Neural Text Generation from Structured Data with Application to the Biography Domain

Remi Lebret '

David Grangier

Michael Auli

EPFL, Switzerland

Facebook AI Research

Facebook AI Research

(EMNLP)

http://aclweb.org/anthology/D/D16/D16-1128.pdf

Presenter: Abhinav Kohar

(aa18)

March 29, 2018

<u>Outline</u>

- Task
- Approach / Model
- Evaluation
- Conclusion

Task: Biography Generation (Concept-to-text Generation)

Input (Fact table/Infobox)

Output (Biography)

Frederick Parker-Rhodes

Born 21 November 1914

Newington, Yorkshire

Died 2 March 1987 (aged 72)

Residence UK

Nationality British

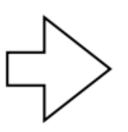
Fields Mycology, Plant Pathology,

Mathematics, Linguistics,

Computer Science

Known for Contributions to

computational linguistics,


combinatorial physics, bit-

string physics, plant

pathology, and mycology

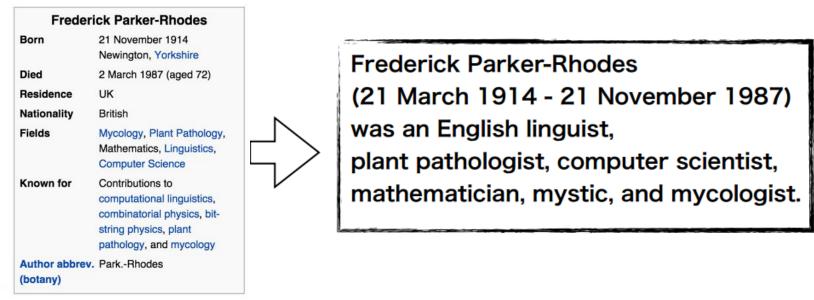
Author abbrev. Park.-Rhodes

(botany)

Frederick Parker-Rhodes

(21 March 1914 - 21 November 1987)

was an English linguist,


plant pathologist, computer scientist,

mathematician, mystic, and mycologist.

Task: Biography Generation (Concept-to-text Generation)

Input (Fact table / Infobox)

Output (Biography)

Characteristics of the work:

- Using word and field embeddings along with NLM
- Scale to large # of words and fields (350 words -> 400k words)
- Flexibility (does not restrict relations between field and generated text)

Table conditioned language model

- Local and global conditioning
- Copy actions

Table conditioned language model


N-gram Language Model

$$P(s) \approx \prod_{t=1}^{T} P(w_t|c_t)$$
 $s = w_1, \dots, w_T$ $c_t = w_{t-(n-1)}, \dots, w_{t-1}$

Table conditioned language model

N-gram Language Model

$$P(s) \approx \prod_{t=1}^{T} P(w_t|c_t).$$
 $s = w_1, \dots, w_T$ $c_t = w_{t-(n-1)}, \dots, w_{t-1}$

Table Conditioned Language Model

$$P(s|z,g_f,g_w) = \prod_{t=1}^T P(w_t|c_t, z_{c_t}, g_f, g_w).$$
 Table Information

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

Input

Table (g_f, g_w)

name John Doe
birthdate 18 April 1352
birthplace Oxford UK
occupation placeholder
spouse Jane Doe
children Johnnie Doe

input text (c_t, z_{c_t})

	John	Doe	(18	April	1352)	is	a
c_t	13944	unk	17	37	92	25	18	12	4
z_{c_t}	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)	Ø	(birthd.,1,3)	(birthd.,2,2)	(birthd.,3,1)	Ø	Ø	Ø

output candidates $(w \in \mathcal{W} \cup \mathcal{Q})$

	the	•••	april	•••	placeholder	 john	 doe
w	1		92		5302	 13944	 unk
	Ø		(birthd.,2,2)		(occupation,1,1)	(name,1,2)	(name,2,1)
z _w							(spouse,2,1)
							(children,2,1)

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

Input

Generated Texts Information

Table	(af. aw	1
	(3))3"	J

name	John Doe
birthdate	18 April 1352
birthplace	Oxford UK
occupation	placeholder
spouse	Jane Doe
children	Johnnie Doe

inp	out text $(c_t$	$,z_{c_t})$							
	John	Doe	(18	April	1352)	is	a
c_t	13944	unk	17	37	92	25	18	12	4
z_{c_t}	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)	Ø	(birthd.,1,3)	(birthd.,2,2)	(birthd.,3,1)	Ø	Ø	Ø

output candidates $(w \in \mathcal{W} \cup \mathcal{Q})$

	the	 april	 placeholder	•••	john	 doe
w	1	 92	 5302		13944	 unk
z _w	Ø	(birthd.,2,2)	(occupation,1,1)		(name,1,2)	(name,2,1) (spouse,2,1)
						(children,2,1)

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

Input

Generated Texts Information

Table (g_f,g_w))
name	John Doe
birthdate	18 April 1352
birthplace	Oxford UK
occupation	placeholder
spouse	Jane Doe
children	Johnnie Doe

inp	out text $(c_t$	$,z_{c_t})$							
	John	Doe	(18	April	1352)	is	a
c_t	13944	unk	17	37	92	25	18	12	4
z_{c_t}	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)	Ø	(birthd.,1,3)	(birthd.,2,2)	(birthd.,3,1)	Ø	Ø	Ø

(Output) Vocabulary Information

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

Context words: already generated tokens

input text (c_t, z_{c_t})

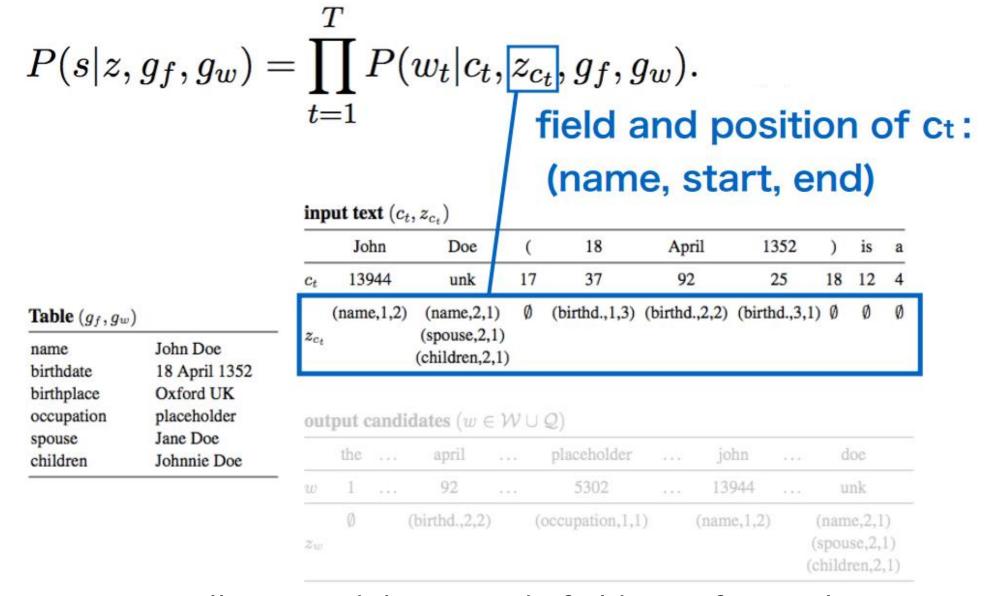
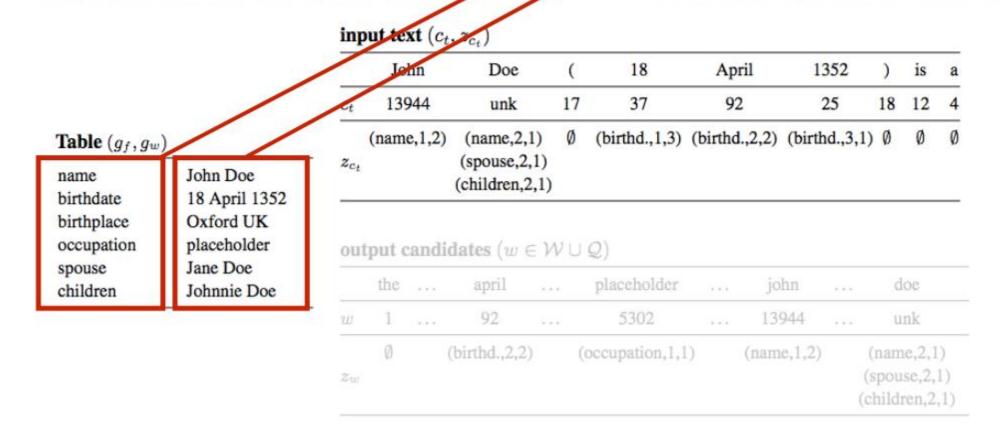

	John	Doe	(18	April	1352)	is	a
c_t	13944	unk	17	37	92	25	18	12	4
z_{c_t}	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)	Ø	(birthd.,1,3)	(birthd.,2,2)	(birthd.,3,1)	Ø	Ø	Ø

Table (g_f, g_w)

name	John Doe
birthdate	18 April 1352
birthplace	Oxford UK
occupation	placeholder
spouse	Jane Doe
children	Johnnie Doe

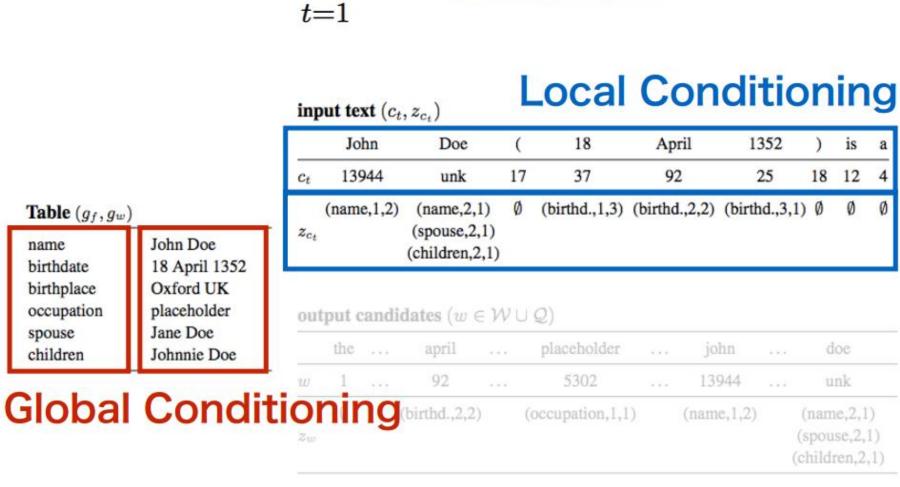
output candidates $(w \in \mathcal{W} \cup \mathcal{Q})$

	the	 april		placeholder	 john	 doe
w	1	 92		5302	 13944	 unk
z_w	Ø	(birthd.,2,2	2)	(occupation,1,1)	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)



Motivation Z_{ct} -Allows model to encode field specific regularity eg: Number of date field is followed by month, Last token of name field followed by "(" or "was born"

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

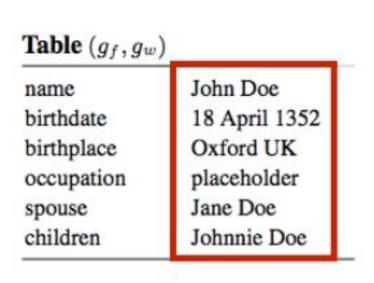

field name of the table

words of the Table

Why G_f, G_w: fields impacts structure of generation eg: politician/athlete Actual token helps distinguish eg: hockey player/basketball player

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

Local conditioning: context dependent

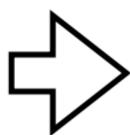

Global conditioning: context independent

Copy Actions

Model can copy infobox's actual words to the output

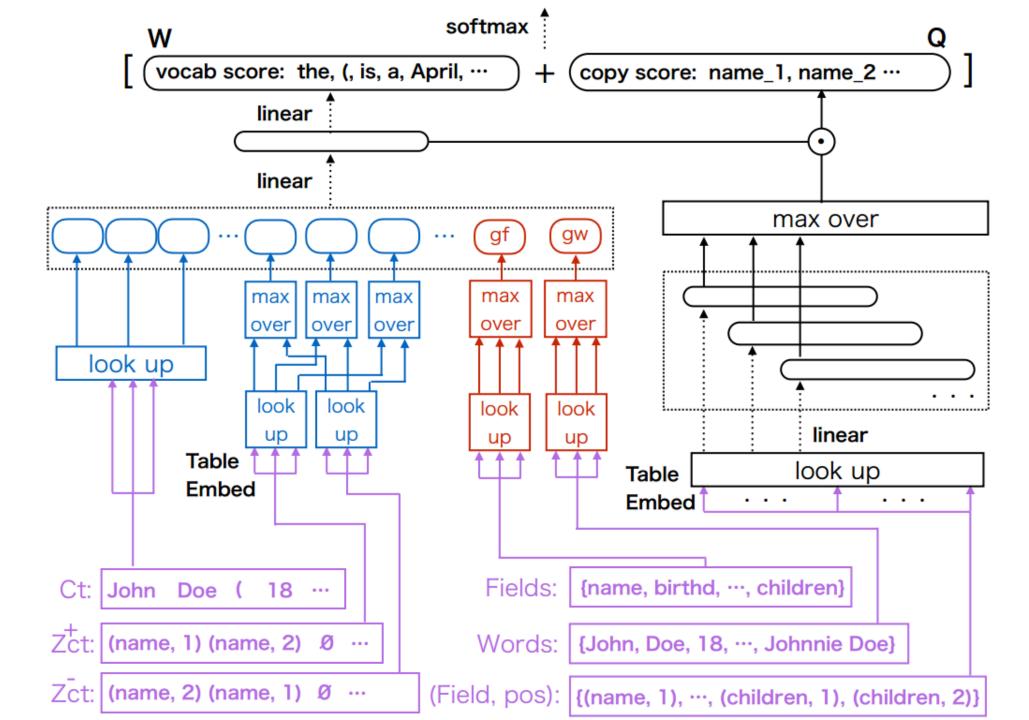
W: Vocabulary words , Q: All tokens in table

Eg: If "Doe" is not in W, Doe will be included in Q as "name_2"



	out text (c	$_{t},z_{c_{t}})$								
	John	Doe	(18	April	135	2)	is	a
c_t	13944	unk	17	37	92	25		18	12	4
Z _C ,	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)		(birthd.,1,3)	(birthd.,2	,2) (birthd.	,3,1)	0	Ø	0
ou	tput candi	idates $(w \in X)$	<i>w</i> u	Q) placeholder		john .		d	oe	
ou w	3.	april .		Name and Address of the Owner, where the Owner, which is the Own		12044			oe nk	

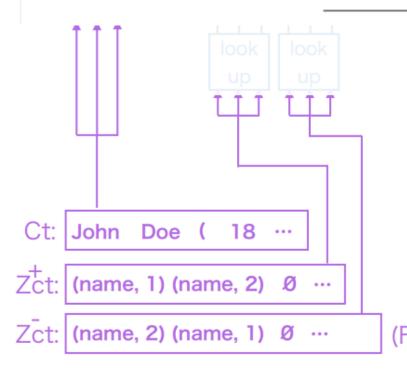
Model

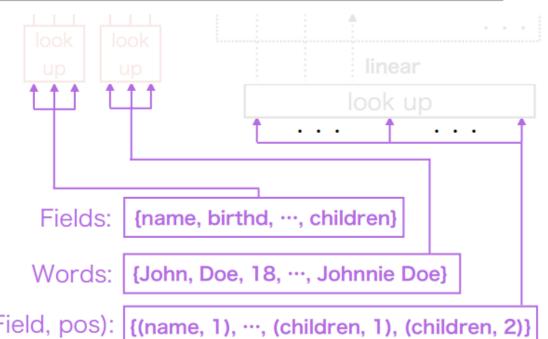

$$P(s|z, g_f, g_w) = \prod_{t=1}^{T} P(w_t|c_t, z_{c_t}, g_f, g_w).$$

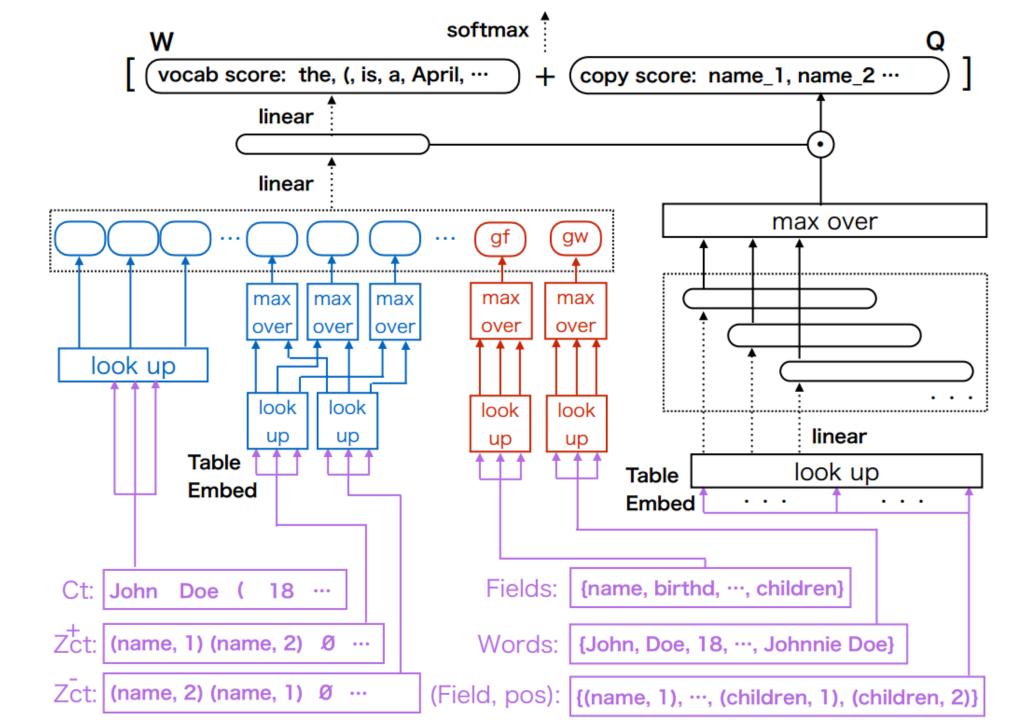
Neural Language Model

- Table conditioned language model
- Local conditioning
- Global conditioning
- Copy actions

Table (g_f, g_w)


name John Doe
birthdate 18 April 1352
birthplace Oxford UK
occupation placeholder
spouse Jane Doe
children Johnnie Doe


input text (c_t, z_{c_t})


	John	Doe	(18	April	1352)	is	a
c_t	13944	unk	17	37	92	25	18	12	4
z_{c_t}	(name,1,2)	(name,2,1) (spouse,2,1) (children,2,1)	Ø	(birthd.,1,3)	(birthd.,2,2)	(birthd.,3,1)	Ø	Ø	Ø

output candidates $(w \in \mathcal{W} \cup \mathcal{Q})$

	the	 april	 placeholder	 john	 doe
\overline{w}	1	 92	 5302	 13944	 unk
	Ø	(birthd.,2,2)	(occupation,1,1)	(name,1,2)	(name,2,1)
z_w					(spouse,2,1)
					(children,2,1)

Training

• The neural language model is trained to minimize the negative log-likelihood of a training sentence *s* with stochastic gradient descent (SGD; LeCun et al. 2012) :

$$L_{ heta}(s) = -\sum_{t=1}^{T} \log P(w_t | c_t, z_{c_t}, g_f, g_w)$$
.

Evaluation

- Dataset and baseline
- Result
- Quantitative Analysis

Dataset and Baseline

- Biography Dataset: WIKIBIO
 - 728,321 articles from English Wikipedia
 - Extract first "biography" sentence from each article + article infobox

Baseline

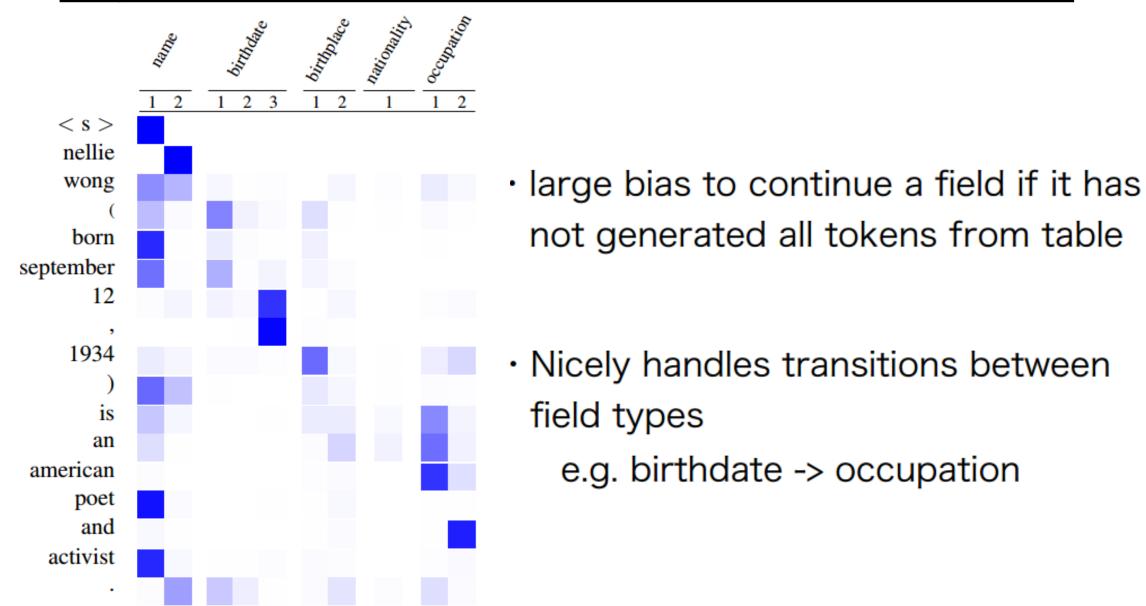
- Interpolated Kneser-Ney (KN) model
- Replace word occurring in both table/sent with special tokens
- Decoder emits words from regular vocab or special tokens (replace special tokens with corresponding words from table)

	Mean Percentil		entile
		5%	95%
# tokens per sentence	26.1	13	46
# tokens per table	53.1	20	108
# table tokens per sent.	9.5	3	19
# fields per table	19.7	9	36

Table 2: Dataset statistics

Parameter	Value			
# word types	$ \mathcal{W} $	=	20,000	
# field types	$ \mathcal{F} $	=	1,740	
Max. # tokens in a field	l	=	10	
word/field embedding size	d	=	64	
global embedding size	g	=	128	
# hidden units	nhu	=	256	

Template KN model


- The introduction section of the table in input (shown earlier):
- "name 1 name 2 (birthdate 1 birthdate 2 birthdate 3

 deathdate 1 deathdate 2 deathdate 3) was an english linguist, fields 3 pathologist, fields 10 scientist, mathematician, mystic and mycologist."

Experimental results: Metrics

	Model	Perplexity	BLEU	ROUGE	NIST
w/o copy	KN	10.51	2.21	0.38	0.93
, ,	NLM	9.40 ± 0.01	2.41 ± 0.33	0.52 ± 0.08	1.27 ± 0.26
	+ Local (field, start, end)	8.61 ± 0.01	4.17 ± 0.54	1.48 ± 0.23	1.41 ± 0.11
	Template KN	7.46*	19.8	10.7	5.19
	Table NLM w/ Local (field, start)	$4.60\pm0.01^{\dagger}$	26.0 ± 0.39	19.2 ± 0.23	6.08 ± 0.08
w/ copy	+ Local (field, start, end)	$4.60\pm0.01^{\dagger}$	26.6 ± 0.42	19.7 ± 0.25	6.20 ± 0.09
, , , , ,	+ Global (field)	$4.30 \pm 0.01^\dagger$	33.4 ± 0.18	23.9 ± 0.12	7.52 ± 0.03
	+ Global (field & word)	$4.40\pm0.02^{\dagger}$	34.7 ± 0.36	25.8 ± 0.36	$\textbf{7.98} \pm \textbf{0.07}$

Experimental results: Attention mechanism

Quantitative analysis

Model	Generated Sentence		
Reference	frederick parker-rhodes (21 march 1914 – 21 november 1987) was an english linguist, plant pathologist, computer scientist, mathematician, mystic, and mycologist.		
Baseline frederick parker-rhodes (born november 21, 1914 – march 2, 1987) was an english cr (Template KN)			
Table NLM +Local (field, start)	frederick parker-rhodes (21 november $1914-2$ march 1987) was an australian rules footballer who played with carlton in the victorian football league (vfl) during the XXXXs and XXXXs .		
+ Global (field)	frederick parker-rhodes (21 november $1914-2$ march 1987) was an english mycology and plant pathology , mathematics at the university of uk .		
+ Global (field, word)	frederick parker-rhodes (21 november 1914 – 2 march 1987) was a british computer scientist, best known for his contributions to computational linguistics.		

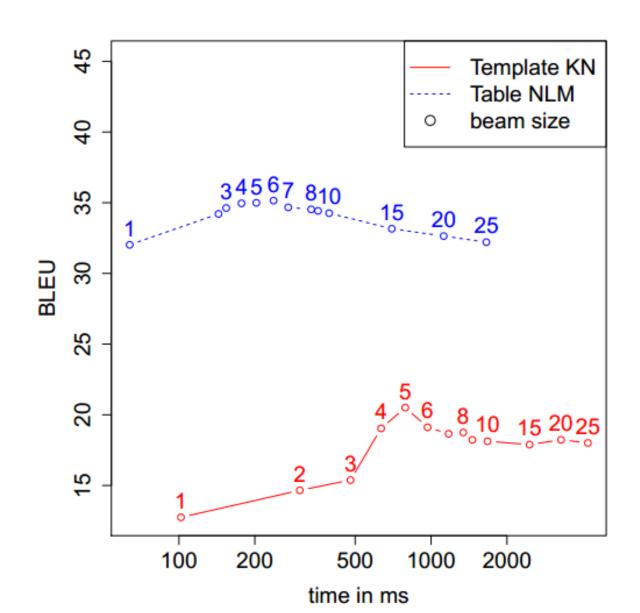
- Local only cannot predict right occupation
- Global (field) helps to understand he was a scientist
- Global (field, word) can infer the correct occupation
- Date issue?

Conclusion:

- Generate fluent descriptions of arbitrary people based on structured data
- Local and Global conditioning improves model by large margin
- Model outperforms KN language model by 15 BLEU
- Order of magnitude more data and bigger vocab

Thoughts:

- Generation of longer biographies
- Improving encoding of field values/embeddings
- Better loss function
- Better strategy for evaluation of factual accuracy


References:

- http://aclweb.org/anthology/D/D16/D16-1128.pdf
- http://ofir.io/Neural-Language-Modeling-From-Scratch/
- http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
- https://github.com/odashi/mteval
- http://cs.brown.edu/courses/cs146/assets/files/langmod.pdf
- https://cs.stanford.edu/~angeli/papers/2010-emnlp-generation.pdf

Questions?

Performance: Sentence decoding

