Identifying beneficial task relations for multi-task learning in deep neural networks

Author: Joachim Bingel, Anders Sogaard Presenter: Litian Ma

Background

- Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits
- It has potential to efficiently regularize models and to reduce the need for labeled data.
- The main driver has been empirical results pushing state of the art in various tasks.
- In NLP, multi-task learning typically involves very heterogeneous tasks.

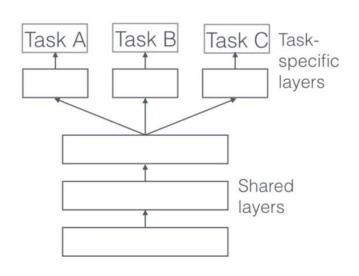
However ...

- While great improvements have been reported, results are also often mixed.
- Theoretical guarantees no longer apply to the overall performance.
- Little is known about the conditions under which MTL leads to gains in NLP.
- Want to answer the question:

What task relations guarantee gains or make gains likely in NLP?

Multi-task Learning -- Hard Parameter Sharing

- Extremely popular approach to multi-task learning.
- Basic idea:
 - Different tasks share some of the hidden layers, such that these learn a joint representation for multiple tasks.
 - Is considered as regularizing target model by doing model interpolation with auxiliary models in a dynamic fashion.



MTL Setup

- Multi-task learning architecture: Sequence labeling with recurrent neural networks
- With a **bi-directional LSTM** as a single hidden layer of 100 dimensions that is shared across all tasks.
- Input of the hidden layer: 100-dimensional word vectors pre-trained by GloVe embeddings.
- Generates predictions from the bi-LSTM through task-specific dense projections.
- The model is **symmetric** in the sense that it does not distinguish between main and auxiliary tasks.

MTL Training Step

- A **training step** consists of:
 - Uniformly drawing a training task
 - Sampling a random batch of 32 examples from the task's training data.
- Each training step works on exactly one task, and optimizes the task-specific projection and the shared parameters using Adadelta.
- Hyper-parameters are fixed across single-task and multi-task settings.
 - Making our results only applicable to the scenario where one wants to know whether MTL works in the current parameter setting.

Ten NLP Tasks

- CCG Tagging (CCG)
- Chunking (CHU)
- Sentence Compression (COM)
- Semantic frames (FNT)
- POS tagging (POS)

- Hyperlink Prediction (HYP)
- Keyphrase Detection (KEY)
- MWE Detection (MWE)
- Super-sense tagging (SEM)
- Super-sense Tagging (STR)

Experiment Setting

- Train single-task bi-LSTMs for each of the ten tasks.
- Trained 25000 batches.

- One multi-task model for each of the pairs between the tasks, yielding 90 directed pairs of the form. $\langle \mathcal{T}_{main}, \{\mathcal{T}_{main}, \mathcal{T}_{aux}\} \rangle$
- Trained 50000 batches to account for the uniform drawing of the two tasks at every iteration.

Relative Gains and Losses

- 40 out of 90 cases show improvements
- Chunking and high-level semantic tagging generally contribute most to other tasks, while hyperlinks do not significantly improve any other task.
- Multiword and hyperlink detection seem to profit most from several auxiliary tasks.
- Symbiotic relationships are formed
 - e.g., by POS and CCG-tagging, or MWE and compression.

Figure 1: Relative gains and losses (in percent) over main task micro-averaged F_1 when incorporating auxiliary tasks (columns) compared to single-task models for the main tasks (rows).

Predict gains from MTL

- Dataset-inherent features + learning curve feature.
- Learning curve feature:
 - Gradients of the loss curve at 10, 20, 30, 50, and
 70 percent of 25000 batches.
 - Steepness of the Fitted log-curve (parameter a and c): $L(i) = a \cdot \ln(c \cdot i + d) + b$.
- Each of 90 data points is described by 42 features.
 - 14 features each task.
 - o main, auxiliary, and main/auxiliary ratios.
- **Binarize** the experiment results as labels.
- Use logistic regression to predict benefits.

Data features					
Size	Number of training sentences.				
# Labels	The number of labels.				
Tokens/types	Type/token ratio in training data.				
OOV rate	Percentage of training words not in				
	GloVe vectors.				
Label Entropy	Entropy of the label distribution.				
Frobenius norm	$ X _F = [\sum_{i,j} X_{i,j}^2]^{1/2}$, where				
	$X_{i,j}$ is the frequency of term j in				
	sentence i .				
JSD	Jensen-Shannon Divergence be-				
	tween train and test bags-of-words.				
Le	arning curve features				
Curve gradients	See text.				

Table 2: Task features

See text.

Fitted log-curve

Experiment Results

- A strong signal in meta-learning features.
- The features derived from the single task inductions are the most important.
 - Only using data-inherent features, F1 score is worse than the majority baseline.

	Acc.	F_1 (gain)
Majority baseline	0.555	0.615
All features	0.749	0.669
Best, data features only	0.665	0.542
Best combination	0.785	0.713

Table 3: Mean performance across 100 runs of 5-fold CV logistic regression.

Experiment Analysis

Feature	Task	Coefficient	Curve grad. (50%)	Aux	-0.099
Curve grad. (30%)	Main	-1.566	Curve grad. (50%)	Main/Aux	0.076
Curve grad. (20%)	Main	-1.164	OOV rate	Aux	0.061
Curve param. c	Main	1.007	Curve grad. (30%)	Main/Aux	-0.060
# Labels	Main	0.828	Size	Main	-0.032
Label Entropy	Aux	0.798	Curve param. a	Main	0.027
Curve grad. (30%)	Aux	0.791	Curve param. a	Mani	0.027
Curve grad. (50%)	Main	0.781	Curve grad. (10%)	Main/Aux	0.023
OOV rate	Main	0.697	JSD	Main	0.019
OOV rate	Main/Aux	0.678	JSD	Main/Aux	-0.015
Curve grad. (20%)	Aux	0.575	Curve grad. (10%)	Main	$6 \cdot 10^{-2}$
Fr. norm	Main	-0.516	Size	Main/Aux	$-6 \cdot 10^{-3}$
# Labels	Main/Aux	0.504	Curve grad. (70%)	Main/Aux	$-4 \cdot 10^{-4}$

Experiment Analysis

- Features describing the learning curves for the main and auxiliary tasks are the best predictors of MTL gains.
- The **ratios** of the learning curve features seem **less** predictive, and the gradients around **20-30%** seem most important.
- If the main tasks have flattening learning curves (small negative gradients) in the 20-30% percentile, but the auxiliary task curves are still relatively steep, MTL is more likely to work.
 - Can help tasks that get stuck early in local minima.

Key Findings

- MTL gains are predictable from dataset characteristics and features extracted from the single-task Inductions
- The most predictive features relate to the single-task learning curves, suggesting that MTL, when successful, often helps target tasks out of local minima.
- Label entropy in the auxiliary task was also a good predictor; but there was little evidence that dataset balance is a reliable predictor, unlike what previous work has suggested.

Thanks!