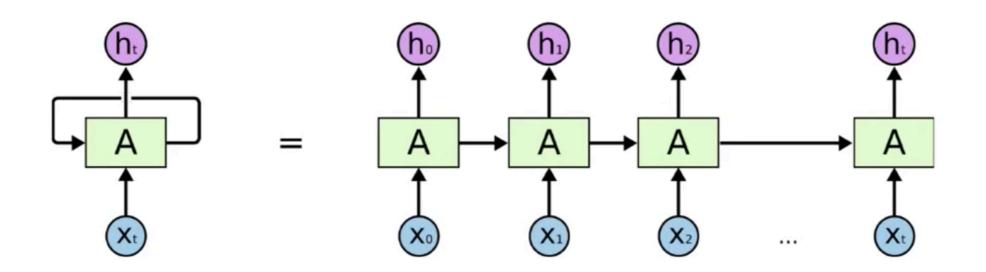
Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin From: Google brain Google research

Presented by: Hsuan-Yu Chen

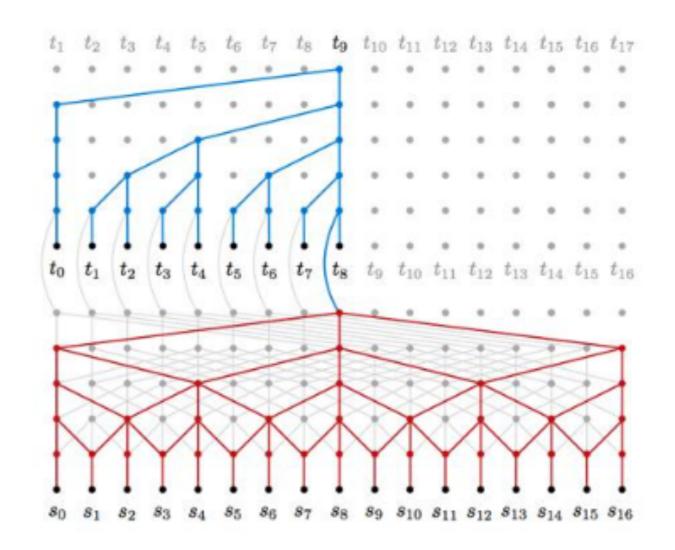
RNN

- Advantages:
 - State-of-the-art for variable-length representations such as sequences
 - RNN are considered core of Seq2Seq (with attention)
- Problems:
 - Sequential process prohibits parallelization. Long range dependencies
 - Sequences-aligned states: hard to model hierarchical-alike domains ex. languages



CNN

- Better than RNN (Linear): path length between positions can be logarithmic when using dilated convolutions
- Drawback: require a lot of layers to catch long-term dependencies

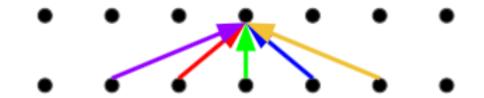


Attention and Self-Attention

- Attention: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$
 - Removes bottleneck of Encoder-Decoder model
 - Focus on important parts
- Self-Attention:
 - all the variables (queries, keys and values) come from the same sequence

Convolution

Self-Attention

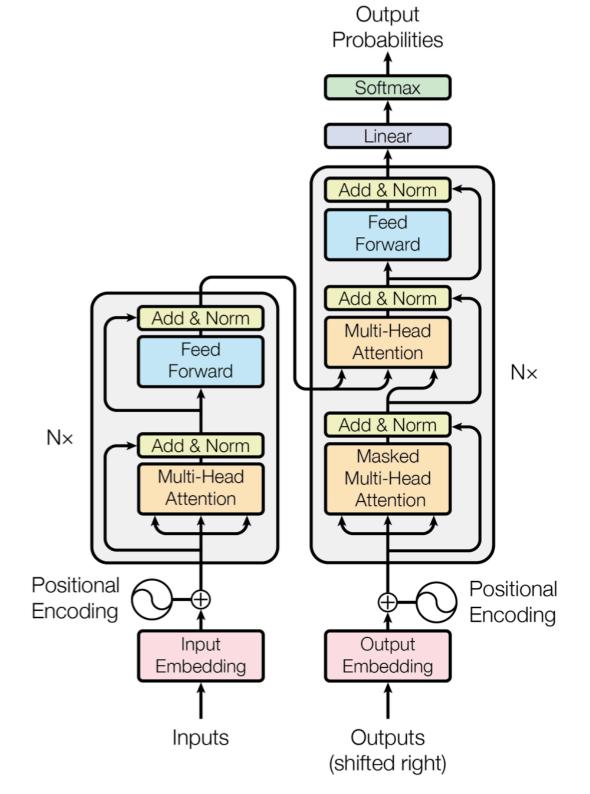


Why Self Attention

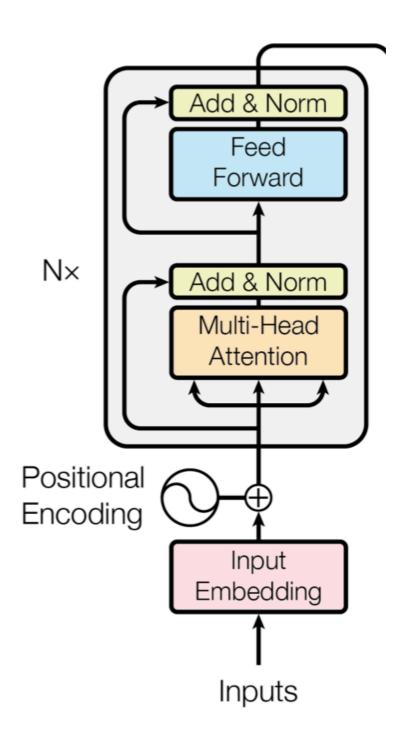
Layer Type	Complexity per Layer	Sequential	Maximum Path Length		
		Operations			
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)		
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)		
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$		
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)		

Transformer Architecture

- Encoder: 6 layers of selfattention + feed-forward network
- Decoder: 6 layers of masked self-attention and output of encoder + feedforward



- N = 6
- All layer output size 512
- Embedding
- Positional Encoding
- Multi-head Attention
- Residual Connection
- Position wise feed forward



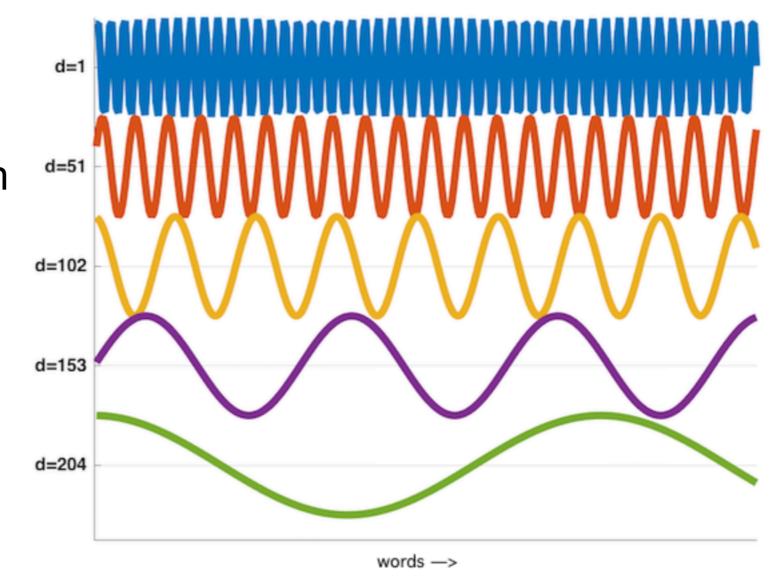
Positional Encoding

 Positional encoding provides relative or absolute position of given token

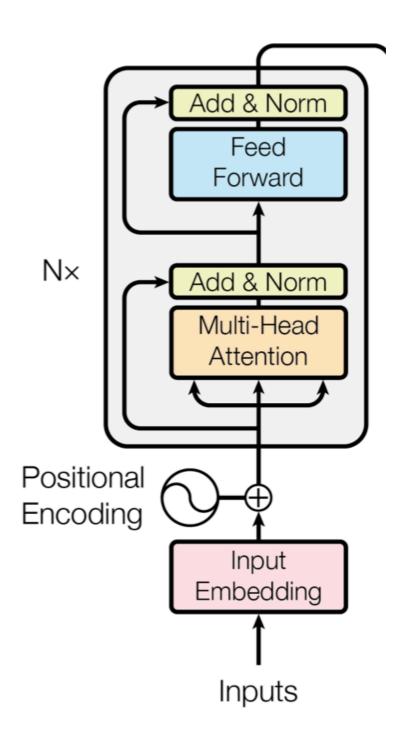
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

 where pos is the position and i is the dimension

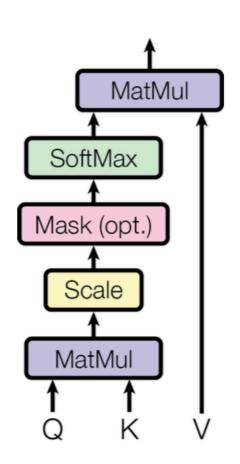


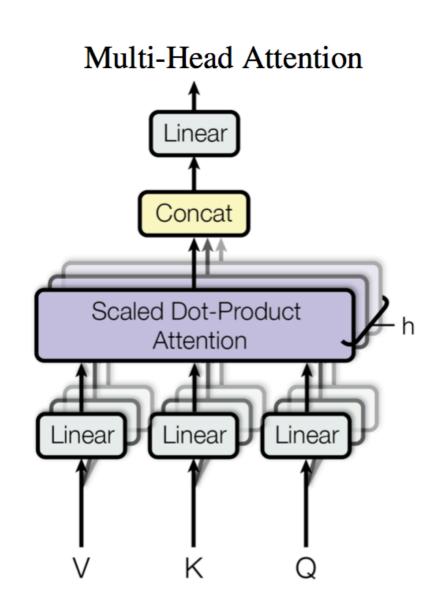
- N = 6
- All layer output size 512
- Embedding
- Positional Encoding
- Multi-head Attention
- Residual Connection
- Position wise feed forward



Scaled Dot Product and Multi-Head Attention

Scaled Dot-Product Attention

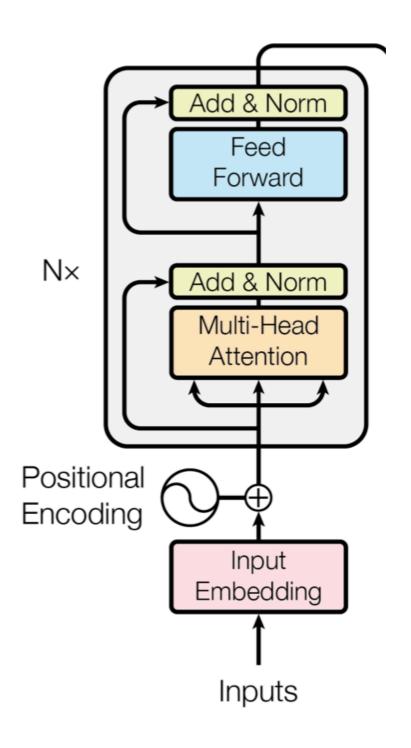




$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

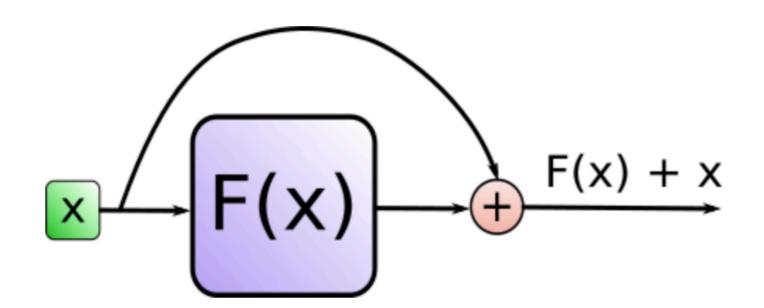
$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

- N = 6
- All layer output size 512
- Embedding
- Positional Encoding
- Multi-head Attention
- Residual Connection
- Position wise feed forward

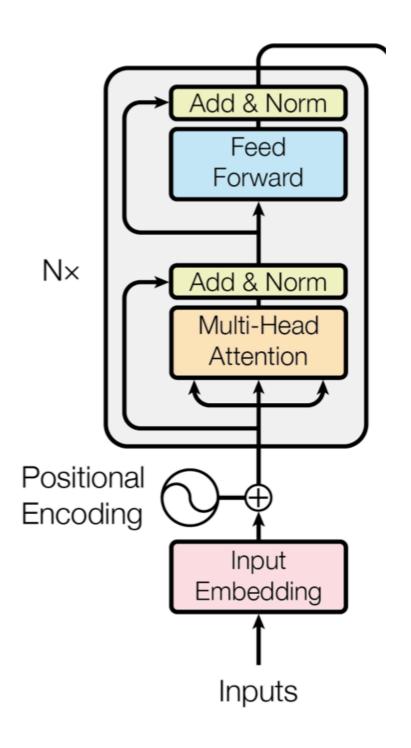


Residual Connection

LayerNorm(x + Sublayer(x))



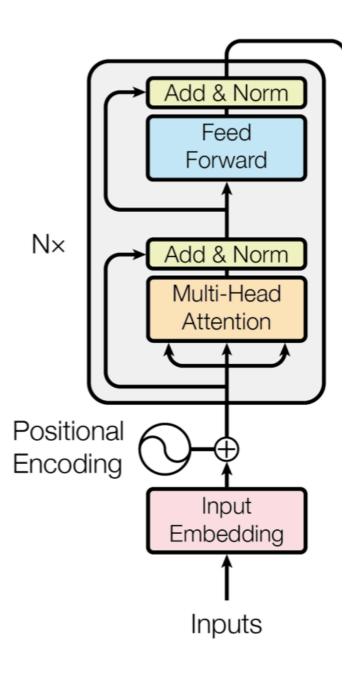
- N = 6
- All layer output size 512
- Embedding
- Positional Encoding
- Multi-head Attention
- Residual Connection
- Position wise feed forward



Position Wise Feed Forward

 two linear transformation with a ReLU activation in between

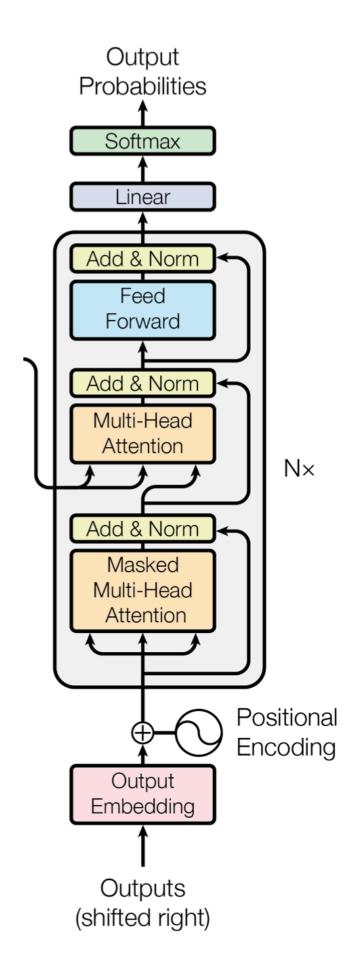
$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$



Decoder

- N = 6
- All layer output size 512
- Embedding
- Positional Encoding
- Residual Connection: LayerNorm(x + Sublayer(x))
- Multi-head Attention
- Position wise feed forward

• softmax:
$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$



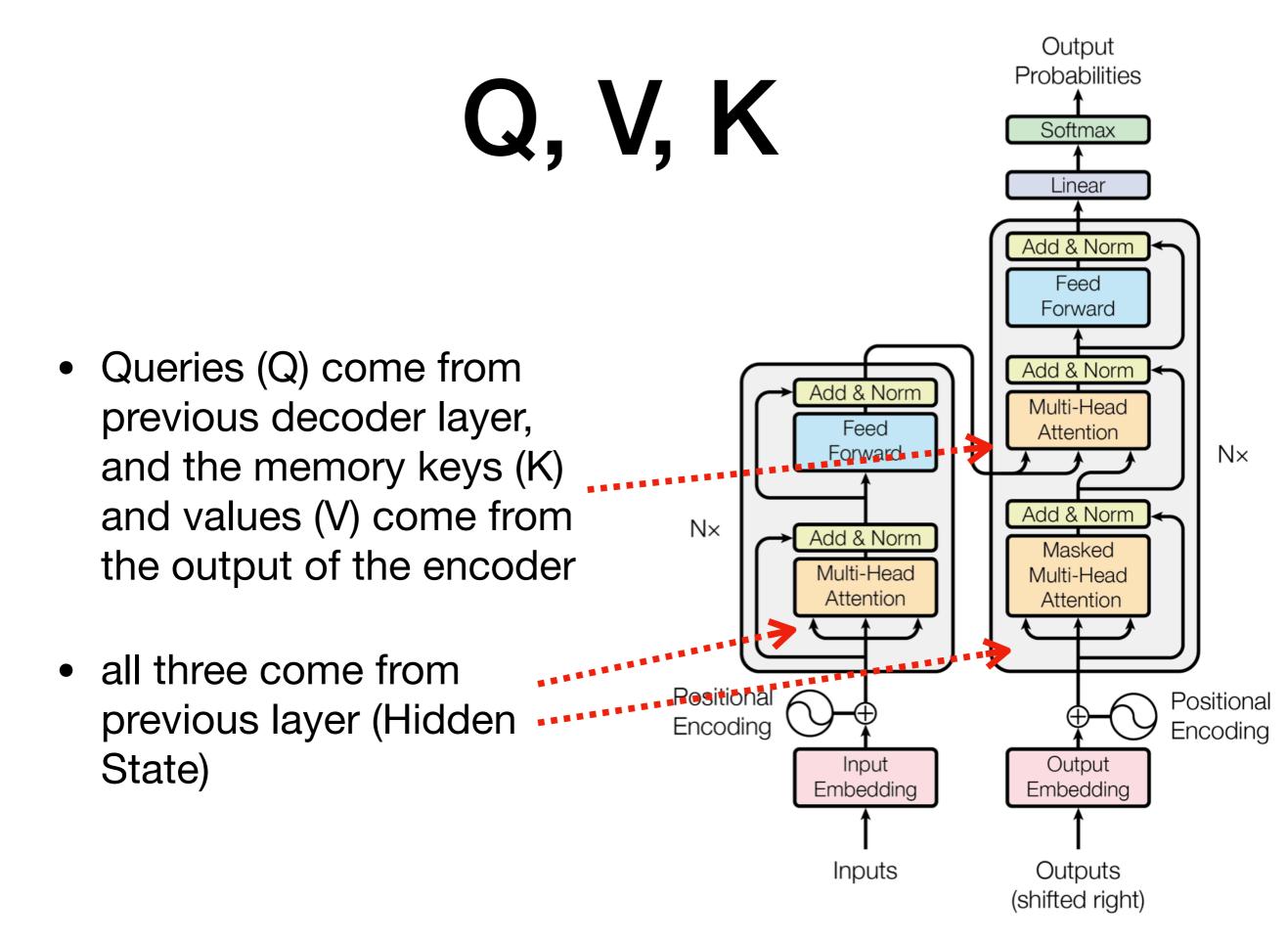


Figure 1: The Transformer - model architecture.

Training

- Data sets:
 - WMT 2014 English-German:
 - 4.5 million sentences pairs with 37K tokens.
 - WMT 2014 English-French:
 - 36M sentences, 32K tokens.
- Hardware:
 - 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5 days)

Results

Madal	BL	EU	Training Cost (FLOPs)			
Model	EN-DE EN-FR		EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4 \cdot 10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}		
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}		

More Results

									train	PPL	BLEU	params
	N	d_{model}	$d_{ m ff}$	h	$d_{m{k}}$	$d_{oldsymbol{v}}$	P_{drop}	ϵ_{ls}	steps	(dev)	(dev)	$\times 10^6$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids							4.92	25.7			
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Summary

- Introduces a new model, named Transformer
- In particular, introduces the concept of multi-head attention mechanism.
- It follows a classical encoder + decoder structure.
- It is an autoregressive model
- Achieves new state-of-the-art results in NMT