Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

Author: Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean

Presented by: Kejia Jiang

Introduction

• A **single** Neural Machine Translation (NMT) model to translate between multiple languages.

Simplicity

Requires no change to the traditional NMT model architecture.

Low-resource language improvements

Language pairs with little available data and language pairs with abundant data are mixed together.

Zero-shot translation

Translates between arbitrary languages, including unseen language pairs during the training process.

Related work

• The multilingual model architecture is identical to Google's Neural Machine Translation (GNMT) system (Wu et al., 2016)

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation (Wu et al., 2016)

- GNMT model consists of a deep LSTM network with 8 encoder and 8 decoder layers using residual connections and attention connections.
 - Accurate
 - Fast
 - Robustness to rare words

GNMT Deep Stacked LSTMs **Softmax Encoder LSTMs** Decoder LSTMs ` GPU8 GPU8 8 layers GPU3 GPU2 GPU3 ➤ Attention ▼ GPU2 GPU2 GPU1 GPU1

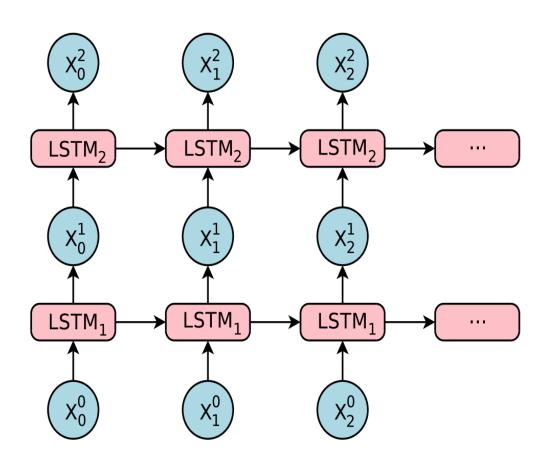
GNMT attention module

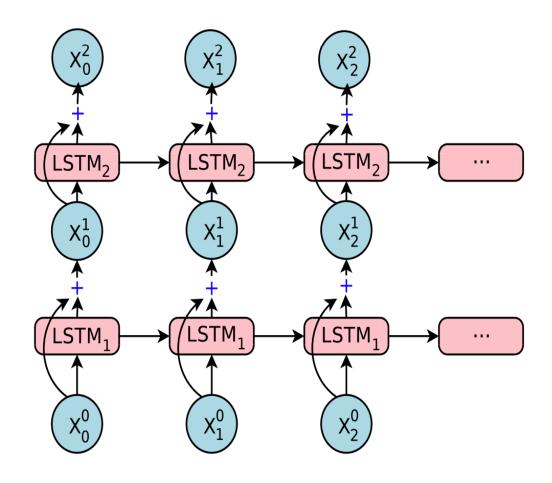
 Context a_i for the current time step is computed according to the following formulas:

$$s_t = AttentionFunction(\mathbf{y}_{i-1}, \mathbf{x}_t) \quad \forall t, \quad 1 \le t \le M$$
 $p_t = \exp(s_t) / \sum_{t=1}^{M} \exp(s_t) \quad \forall t, \quad 1 \le t \le M$
 $\mathbf{a}_i = \sum_{t=1}^{M} p_t.\mathbf{x}_t$

• Here the *AttentionFunction* is a feed forward network with one hidden layer.

GNMT Residual Connections





GNMT Residual Connections

$$\mathbf{c}_t^i, \mathbf{m}_t^i = \text{LSTM}_i(\mathbf{c}_{t-1}^i, \mathbf{m}_{t-1}^i, \mathbf{x}_t^{i-1}; \mathbf{W}^i)$$

$$\mathbf{x}_t^i = \mathbf{m}_t^i$$

$$\mathbf{c}_t^{i+1}, \mathbf{m}_t^{i+1} = \text{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_t^i; \mathbf{W}^{i+1})$$

 With residual connections between LSTM_i and LSTM_{i+1}, the above equations become:

$$\mathbf{c}_t^i, \mathbf{m}_t^i = \text{LSTM}_i(\mathbf{c}_{t-1}^i, \mathbf{m}_{t-1}^i, \mathbf{x}_t^{i-1}; \mathbf{W}^i)$$

$$\mathbf{x}_t^i = \mathbf{m}_t^i + \mathbf{x}_t^{i-1}$$

$$\mathbf{c}_t^{i+1}, \mathbf{m}_t^{i+1} = \text{LSTM}_{i+1}(\mathbf{c}_{t-1}^{i+1}, \mathbf{m}_{t-1}^{i+1}, \mathbf{x}_t^i; \mathbf{W}^{i+1})$$

GNMT Wordpiece Model

- To address the translation of out-of-vocabulary (OOV) words,
 GNMT applys sub-word units to do segmentation.
- Example:

Word: **Jet** makers **feud** over seat width with big orders at stake.

```
Wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake.
```

 This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models.

GNMT with zero-shot translation

 Based on the GNMT, the system adds an artificial token at the beginning of the input sentence to indicate the target language the model should translate to.

```
    Exmaple: En→Es
        Instead of :
        How are you? -> ¿Cómo estás?
        put <2es> at the beginning:
        <2es> How are you? -> ¿Cómo estás?
```

Zero-shot translation

- The system use implicit bridging to deal with the problem. No explicit parallel training data has been seen.
 - Although the source and target languages should be seen individually during the training at some point.

Table 5: Portuguese→Spanish BLEU scores using various models.

	Model	Zero-shot	BLEU
(a)	PBMT bridged	no	28.99
(b)	NMT bridged	no	30.91
(c)	NMT Pt \rightarrow Es	no	31.50
(d)	Model 1 (Pt \rightarrow En, En \rightarrow Es)	yes	21.62
(e)	Model 2 (En \leftrightarrow {Es, Pt})	yes	24.75
(f)	Model 2 + incremental training	no	31.77

To improve zero-shot translation quality

 Incrementally training the multilingual model on the additional parallel data for the zero-shot directions.

•	Zei	rn	-5	h	h
			၂ ၂	111	JL.

$$En \leftrightarrow \{Be,Ru,Uk\}$$

• From-scratch:

$$En \leftrightarrow \{Be,Ru,Uk\}$$

 $+ Ru \leftrightarrow \{Be, Uk\}$

• Incremental:

Zero-shot

+ From-scratch

Zero-Shot	From-Scratch	Incremental
16.85	17.03	16.99
22.21	22.03	21.92
18.16	17.75	18.27
25.44	24.72	25.54
28.36	27.90	28.46
28.60	28.51	28.58
56.53	82.50	78.63
58.75	72.06	70.01
21.92	25.75	25.34
16.73	30.53	29.92
	16.85 22.21 18.16 25.44 28.36 28.60 56.53 58.75 21.92	16.85 17.03 22.21 22.03 18.16 17.75 25.44 24.72 28.36 27.90 28.60 28.51 56.53 82.50 58.75 72.06 21.92 25.75

Mixed language

- Can a multilingual model successfully handle multi-language input (code-switching) in the middle of a sentence?
- Yes! Because the individual characters/wordpieces are present in the shared vocabulary.
 - **Japanese:** 私は東京大学の学生です。 → I am a student at Tokyo University.
 - **Korean:** 나는 도쿄 대학의 학생입니다. → I am a student at Tokyo University.
 - Japanese/Korean: 私は東京大学학생입니다. → I am a student of Tokyo University.

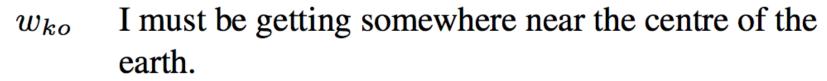
Mixed language (2)

• What happens when a multilingual model is triggered with a linear mix of two target language tokens?

• Example:

Using a multilingual En \rightarrow {Ja, Ko} model, feed a linear combination (1-w)<2ja>+w<2ko> of the embedding vectors for "<2ja>" and "<2ko>", 0 <= w <= 1.

Result: with w = 0.5, the model switches languages midsentence.



- 0.00 私は地球の中心の近くにどこかに行っている に違いない。
- 0.40 私は地球の中心近くのどこかに着いているに 違いない。
- 0.56 私は地球の中心の近くのどこかになっている に違いない。
- 0.58 私は지구の中心의가까이에어딘가에도착하고있어야한다。
- 0.60 나는지구의센터의가까이에어딘가에도착하고있 어야한다。
- 0.70 나는지구의중심근처어딘가에도착해야합니다。
- 0.90 나는어딘가지구의중심근처에도착해야합니다。
- 1.00 나는어딘가지구의중심근처에도착해야합니다。

Conclusion

- Use a single model where all parameters are shared, which improves the translation quality of low resource languages in the mix.
- Zero-shot translation without explicit bridging is possible.
- To improve the zero-shot translation quality: Incrementally training the multilingual model on the additional parallel data for the zero-shot directions.
- Mix languages on the source or target side can yield interesting but reliable translation results.

Thank you!