Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith Association for Computational Linguistics (ACL), 2015

Presented By: Lavisha Aggarwal (lavisha2)

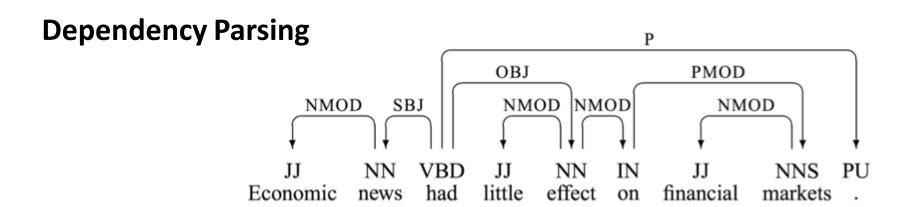
Overview

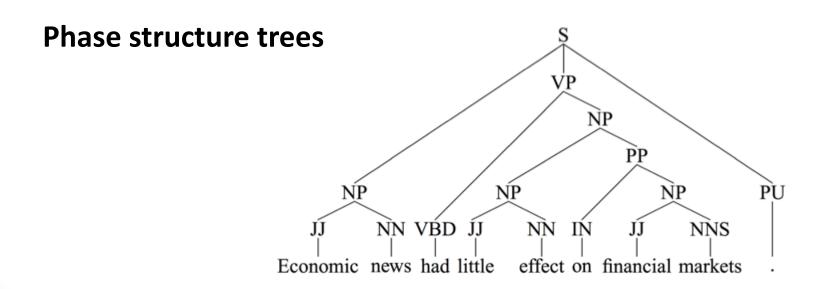
- Parsing
- Transition based dependency Parsing
- Example
- Stack LSTM's
- Dependency parser transitions and operations
- Token Embeddings
- Experimental details
- Data
- Chen and Manning (2014)
- Results
- Conclusion
- References

What is Parsing?

Analyzing a sentence by taking each word and determining the structure of the sentence.

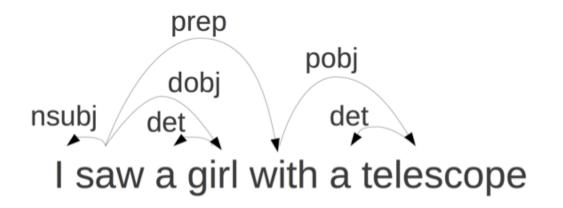
Two types of Parsing

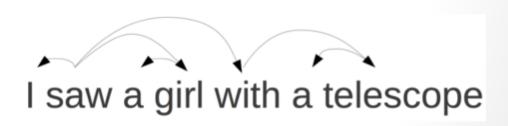




Dependency Parsing

- Represent relations between words using directed edges from Head (H) to the Dependent (D). Eg. saw(H) pirl (D)
- Dependencies can be of 2 types:





Labeled

Unlabeled

Transition-based dependency Parsing

- The parser is made up of:
 - 1. Stack (S) of partially processed words (Initially contains the ROOT of sentence)
 - 2. Buffer (B) of remaining input words (Initially contains the entire input sentence)
 - 3. Set of dependency arcs (A) representing actions (Initially empty)
- Series of decisions that read words sequentially from a buffer and combine them incrementally into syntactic structures

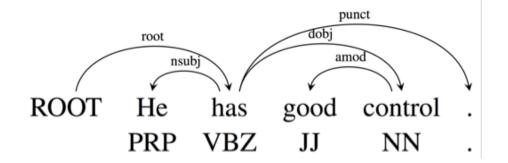
Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	

Arc-standard transition-based parser

- Notation : s_1 Top element in stack, s_2 2^{nd} element from the top in Stack
- We can have 3 types of transition actions:
 - 1. SHIFT: Move one word from Buffer to Stack
 - 2. LEFT-ARC (Reduce-Left): Add an arc $s_2 \leftarrow s_1$; Remove s_2 from Stack
- 3. RIGHT-ARC (Reduce Right): Add an arc $s_2 \longrightarrow s_{1}$; Remove s_1 from Stack

Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	

An Example



Transition	Stack	Buffer	A
	[ROOT]	[He has good control .]	Ø
SHIFT	[ROOT He]	[has good control .]	
SHIFT	[ROOT He has]	[good control .]	
LEFT-ARC(nsubj)	[ROOT has]	[good control .]	$A \cup \text{nsubj(has,He)}$
SHIFT	[ROOT has good]	[control .]	
SHIFT	[ROOT has good control]	[.]	
LEFT-ARC(amod)	[ROOT has control]	[.]	$A \cup amod(control,good)$
RIGHT-ARC(dobj)	[ROOT has]	[.]	$A \cup dobj(has,control)$
RIGHT-ARC (root)	[ROOT]		$A \cup \text{root}(\text{ROOT},\text{has})$

Transition-based dependency parsing with Stack LSTM's

- Predict the transition actions (Shift, Left-Arc or Right-Arc) at each time step
- Based on the state of the parser (contents of Stack, Buffer and Action-set)
- Use Long short-term memory models
- Goal Learn a representation for the various parser components that helps us determine the sequence of actions

Long Short-term Memory (LSTM)

[Input gate(\mathbf{i}_t), Output gate (\mathbf{o}_t) and Forget gate (\mathbf{f}_t), Cell state (\mathbf{c}_t), Output (\mathbf{y}_t)]

$$\mathbf{i}_{t} = \sigma(\mathbf{W}_{ix}\mathbf{x}_{t} + \mathbf{W}_{ih}\mathbf{h}_{t-1} + \mathbf{W}_{ic}\mathbf{c}_{t-1} + \mathbf{b}_{i})$$

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{fx}\mathbf{x}_{t} + \mathbf{W}_{fh}\mathbf{h}_{t-1} + \mathbf{W}_{fc}\mathbf{c}_{t-1} + \mathbf{b}_{f})$$

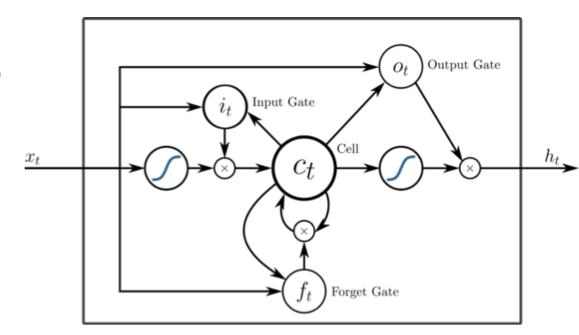
$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} +$$

$$\mathbf{i}_{t} \odot \tanh(\mathbf{W}_{cx}\mathbf{x}_{t} + \mathbf{W}_{ch}\mathbf{h}_{t-1} + \mathbf{b}_{c}),$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}_{ox}\mathbf{x}_{t} + \mathbf{W}_{oh}\mathbf{h}_{t-1} + \mathbf{W}_{oc}\mathbf{c}_{t} + \mathbf{b}_{o})$$

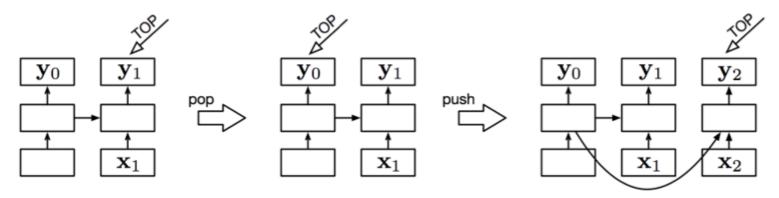
$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$

$$\mathbf{y}_{t} = g(\mathbf{h}_{t}).$$



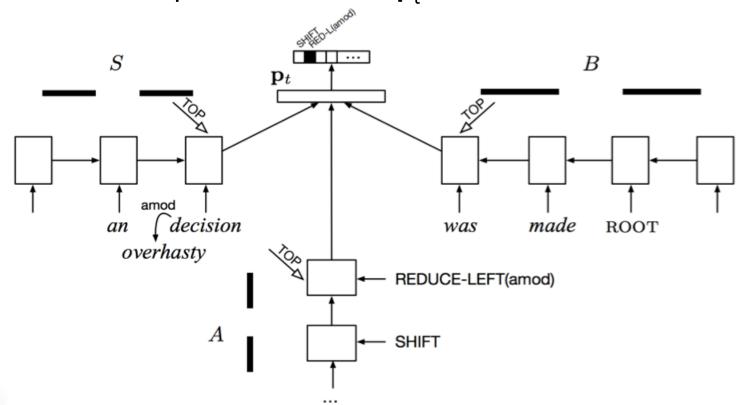
Stack LSTM

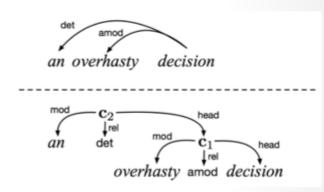
- Variation of recurrent neural networks with long short-term memory units
- Interpret LSTM as a stack that grows towards right (in the image below)
- At time t, the input \mathbf{x}_t , cell states and gate values output \mathbf{y}_t are added as a new element to the stack PUSH operation
- A Stack Pointer points to the TOP of stack
- For POP, simply move the stack pointer to the previous element



Dependency parser

- Buffer of words (B), Stack of syntactic trees (S) and Set of dependency actions (A)
- Each is represented by a Stack LSTM
- State of the parser at time t : **p**₊





Parser Transitions

- At each time-step, perform either of the 3 Actions
- REDUCE left and right linked with a relation (r) label (amod, nmod, obj, nsubj, dobj, etc.)
- If there are K relations, total number of possible actions: 2K+1
- Store words u,v along with their respective embeddings u,v in S and B.
- For dependencies, store the head with the relation embedding $gr(\mathbf{u},\mathbf{v})$

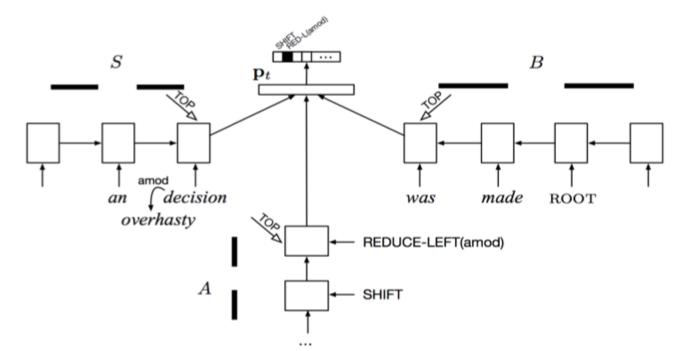
\mathbf{Stack}_t	\mathbf{Buffer}_t	Action	\mathbf{Stack}_{t+1}	\mathbf{Buffer}_{t+1}	Dependency
$(\mathbf{u},u),(\mathbf{v},v),S$	B	REDUCE-RIGHT (r)	$(g_r(\mathbf{u},\mathbf{v}),u),S$	B	$u \stackrel{r}{\rightarrow} v$
$(\mathbf{u}, u), (\mathbf{v}, v), S$	B	REDUCE-LEFT (r)	$(g_r(\mathbf{v}, \mathbf{u}), v), S$	B	$u \stackrel{r}{\leftarrow} v$
S	$(\mathbf{u}, u), B$	SHIFT	$(\mathbf{u}, u), S$	B	_

Parser Operation I

• The state of the parser \mathbf{p}_t at time t depends on the stack LSTM encodings of buffer B (\mathbf{b}_t), stack S (\mathbf{s}_t) and action (\mathbf{a}_t)

$$\mathbf{p}_t = \max \left\{ \mathbf{0}, \mathbf{W}[\mathbf{s}_t; \mathbf{b}_t; \mathbf{a}_t] + \mathbf{d} \right\}$$

• W is a learned parameter matrix and d is a bias term



Parser Operation II

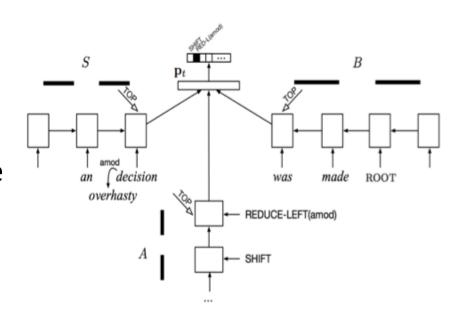
• For each possible action z_t at time t, the likelihood is determined by

$$p(z_t \mid \mathbf{p}_t) = rac{\exp\left(\mathbf{g}_{z_t}^{ op} \mathbf{p}_t + q_{z_t}
ight)}{\sum_{z' \in \mathcal{A}(S,B)} \exp\left(\mathbf{g}_{z'}^{ op} \mathbf{p}_t + q_{z'}
ight)}$$

- \mathbf{g}_z represents embedding of parser action z, \mathbf{q}_z is the bias for action z
- A(S,B) represents the possible actions given stack S and buffer B
- Probability of a sequence of parse actions z

$$p(oldsymbol{z} \mid oldsymbol{w}) = \prod_{t=1}^{|oldsymbol{z}|} p(z_t \mid \mathbf{p}_t)$$

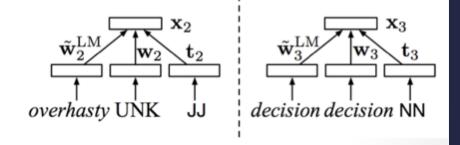
- w corresponds to the set of words of the given sentence
- Goal Find the sequence of actions that maximize this



Token Embeddings

- Each input token \mathbf{x}_t is a concatenation of 3 vectors:
 - 1. Learned vector representation (w)
 - 2. Neural language model representation (\mathbf{w}_{LM})
 - 3. POS tag representation (t)

$$\mathbf{x} = \max \{\mathbf{0}, \mathbf{V}[\mathbf{w}; \tilde{\mathbf{w}}_{LM}; \mathbf{t}] + \mathbf{b}\}$$



- **V** is a linear map and **b** is the bias term
- Syntactic trees represented as a composition function c in terms of the Syntactic head (h), dependent (d) and relation (r)

$$\mathbf{c} = \tanh\left(\mathbf{U}[\mathbf{h}; \mathbf{d}; \mathbf{r}] + \mathbf{e}\right)$$

• **U** is a parameter matrix and **e** is a constant bias term

Experiment details

- The model is trained to learn the representations of the parser states
- Goal Maximize the likelihood of the correct sequence of parse actions
- Training time 8 to 12 hours
- Stochastic gradient descent with standard backpropogation
- Matrix, vector parameters initialized with uniform samples in $\pm \sqrt{6/(r+c)}$ (r rows, c columns)
- Dimensionality
 - LSTM hidden state size 100
 - Parser actions dimensions 16
 - Output embedding size 20
 - Pretrained word embeddings 100 for English and 80 for Chinese
 - Learned word embedding 32
 - POS tag embeddings 12

Training Data

- English
 - Stanford Dependency treebank
 - POS tags Stanford Tagger (Accuracy 97.3%)
 - Language model embeddings AFP portion of English Gigaword corpus
- Chinese
 - Penn Chinese Treebank
 - Gold POS tags
 - Language model embeddings Chinese Gigaword corpus

Experimental configurations

Testing was done on 5 experimental configurations:

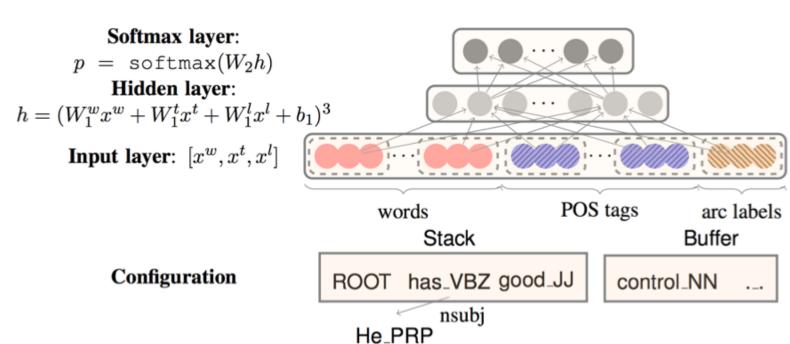
- Full stack LSTM parsing (S-LSTM)
- Without POS tags (-POS)
- Without pre-trained language model embeddings (-pre-training)
- Instead of composed representations only head words used (-composition)
- Full parsing model with RNN instead of LSTM (S-RNN)

Compared the model with Chen and Manning (2014)

Chen and Manning (EMNLP, 2014)

(A Fast and Accurate Dependency Parser using Neural Networks)

- Feed-forward Neural network architecture with 1 hidden layer (h)
- Cube activation function
- Features used s₁, s₂, s₃, b₁, b₂, b₃
 - $lc_1(s_i)$, $lc_2(s_i)$, $rc_1(s_i)$, $rc_2(s_i)$, i=1,2 [lc leftchild, rc rightchild]
 - $lc_1(lc_1(s_i))$, $rc_1(rc_1(s_i))$, i=1,2



Results

 Report Unlabeled attachment scores (UAS) and Labeled attachment scores (LAS)

	Develo	Development Test			Dev. set		Test set		
	UAS	LAS	UAS	LAS		UAS	LAS	UAS	LAS
S-LSTM	93.2	90.9	93.1	90.9	S-LSTM	87.2	85.9	87.2	85.7
-POS	93.1	90.4	92.7	90.3	-composition	85.8	84.0	85.3	83.6
-pretraining	92.7	90.4	92.4	90.0	-pretraining	86.3	84.7	85.7	84.1
-composition	92.7	89.9	92.2	89.6	-POS	82.8	79.8	82.2	79.1
S-RNN	92.8	90.4	92.3	90.1	S-RNN	86.3	84.7	86.1	84.6
C&M (2014)	92.2	89.7	91.8	89.6	C&M (2014)	84.0	82.4	83.9	82.4

Table 1: English parsing results (SD)

Table 2: Chinese parsing results (CTB5)

- POS, Composition different effect in English and Chinese
- RNN and Chen&Manning lack Stack LSTM

Conclusion

- All configurations except –POS for Chinese, better than Chen and Manning
- Composition function seems to be the most important factor as the accuracy drop is largest in -composition
- Pre-training and parts of speech tagging follow as the next important things
- In English, POS do not play much role
- But in Chinese POS play a significant role
- LSTM's outperform RNN's but they are still better than Chen and manning
- Stack memory offers intriguing possibilities
- Achieve parsing and training in linear time (length of the input sentence)
- Beam search had minimal impact on scores

References

- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith. Transition-Based Dependency Parsing with Stack Long Short-Term Memory. In ACL. 2015
- Danqi Chen and Christopher D. Manning. 2014. A fast and accurate dependency parser using neural networks. In Proc. EMNLP.
- Bernd Bohnet and Joakim Nivre. 2012. A transition based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Proc. EMNLP.
- Jurafsky and Martin. Dependency Parsing. Speech and Language Processing, Chapter 14, Stanford
- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith. Greedy Transition-Based Dependency Parsing with Stack LSTMs. In Proc. ACL 2017
- Jinho D. Choi and Andrew McCallum. 2013. Transition-based dependency parsing with selectional branching. In Proc. ACL.
- Julia Hockenmaier. Dependency Parsing Lecture 8, Natural Language Processing CS447, UIUC
- Richard Socher. Natural Language Processing with Deep Learning. CS224N, Stanford
- Graham Neubig. Neural Networks for NLP Transition-based Parsing with Neural Nets. CS11-747,
 CMU