A Convolutional Neural Network for Modelling Sentences

Nal Kalchbrenner Edward Grefenstette
Phil Blunsom

Department of Computer Science, Oxford University

Overview of Model

Represent sentences by extracting more abstract features

Input: sequence of word embeddings

Output: classification probabilities

Each layer involves

- 1. Convolution
- 2. Dynamic k-Max Pooling
- 3. Apply a non-linearity (tanh)

One-Dimensional Convolution

- 1. The filter $\mathbf{m} \in \mathbb{R}^m$
- 2. The sequence $\mathbf{s} \in \mathbb{R}^s$

Returns sequence $\mathbf{c} \in \mathbb{R}^{s-m+1}$

$$\mathbf{c}_{j} = \mathbf{m}^{T} \mathbf{s}_{j-m+1:j}, j = 1, ..., s - m + 1$$

Takes a dot product between length m subsequences of ${\bf s}$ and the filter ${\bf m}$

Wide convolution pads ${f s}$ with m-1 zeros on the left.

Convolution with Word Embeddings

Assume word embeddings of dimension d

Filter **m** will be in $\mathbb{R}^{d \times m}$

Sequence **s** will be in $\mathbb{R}^{d \times s}$

Each row of **m** will be convolved with the corresponding row of **s**

k-Max Pooling (LeCun et al.)

Given k and sequence $\mathbf{p} \in \mathbb{R}^p$, $p \ge k$

- 1. Return k largest elements of \mathbf{p}
- 2. Keep elements in their original order

Denoted $\mathbf{p}_{max}^k \in \mathbb{R}^k$

Dynamic k-Max Pooling

"Smooth extraction of higher-order features"

$$k_L = \max\left(k_{top}, \left\lceil \frac{L-I}{L}s \right\rceil\right)$$

- k_{top} is fixed parameter
- ▶ / is current layer
- L is total number of layers
- s is sentence length

Folding

Elementwise sum of pairs rows of a matrix

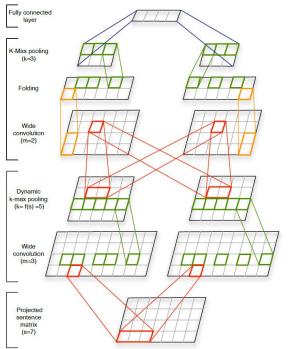
$$f: \mathbb{R}^{d \times n} \to \mathbb{R}^{d/2 \times n}$$

$$f(M) = N$$
 where

$$N[i,j] = M[2i,j] + M[2i+1,j],$$

$$i = 0, ..., d/2 - 1, j = 0, ...n - 1$$

- Introduces dependencies between different feature rows
- No added parameters



Size of Network

Model	First Layer		Second Layer		
*	Width	Filters	Width	Filters	<i>k</i> -top
Binary	7	6	5	14	4
Multi-class	10	6	7	12	5

Training

Top layer is soft-max nonlinearity to predict probability distribution

 L_2 regularization of parameters in objective function

Parameters are word embeddings, filter weights, & fully connected layers

Trained using Adagrad with mini-batches

"Processes multiple millions of sentences per hour on one GPU"

Experiments

- 1. Predicting sentiment of movie reviews binary (Socher et al. 2013)
- 2. Predicting sentiment of movie reviews multi-class (Socher et al. 2013)
- 3. Categorization of questions (Li and Roth 2002)
- 4. Sentiment of Tweets, labels based on emoticons(Go et al. 2009)

Feature embedding dimensionality chosen based on size of dataset

Movies accuracy

Classifier	Fine-grained (%)	Binary (%)
NB	41.0	81.8
BINB	41.9	83.1
SVM	40.7	79.4
RECNTN	45.7	85.4
MAX-TDNN	37.4	77.1
NBoW	42.4	80.5
DCNN	48.5	86.8

First layer feature-detectors

			POSIT	IVE		
lovely	comedic	moments	and	several	fine	performances
good	script	,	good	dialogue	,	funny
sustains	throughout	is	daring	,	inventive	and
well	written	,	nicely	acted	and	beautifully
remarkably	solid	and	subtly	satirical	tour	de
			NEGAT	IVE		
,	nonexistent	plot	and	pretentious	visual	style
it	fails	the	most	basic	test	as
so	stupid	,	so	ill	conceived	,
,	too	dull	and	pretentious	to	be
hood	rats	butt	their	ugly	heads	in

			,	NOT'		
n't	have	any	huge	laughs	in	its
no	movement	,	no	,	not	much
n't	stop	me	from	enjoying	much	of
not	that	kung	pow	is	n't	funny
not	a	moment	that	is	not	false
				T00'		
,	too	dull	and	pretentious	to	be
either	too	serious	or	too	lighthearted	,
too	slow	,	too	long	and	too
feels	too	formulaic	and	too	familiar	to
is	too	predictable	and	too	self	conscious

TREC 6-way classification accuracy

Classifier	Features	Acc. (%)
Hier	unigram, POS, head chunks NE, semantic relations	91.0
MAXENT	unigram, bigram, trigram POS, chunks, NE, supertags CCG parser, WordNet	92.6
MAXENT	unigram, bigram, trigram POS, wh-word, head word word shape, parser hypernyms, WordNet	93.6
SVM	unigram, POS, wh-word head word, parser hypernyms, WordNet 60 hand-coded rules	95.0
Max-TDNN	unsupervised vectors	84.4
NBoW	unsupervised vectors	88.2
DCNN	unsupervised vectors	93.0

Twitter sentiment

Classifier	Accuracy (%)
SVM	81.6
BINB	82.7
MAXENT	83.0
MAX-TDNN	78.8
NBoW	80.9
DCNN	87.4

Conclusion

Dynamic Convolutional Neural Networks

- Convolutions apply function to n-grams
- Dynamic k-max pooling extracts most active feature, and chooses k based on layer and sentence length
- Composing these two operations can be seen as feature detection
- Outperformed/stayed competitive with other neural approaches, baseline models, and state-of-the-art approaches without needing handcrafted features