positional embeddings to capture sequence
information
— May use multiple self-attention (attention within a sequence)
mechanisms in parallel  
— Can be (pre)trained on very large amounts of data, and then
fine-tuned for specific tasks
— Yields state-of-the-art context-dependent encodings (BERT)
and language models (GPT-2)

57

CS546 Machine Learning in NLP

Syllabus for this class

58

CS546 Machine Learning in NLP 59

CS546 Machine Learning in NLP

Admin
You will receive an email with a link to a Google form
where you can sign up for slots to present.

— Please sign up for at least three slots so that I have some
flexibility in assigning you to a presentation

We will give you one week to fill this in.

You will have to meet with me the Monday before
your presentation to go over your slides.

60

CS546 Machine Learning in NLP

Grading criteria for presentations
— Clarity of exposition and presentation
— Analysis (don’t just regurgitate what’s in the paper)
— Quality of slides (and effort that went into making
them — just re-using other people’s slides is not
enough)

61

