One Model To Learn Them All

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, Jakob Uszkoreit

CS546 Course Presentation——
Shruti Bhargava (shrutib2)
Advised by: Prof. Julia Hockenmaier

Outline

- **➤** Motivation
- > Understanding the task
- > Model Architecture
- Datasets
- > Training details
- > Performance Evaluation
- > Key contributions/ Limitations

Motivation

- 1. Process the question and think of an answer
- 2. Convey the answer to me

What is your favourite fruit?

Write?

Draw?

Speak?

Apple

/'apəl/

Text Modality Image Modality

Audio Modality

Motivation

- Humans reason about concepts independent of input/output modality
- ➤ Humans are able to reuse conceptual knowledge in different tasks

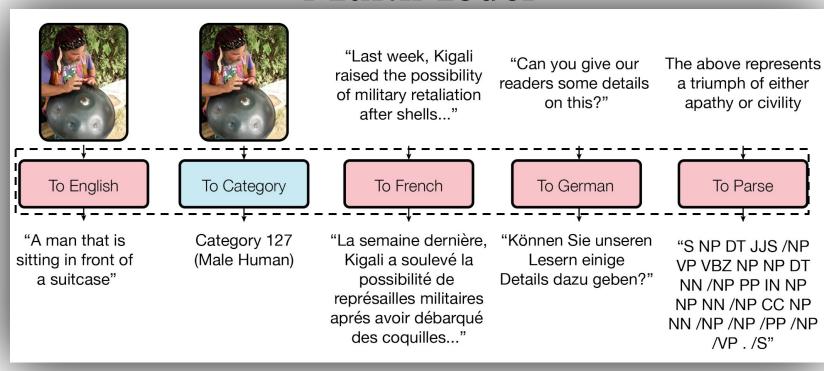
Understanding the task

- > Multimodal Learning: single task, different domains
 - Eg. Visual Question Answering
 - Input: Images + Text, Output: Text
- Multitask Learning: multiple tasks, mostly same domain
 Eg. Translation + Parsing
- \rightarrow This work = Multimodal + Multitask

Question addressed:

Can one unified model solve tasks across multiple domains?

Multiple Tasks/Domains, One Model - Multiple Tasks/Domains, One Model

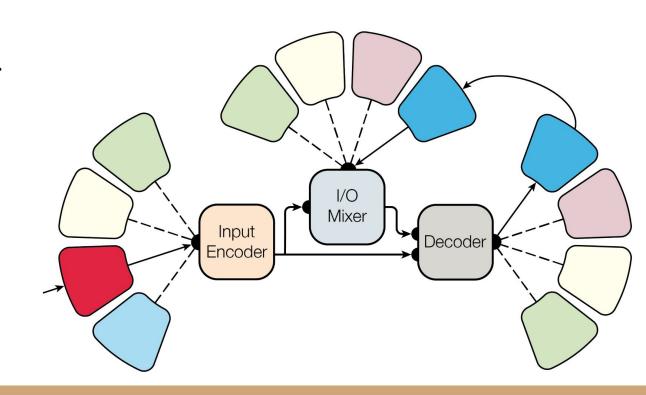


Outline

- > Motivation
- > Understanding the task
- **➤** Model Architecture
- > Datasets
- > Training details
- > Performance Evaluation
- > Key contributions / Limitations

MultiModel Architecture

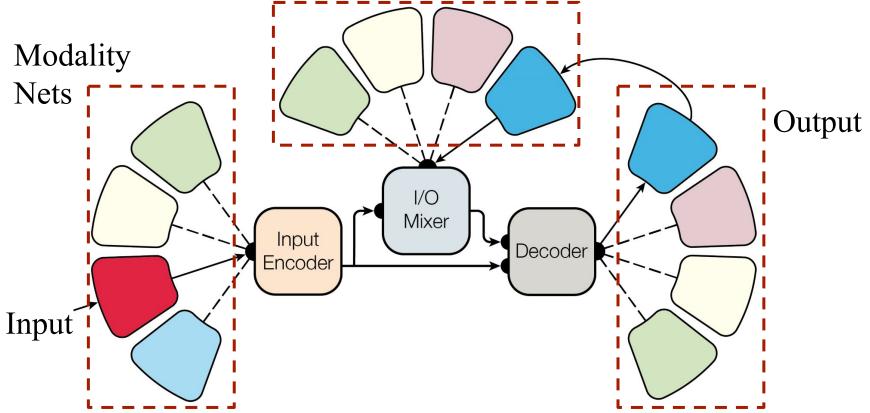
- > Modality Nets
- > Encoder-Decoder
- > I/O Mixer



MultiModel: Input → Output

- ➤ Modality Net: domain-specific input → unified representation
- \triangleright **Encoder:** unified input representations \rightarrow encoded input
- > I/O Mixer: encoded input = previous outputs
- > **Decoder:** decodes (input + mixture) → output representation
- ➤ **Modality Net:** unified representation → domain-specific output

MultiModel: Input → Output

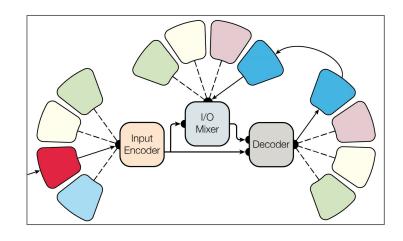


MultiModel: Modality Nets

Domain-specific Representation ← Unified Representation

4 modality nets - One net per domain

- > Language
- Image
- ➤ Audio
- > Categorical only output



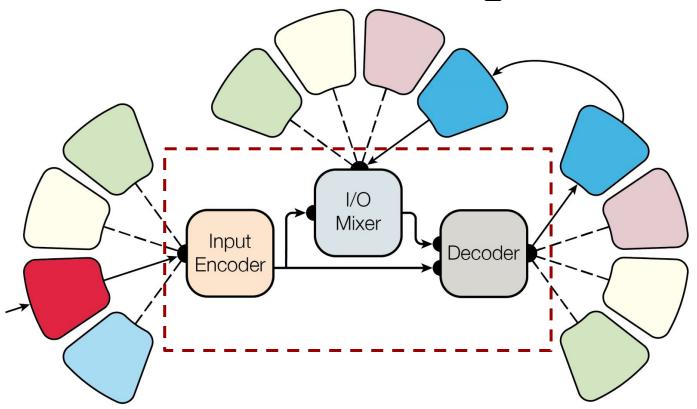
Modality Nets: Language Modality

Input tokenized using 8k subword units

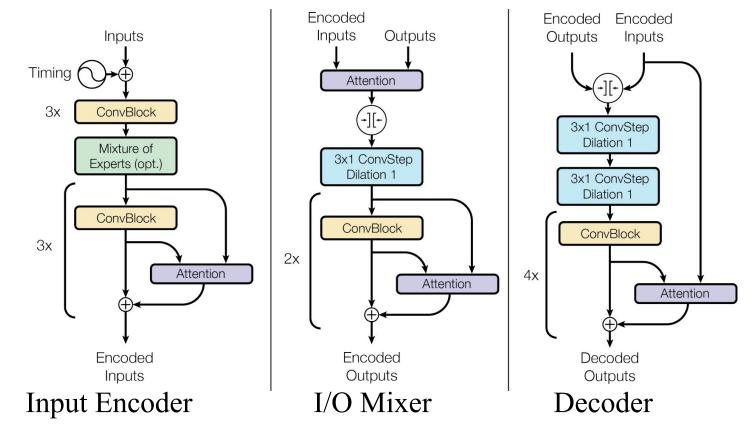
- > Acts as an open vocabulary example [ad|mi|ral]
- > Accounts for rare words
- Input Net $LanguageModality_{in}(x, W_E) = W_E \cdot x$
- Output Net $LanguageModality_{out}(x, W_S) = Softmax(W_S \cdot x)$

See Details for Vocabulary construction <u>here</u>.

MultiModel: Domain Agnostic Body



MultiModel: Domain Agnostic Body



MultiModel: Building Blocks

Combines 3 state-of-the-art blocks:

- Convolutional: SOTA for images
- ➤ Attention: SOTA in language understanding
- ➤ Mixture-of-Experts (MoE): studied only for language

Building Block: ConvBlock

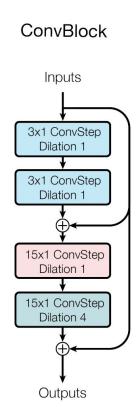
$$ConvStep_{d,s,f}(W,x) = LN(SepConv_{d,s,f}(W,ReLU(x))).$$

Depthwise Separable Convolutions

- convolution on each feature channel
- > pointwise convolution for desired depth.

Layer Normalisation

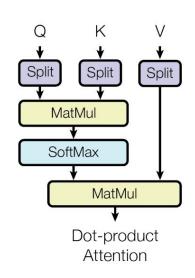
> Statistics computed for a layer (per sample)

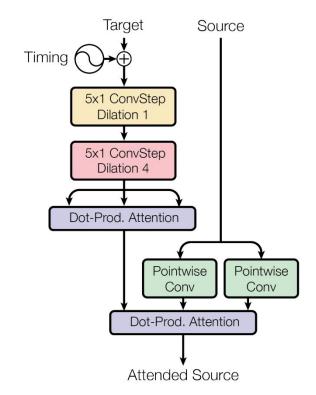


See Details on <u>Layer normalisation</u> and <u>Separable Convolutions</u>.

Building Block: Attention

Dot-Prod. Attention





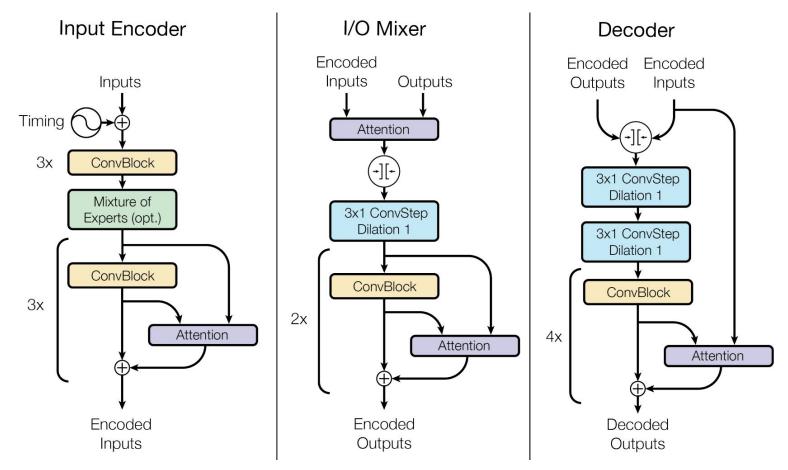
See Details on the attention block <u>here</u>.

Building Block: Mixture of Experts

Sparsely-gated mixture-of-experts layer

- > Experts: feed-forward neural networks
- ➤ Selection: trainable gating network
- Known booster for language tasks

See Details on the MoE block here.



Structurally similar to Bytenet, read <u>here</u>

Outline

- > Motivation
- > Understanding the task
- > Model Architecture
- > Datasets
- > Training details
- > Performance Evaluation
- > Key contributions / Limitations

Datasets/Tasks

- > WSJ speech
- > WSJ parsing
- > ImageNet
- > COCO image-captioning
- > WMT English-German
- > WMT German-English

- > WMT English-French
- > WMT German-French

Outline

- > Motivation
- > Understanding the task
- > Model Architecture
- Datasets
- > Training details
- > Performance Evaluation
- > Key contributions / Limitations

Training Details

- Token for task eg. *To-English* or *To-Parse-Tree*, to decoder. Embedding vector for each token learned.
- > Mixture of experts block:
 - 240 experts for joint training, 60 for single training
 - Gating selects 4
- > Adam optimizer with gradient clipping
- > Experiments on all tasks use same hyperparameter values

Outline

- > Motivation
- > Understanding the task
- > Model Architecture
- > Datasets Used
- > Training details
- > Experiments/ Results
- > Key contributions / Limitations

Experiments

- ➤ MultiModel vs state-of-the-art?
- ➤ Does simultaneous training on 8 problems help?
- ➤ Blocks specialising in one domain help/harm other?

Results

1. MultiModel vs state-of-the-art?

Problem	MultiModel (joint 8-problem)	State of the art
ImageNet (top-5 accuracy)	86%	95%
WMT EN \rightarrow DE (BLEU)	21.2	26.0
WMT EN \rightarrow FR (BLEU)	30.5	40.5

Results

2. Does simultaneous training help?

Problem	Joint 8-pro	blem	Single pro	Single problem		
Piobleiii	log(perpexity)	accuracy	log(perplexity)	accuracy		
ImageNet	1.7	66%	1.6	67%		
WMT EN→DE	1.4	72%	1.4	71%		
WSJ speech	4.4	41%	5.7	23%		
Parsing	0.15	98%	0.2	97%		

Problem -	Alone			W	W/ ImageNet			W/8 Problems		
	log(ppl)	acc.	full	log(ppl)	acc.	full	log(ppl)	acc.	full	
Parsing	0.20	97.1%	11.7%	0.16	97.5%	12.7%	0.15	97.9%	14.5%	

Results

3. Blocks specialising in one domain help/harm other?

MoE, Attention - language experts

All Blocks	Without	Without MoE		Without Attention	
pexity) accuracy	log(perplexity)	accuracy	log(perplexity)	accuracy	
	1.6 1.3	66% 74%	1.6 1.4	67% 72%	
	rpexity) accuracy	rpexity) accuracy log(perplexity) .6 67% 1.6	rpexity) accuracy log(perplexity) accuracy .6 67% 1.6 66%	rpexity) accuracy log(perplexity) accuracy log(perplexity) .6 67% 1.6 66% 1.6	

Outline

- > Motivation
- > Understanding the task
- > Model Architecture
- > Datasets Used
- > Training details
- > Performance Evaluation
- > Key contributions / Limitations

Key Contributions

- > First model performing large-scale tasks on multiple domains.
- > Sets blueprint for potential future AI (broadly applicable)
- Designs multi-modal architecture with blocks from diverse modalities
- Demonstrates transfer learning across domains

Limitations

- Comparison with SOTA last few percentages, when models approach 100% is the most crucial part
- > Incomplete Experimentation Hyperparameters not tuned
- ➤ Incomplete Results Reported Only for some tasks
- Could be less robust to adversarial samples attack

References

- https://venturebeat.com/2017/06/19/google-advances-ai-with-one-model-to-learn-them-all/
- https://aidangomez.ca/multitask.pdf
- ➤ https://blog.acolyer.org/2018/01/12/one-model-to-learn-them-all/
- Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.
- > Chollet, François. "Xception: Deep learning with depthwise separable convolutions." arXiv preprint (2016).
- > Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (2017).

Thank You!

Modality Nets

Image Modality Net - analogous to Xception entry flow, uses residual convolution blocks

Categorical Modality Net - analogous to Xception exit flow, Global average pooling after conv layers

Audio Modality Net - similar to Image Modality Net