# Convolutional Encoder Model for NTM Gehring et al., 2017 Facebook Al Research

Presenter: Maghav Kumar

### Outline

- Introduction
- Why CNNs over RNNs
- Previous Work
  - RNNs
- Non-Recurrent Encoders
- Convolutional Encoder
- Related Work
- Datasets
- Architecture
- Results

### Introduction

- End-to-End approach to Machine Translation (Sutskever et al., 2014).
- Most successful approach to date has been bi-directional RNN.
- RNNs usually parameterized as LSTMs(Hochreiter et al. 1997) or GRUs (Cho et al., 2014).
- Several attempts made in past but not competitive to recurrent alternatives (Cho et al., 2014a).

# Attractive Properties of CNN's over RNNs for NMT

- CNNs operate over a fixed-size of input sequence, enabling simultaneous computation of all features for a source sentence.
- RNNs maintain a hidden state of the entire past that prevents parallel computation within a sequence.
- Succession of convolutional layers provides a shorter path to capture relationships between elements of a sequence compared to RNNs.

# Attractive Properties of CNN's over RNNs for NMT

- A CNN would also <u>ease</u> learning as the resulting tree-structure applies a fixed number of non-linearities compared to an RNN for which the number of non-linearities vary depending on the time-step.
- Since processing is bottom-up, all words undergo the same number of transformations, whereas for RNNs the first word is over-processed and the last word is transformed only once.

### Recurrent Neural Nets for NMT

- General Architecture follows Encoder-Decoder approach with soft attention (Bahdanau et al., 2015).
- Consider you have a source sentence X of m words

$$X = (x_1, x_2, ...., x_m)$$

- An encoder will output a sequence of states Z where

$$Z = (z_1, z_2, ..., z_m)$$

A decoder is present which is an RNN that computes a new hidden state s<sub>i+1</sub> based on the previous state s<sub>i</sub>, an embedding g<sub>i</sub> of the previous target language word y<sub>i</sub>, as well as a conditional input c<sub>i</sub> derived from Z.

### Recurrent Neural Nets for NMT

$$d_i = W_d h_i + b_d + g_i, \ a_{ij} = rac{\exp\left(d_i^T z_j
ight)}{\sum_{t=1}^m \exp\left(d_i^T z_t
ight)}, \quad c_i = \sum_{j=1}^m a_{ij} z_j$$

### Recurrent Neural Nets for NMT

- Usually LSTMs are used for all decoder networks.
- For which each state s<sub>i</sub> comprises of a cell vector and a hidden vector h<sub>i</sub> which is an output at each time step.
- The conditional input c<sub>i</sub> is concatenated with g<sub>i</sub> and is an input to the LSTM.
- Then the model computes a distribution over V possible target words y<sub>i+1</sub> using (where W<sub>0</sub> is the weight and b<sub>0</sub> is bias.

$$p(y_{i+1} | y_1, ..., y_i, X) = softmax(W_0h_{i+1} + b_0)$$

## Non-Recurrent Encoders

- 1) Pooling Encoders
- 2) Convolutional Encoders

# Pooling Encoders

- Initial work simply averages the embeddings of k consecutive words (Ranzato et al., 2015).
- This does not convey positional information though.
- <u>FIX</u>: Add <u>position embeddings</u> to encode the absolute position of each word in a sentence.

$$e_j = w_j + l_j$$

e<sub>j</sub> - Source Embedding ; w<sub>j</sub> - Word Embedding ; I<sub>j</sub> - positional embedding

# Pooling Encoders

The pooled representations z<sub>j</sub> are computed using the embeddings.

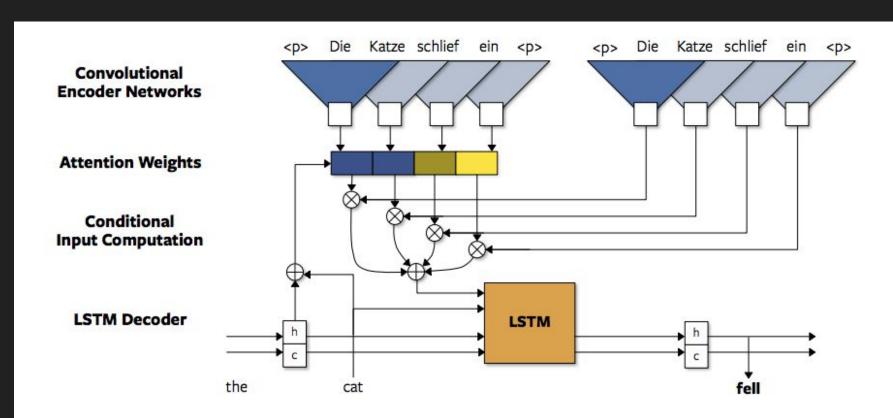
$$z_{j} = \sum_{k/2}^{k/2} e_{j+t}$$

 The conditional input is a weighted sum of the embeddings e<sub>i</sub> using the attention values denoted by a<sub>ii</sub>.

$$c_i = \sum_{j=1}^m a_{ij} e_j$$

### Convolutional Encoders

- Novel Approach: Use a convolutional kernel.
- Encoder output z<sub>j</sub> contains information about a fixed-size context depending on kernel width k.
- Stacking 5 convolutions with k=3 results in an input field of 11 words. Hence each output would depend on these 11 words and the non-linearities allow the encoder to exploit the full input field.


### **Convolutional Encoders**

- The convolutional encoder also uses position embeddings
- Final encoder has 2 stacked convolutional networks:
  - First CNN produces encoder output z<sub>j</sub> to compute attention scores a<sub>i</sub>
  - Second CNN outputs are used to calculate the conditional input c<sub>i</sub>

$$z_{j} = CNN_{1}(e)_{j}$$

$$c_{i} = \sum_{j=1}^{m} a_{ij} CNN_{2}(e)_{j}$$

### Model Architecture



# Related Work to Convolutional Approaches for NMT

- 1) Kalchbrenner et al., 2016- Convolutional translational models without an explicit attention mechanism but not state-of-the-art accuracy.
- 2) Lamb and Xie, 2016 also proposed multi-layer CNN to generate a fixed-size encoder representation, but not enough quantitative evaluation in terms of BLEU.
- 3) Pham et al., 2016 Convolutional architectures have been successful in language modeling but failed to outperform LSTMs.

### **Datasets**

- 1) IWSLT' 14 German-English
- 2) WMT' 16 English-Romanian
- 3) WMT' 15 English-German
- 4) WMT' 14 English-French

# Initial Results (on IWSLT' 14 German-English)

| System/Encoder         | BLEU<br>wrd+pos | BLEU<br>wrd | PPL<br>wrd+pos |
|------------------------|-----------------|-------------|----------------|
| Phrase-based           | =               | 28.4        | -              |
| LSTM                   | 27.4            | 27.3        | 10.8           |
| BiLSTM                 | 29.7            | 29.8        | 9.9            |
| Pooling                | 26.1            | 19.7        | 11.0           |
| Convolutional          | 29.9            | 20.1        | 9.1            |
| Deep Convolutional 6/3 | 30.4            | 25.2        | 8.9            |

# **Detailed Results**

| WMT'16 English-Romanian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Encoder                 | Vocabulary | BLEU |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------|
| (Sennrich et al., 2016a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BiGRU                   | BPE 90K    | 28.1 |
| Single-layer decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BiLSTM                  | 80K        | 27.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Convolutional           | 80K        | 27.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deep Convolutional 8/4  | 80K        | 27.8 |
| WMT'15 English-German                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Encoder                 | Vocabulary | BLEU |
| (Jean et al., 2015) RNNsearch-LV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BiGRU                   | 500K       | 22.4 |
| (Chung et al., 2016) BPE-Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BiGRU                   | Char 500   | 23.9 |
| (Yang et al., 2016) RNNSearch + UNK replace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BiLSTM                  | 50K        | 24.3 |
| + recurrent attention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BiLSTM                  | 50K        | 25.0 |
| Single-layer decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BiLSTM                  | 80K        | 23.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deep Convolutional 15/5 | 80K        | 23.6 |
| Two-layer decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Two-layer BiLSTM        | 80K        | 24.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deep Convolutional 15/5 | 80K        | 24.2 |
| WMT'14 English-French (12M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Encoder                 | Vocabulary | BLEU |
| (Bahdanau et al., 2015) RNNsearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BiGRU                   | 30K        | 28.5 |
| (Luong et al., 2015b) Single LSTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-layer LSTM            | 40K        | 32.7 |
| (Jean et al., 2014) RNNsearch-LV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BiGRU                   | 500K       | 34.6 |
| (Zhou et al., 2016) Deep-Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Deep BiLSTM             | 30K        | 35.9 |
| Single-layer decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BiLSTM                  | 30K        | 34.3 |
| Table 1 State Stat | Deep Convolutional 8/4  | 30K        | 34.6 |
| Two-layer decoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-layer BiLSTM          | 30K        | 35.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deep Convolutional 20/5 | 30K        | 35.7 |

# Training Time

| Encoder        | Words/s | BLEU |  |
|----------------|---------|------|--|
| BiLSTM         | 139.7   | 22.4 |  |
| Deep Conv. 6/3 | 187.9   | 23.1 |  |

(a) IWSLT'14 German-English generation speed on *tst2013* with beam size 10.

# Training Time

| Encoder         | Words/s | BLEU |
|-----------------|---------|------|
| 2-layer BiLSTM  | 109.9   | 23.6 |
| Deep Conv. 8/4  | 231.1   | 23.7 |
| Deep Conv. 15/5 | 203.3   | 24.0 |

(b) WMT'15 English-German generation speed on new-stest2015 with beam size 5.