Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach

<u>Liyuan Liu</u>*, Xiang Ren*, Qi Zhu*, Huan Gui*, Shi Zhi*, Heng Ji∘ and Jiawei Han*

*University of Illinois at Urbana-Champaign, Urbana, IL, USA Computer Science Department, Rensselaer Polytechnic Institute, USA

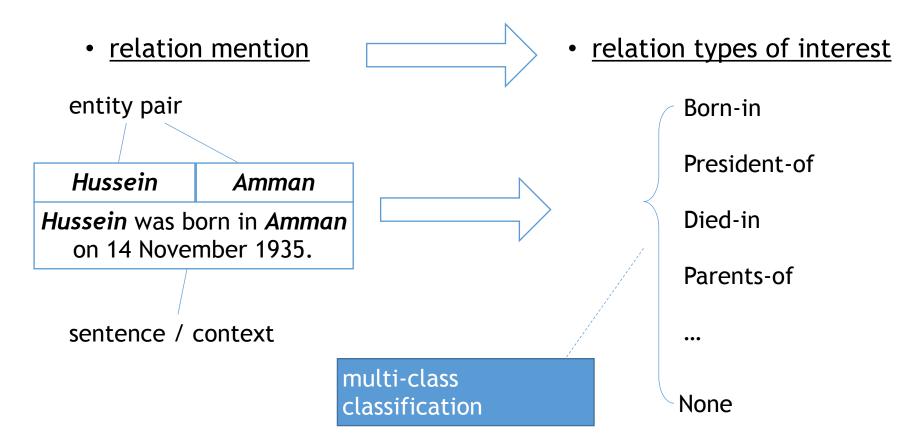
Presented by: Mao-Chuang Yeh

The structure

- The Goal
- Previous works
- Heterogeneous supervision
 - Supervision conflicts
 - True Label Discovery
- REHESSION Framework
 - Relation Mention Representation
 - True Label Discovery component
 - Relation Extraction component
- Experiment
- Contribution

Relation Extraction

• Goal: find the entity relation from unstructured text



Previous Work

Supervised Learning:

Multi-class classification

Limited by human annotation

Limited, need domain experts

costly and timeconsuming

•••••

Previous Work

- Bootstrap learning:
 - Start with a set of seed patterns / annotations, iteratively generate more
 - Suffers from semantic shift

REHESSION

Goal: conduct relation extractor learning annotations from Heterogeneous supervision at context level.

Heterogeneous supervision

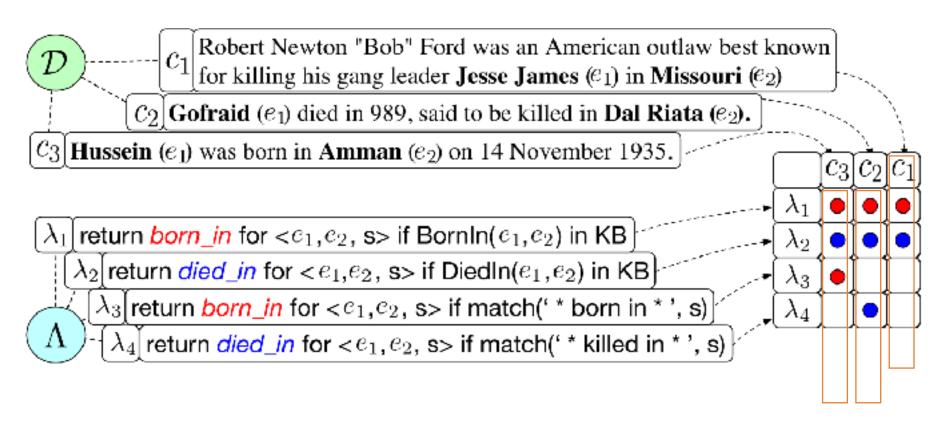
(Using annotations from) heterogeneous information sources

- 1. knowledge base
- 2. domain specific pattern (domain heuristics).

```
\begin{array}{c} \lambda_1 \text{ return } \textit{born\_in} \text{ for } < e_1, e_2, \text{ s> if BornIn}(e_1, e_2) \text{ in KB} \\ \lambda_2 \text{ return } \textit{died\_in} \text{ for } < e_1, e_2, \text{ s> if DiedIn}(e_1, e_2) \text{ in KB} \\ \lambda_3 \text{ return } \textit{born\_in} \text{ for } < e_1, e_2, \text{ s> if match}(`* \text{born in } * \text{', s)} \\ \lambda_4 \text{ return } \textit{died\_in} \text{ for } < e_1, e_2, \text{ s> if match}(`* \text{killed in } * \text{', s)} \\ \end{array} \\ \begin{array}{c} \lambda_4 \text{ return } \textit{died\_in} \text{ for } < e_1, e_2, \text{ s> if match}(`* \text{killed in } * \text{', s)} \\ \end{array}
```

Supervision conflicts

context and labeling function:



Supervision conflicts

Source consistency assumption: a source is likely to provide true information with the same probability for all instances. (Ratner et al., 2016)

However:

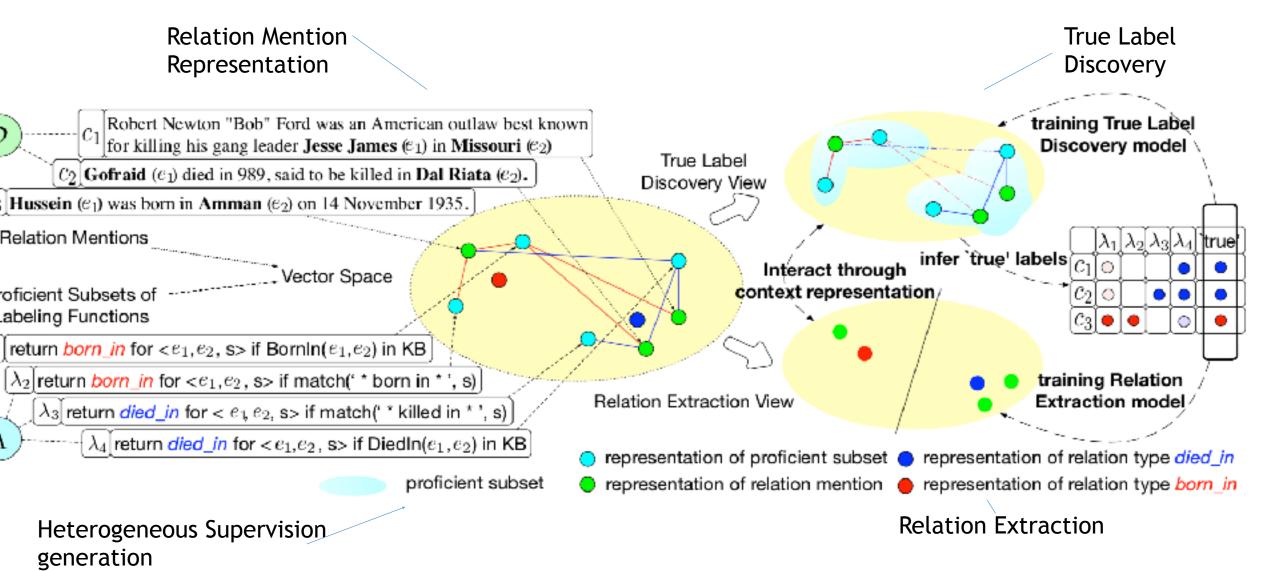
labeling functions mistakes by certain "error routine"; Different from human annotator.

Proficient subset: some subset is reliable than others for a labeling function (Varma et al., 2016)

True Label discovery

- 1. Identify and trust labeling function on proficient subsets
- 2. Context awareness (at sentence level): use context information to improve accuracy

A Representation Learning Approach



Problem Definition

Hussein Amman
Hussein was born in Amman
on 14 November 1935.

sentence / context

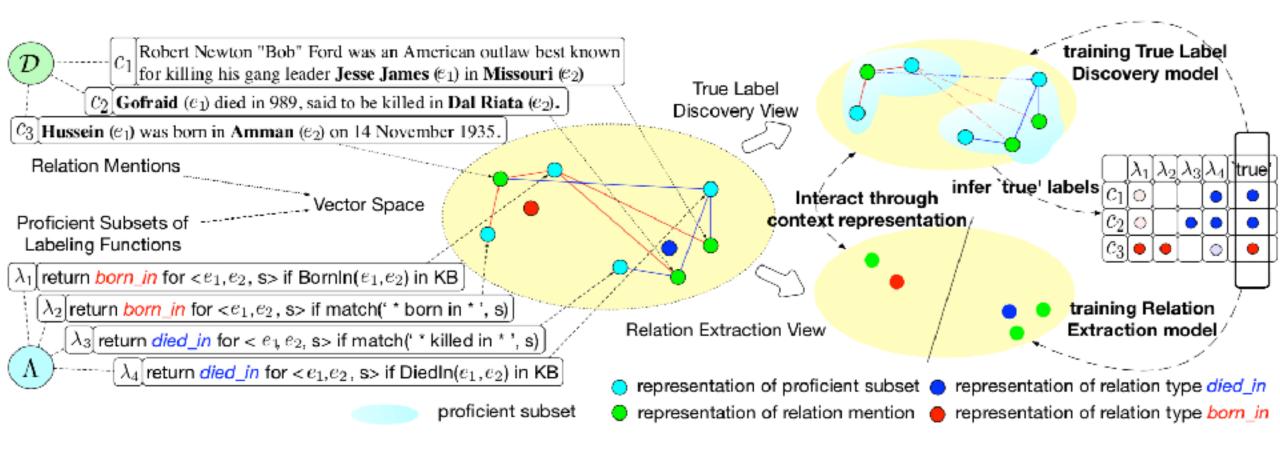
For POS-tagged corpus D, we refer its relation mentions as

$$\mathcal{C} = \{c_i = (e_{i,1}, e_{i,2}, d), \forall d \in \mathcal{D}\}$$

- Goal: annotate entity mentions with relation types of interest $\mathcal{R}=\{r_1,\ldots,r_K\}$ or None
- Labeling functions: $\Lambda = \{\lambda_1, \ldots, \lambda_M\}$
- Annotation:

$$\mathcal{O} = \{o_{c,i} | \lambda_i \text{ generate annotation } o_{c,i} \text{ for } c \in \mathcal{C}\}$$

REHESSION Framework (except Extraction and Representation of Text Features)



Notations

$\overline{\mathbf{f}_c}$	c 's text features set, where $c \in \mathcal{C}$
\mathbf{v}_i	text feature embedding for $f_i \in \mathcal{F}$
\mathbf{z}_c	relation mention embedding for $c \in \mathcal{C}$
\mathbf{l}_i	embedding for λ_i 's proficient subset, $\lambda_i \in \Lambda$
$o_{c,i}$	annotation for c , generated by labeling function λ_i
$egin{array}{c} o_{c,i}^* \ o_{c}^* \end{array}$	underlying true label for c
$ ho_{c,i}$	identify whether $o_{c,i}$ is correct
\mathcal{S}_i	the proficient subset of labeling function λ_i
$s_{c,i}$	identify whether c belongs to λ_i 's proficient subset
\mathbf{t}_i	relation type embedding for $r_i \in \mathcal{R}$
	relation type embedding for the

Table 1: Notation Table.

REHESSION Framework

- 1. Text Feature Representation: After being extracted from context, text features are embedded in a low dimension space by Representation learning;
- 2. Relation Mention Representation: Text feature embeddings are utilized to calculate Relation Mention embeddings;
- 3. True Label Discovery: with relation mention embeddings, true labels are inferred by calculating labeling functions' reliabilities in a context-aware manner;
- 4. Modeling Relation Type: Inferred true labels would 'supervise' all components to learn model parameters.

Text Feature Extraction

We adopted texture features, POS-tagging and <u>brown clustering</u> to extract features

C3: *Hussein* was born in *Amman* on 14 November 1935

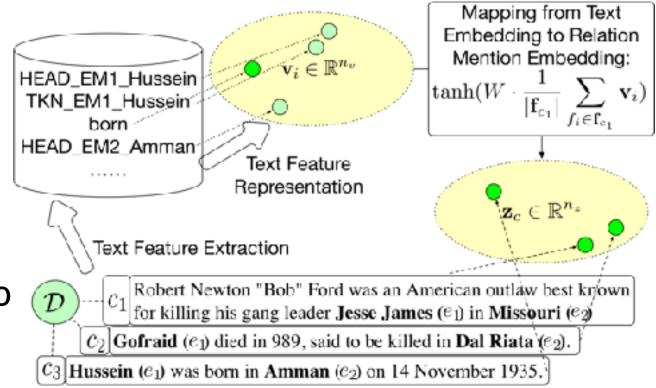
Feature	Description	Example
Entity mention (EM) head	Syntactic head token of each entity mention	"HEAD_EM1_Hussein",
Entity Mention Token	Tokens in each entity mention	"TKN_EM1_Hussein",
Tokens between two EMs	Tokens between two EMs	"was", "born", "in"
Part-of-speech (POS) tag	POS tags of tokens between two EMs	"VBD", "VBN", "IN"
Collocations	Bigrams in left/right 3-word window of each EM	"Hussein was", "in Amman"
Entity mention order	Whether EM 1 is before EM 2	"EM1_BEFORE_EM2"
Entity mention distance	Number of tokens between the two EMs	"EM_DISTANCE_3"
Body entity mentions numbers	Number of EMs between the two EMs	"EM_NUMBER_O"
Entity mention context	Unigrams before and after each EM	"EM_AFTER_was",
Brown cluster (learned on \mathcal{D})	Brown cluster ID for each token	"BROWN_010011001",

Relation Mention Representation

Text Feature Extraction

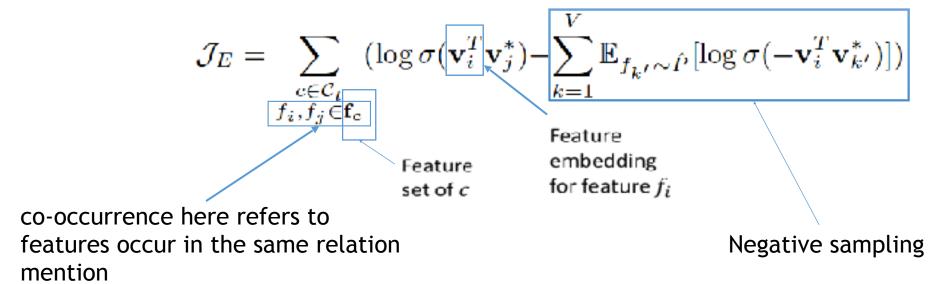
Text Feature Representation

Relation Mention Representation



Text Feature Representation

- Leverage features' co-occurrence information to learn the representation , and help the model generalize better.
- Loss function of this part:



Relation Mention Representation

 Here, we adopted the bag-of-features average, then do linear mapping and nonlinear tanh on it to different semantic space.

$$\mathbf{z}_c = g(\mathbf{f}_c) = \tanh(W \cdot \frac{1}{|\mathbf{f}_c|} \sum_{f_i \in \mathbf{f}_c} \mathbf{v}_i)$$

Conflicts among Heterogeneous Supervision

- Truth Discovery:
 - Some sources (labeling functions) would be more reliable than others
 - Refer the reliability of different sources and the true label at the same time
 - Context awareness: A source is likely to provide true information with the same probability for instances with similar context.
 - Source Consistency Assumption: a source is likely to provide true information with the same probability for all instances.

Heterogeneous Supervision for Relation Extraction

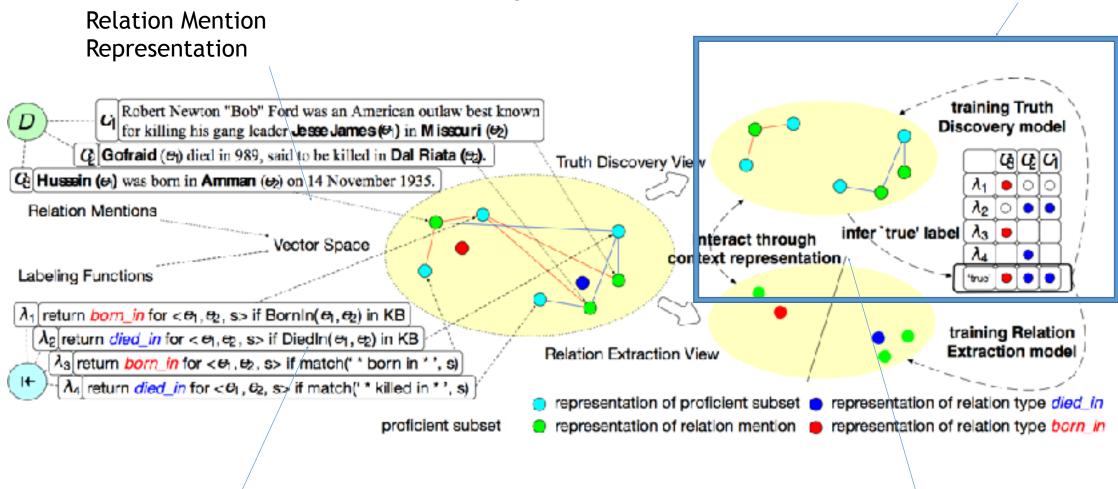
- Relation Extraction:
 - Matching <u>context</u> with proper relation type
- Heterogeneous Supervision:
 - Refer true labels in a *context*-aware manner

context

True label discovery

True Label Discovery

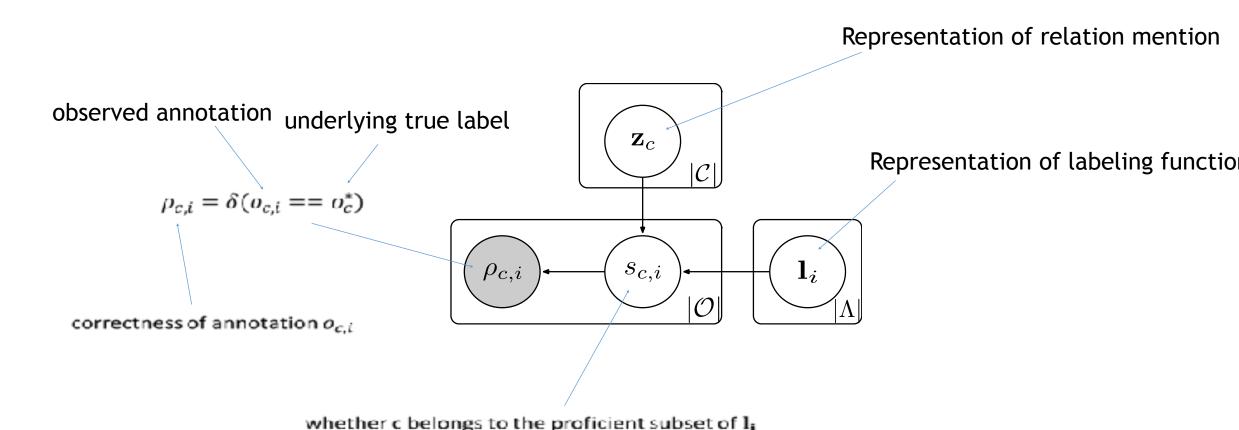
Relation Extraction



Heterogeneous Supervision generation

True label discovery

Describing the correctness of Heterogeneous Supervision



True label discovery

- correctness of annotation: $\rho_{c,i} = \delta(o_{c,i} = o_c^*)$
- prob.in proficient subset: $p(s_{c,i} = 1 | \mathbf{z}_c, \mathbf{l}_i) = p(c \in S_i) = \sigma(\mathbf{z}_c^T \mathbf{l}_i)$
- assume: $p(\rho_{c,i} = 1 | s_{c,i} = 1) = \phi_1 \ p(\rho_{c,i} = 1 | s_{c,i} = 0) = \phi_0$
- Prob of correct annotation:

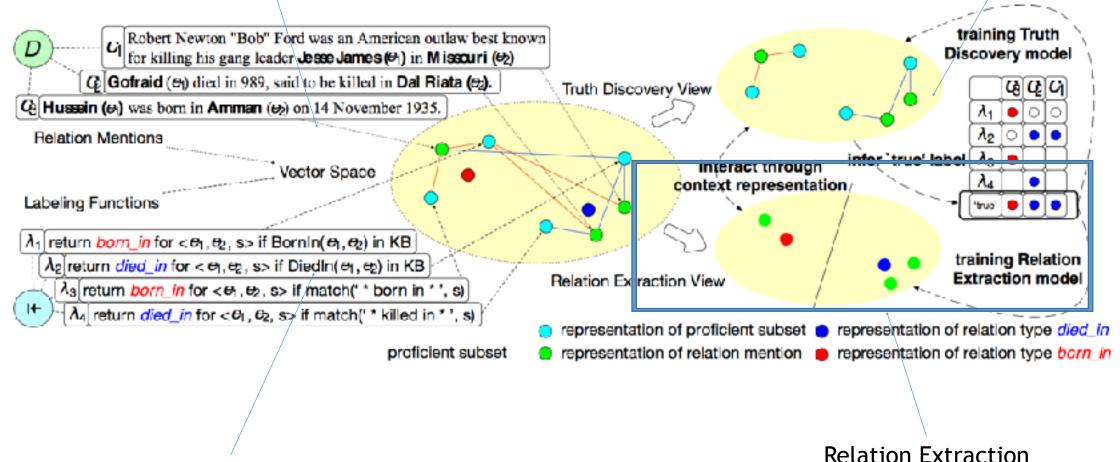
$$p(\rho_{c,i}=1) = p(\rho_{c,i}=1|s_{c,i}=1) * p(s_{c,i}=1) + p(\rho_{c,i}=1|s_{c,i}=0) * p(s_{c,i}=0)$$

• The true label loss: $\mathcal{J}_T = \sum_{o_{c,i} \in \mathcal{O}} \log(\sigma(\mathbf{z}_c^T \mathbf{l}_i) \phi_1^{\delta(o_{c,i} = o_c^*)} (1 - \phi_1)^{\delta(o_{c,i} \neq o_c^*)}$

+
$$(1 - \sigma(\mathbf{z}_c^T \mathbf{l}_i))\phi_0^{\delta(o_{c,i} = o_c^*)} (1 - \phi_0)^{\delta(o_{c,i} \neq o_c^*)}$$

Relation Extraction

Relation Mention Representation



True Label

Discovery

Relation Extraction (context aware)

Adopts soft-max as the relation extractor:

$$p(r_i|\mathbf{z}_c) = \frac{\exp(\mathbf{z}_c^T \mathbf{t}_i)}{\sum_{r_j \in \mathcal{R} \cup \{\text{None}\}} \exp(\mathbf{z}_c^T \mathbf{t}_j)}$$

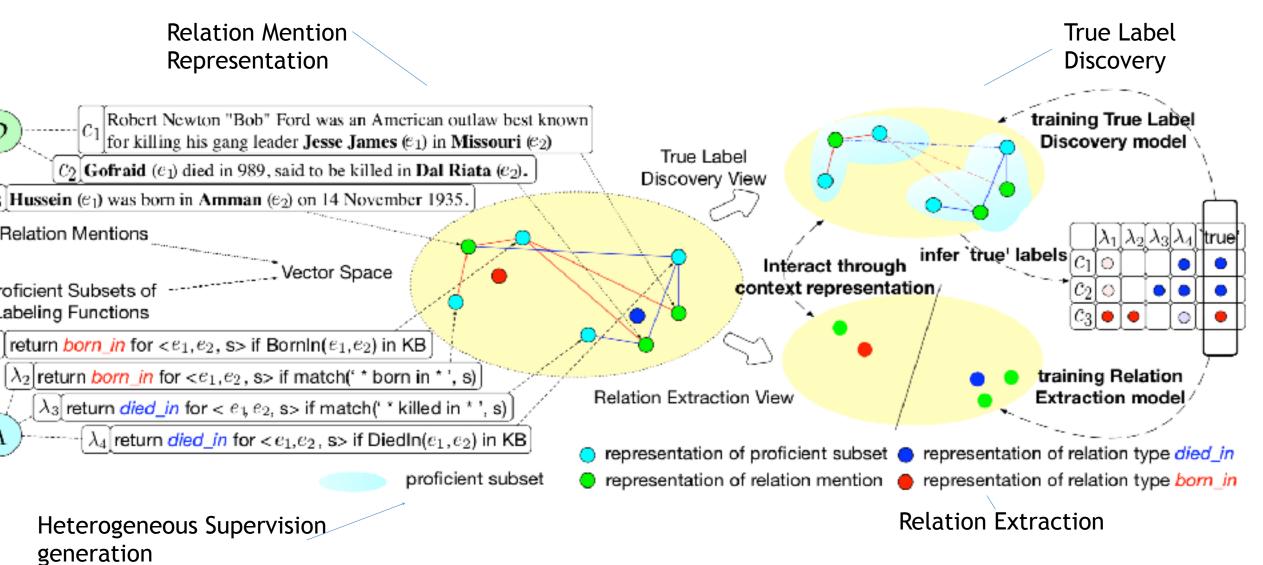
Loss function: KL-Divergence:

$$\mathcal{J}_R = -\sum_{c \in \mathcal{C}_l} KL(p(.|\mathbf{z}_c)||p(.|o_c^*))$$

true label distribution

$$p(r_i|o_c^*) = \begin{cases} 1 & r_i = o_c^* \\ 0 & r_i \neq o_c^* \end{cases}$$

A Representation Learning Approach



Model Learning

Joint optimize three components

$$\min_{W, \mathbf{v}, \mathbf{v}^*, \mathbf{l}, \mathbf{t}, o^*} \mathcal{J} = -\mathcal{J}_R - \lambda_1 \mathcal{J}_E - \lambda_2 \mathcal{J}_T$$

s.t. $\forall c \in \mathcal{C}_l, o_c^* = rgmax \mathcal{J}_T, \mathbf{z}_c = g(\mathbf{f}_c)$

Two Data Sets

NYT (Riedel et al., 2010):

a news corpus sampled from 294k 1989-2007 New York Times news articles. 1.18M sentences, 395 of them are annotated by authors of (Hoffmann et al., 2011) and used as test data

Wiki-KBP:

1.5M sentences sampled from 780k Wikipedia articles as training corpus(Ling and Weld, 2012),

the 2k sentences in test set manually annotated in 2013 KBP slot filling assessment results (Ellis et al., 2012)

Number of relation types

Kind	Wiki-k	KBP	NYT		
Killu	#Types	#LF	#Types	#LF	
Pattern	13	147	16	115	
KB	7	7	25	26	

Table 4: Number of labeling functions and the relation types they can annotated w.r.t. two kinds of information

Number of None type

Datasets	NYT	Wiki-KBP
% of None in Training	0.6717	0.5552
% of None in Test	0.8972	0.8532

Table 3: Proportion of None in Training/Test Set

Dataset	Wiki-KBP	NYT
Total Number of RM	225977	530767
RM annotated as None	100521	356497
RM with conflicts	32008	58198
Conflicts involving None	30559	38756

Table 6: Number of relation mentions (RM), relation mentions annotated as None, relation mentions with conflicting annotations and conflicts involving None

Fynarimants

	Relation Extraction						Relation Classification	
Method	NYT			Wiki-KBP			NYT	Wiki-KBP
	Prec	Rec	F1	Prec	Rec	F1	Accuracy	Accuracy
NL+FIGER	0.2364	0.2914	0.2606	0.2048	0.4489	0.2810	0.6598	0.6226
NL+BFK	0.1520	0.0508	0.0749	0.1504	0.3543	0.2101	0.6905	0.5000
NL+DSL	0.4150	0.5414	0.4690	0.3301	0.5446	0.4067	0.7954	0.6355
NL+MultiR	0.5196	0.2755	0.3594	0.3012	0.5296	0.3804	0.7059	0.6484
NL+FCM	0.4170	0.2890	0.3414	0.2523	0.5258	0.3410	0.7033	0.5419
NL+CoType-RM	0.3967	0.4049	0.3977	0.3701	0.4767	0.4122	0.6485	0.6935
TD+FIGER	0.3664	0.3350	0.3495	0.2650	0.5666	0.3582	0.7059	0.6355
TD+BFK	0.1011	0.0504	0.0670	0.1432	0.1935	0.1646	0.6292	0.5032
TD+DSL	0.3704	0.5025	0.4257	0.2950	0.5757	0.3849	0.7570	0.6452
TD+MultiR	0.5232	0.2736	0.3586	0.3045	0.5277	0.3810	0.6061	0.6613
TD+FCM	0.3394	0.3325	0.3360	0.1964	0.5645	0.2914	0.6803	0.5645
TD+CoType-RM	0.4516	0.3499	0.3923	0.3107	0.5368	0.3879	0.6409	0.6890
REHESSION	0.4122	0.5726	0.4792	0.3677	0.4933	0.4208	0.8381	0.7277

Table 6: Performance comparison of relation extraction and relation classification

Experiments

- Effectiveness of proposed true label discovery component:
 - Ori: with proposed context-aware true label discovery component
 - LD: with Investment (compared true label discovery model)

Dataset & Method		Prec	Rec	F1	Acc
Wiki-KBP	Ori	0.3677	0.4933	0.4208	0.7277
WIKI-KDP	TD	0.3032	0.5279	0.3850	0.7271
NYT	Ori	0.4122	0.5726	0.4792	0.8381
	TD	0.3758	0.4887	0.4239	0.7387

Table 7: Comparison between REHESSION (Ori) and REHESSION-TD (TD) on relation extraction and relation classification

Case Study

Relation Mention	REHESSION	Investment
Ann Demeulemeester (born 1959 ,	born-in	None
Waregem, Belgium) is a		
Raila Odinga was born at, in Maseno,	born-in	None
Kisumu District,		
Ann Demeulemeester (elected 1959 ,	None	None
Waregem, Belgium) is a		
Raila Odinga was examined at, in	None	None
Maseno, Kisumu District,		

Table 8: Example output of true label discovery. The first two relation mentions come from Wiki-KBP, and their annotations are {born-in, None}. The last two are created by replacing key words of the first two. Key words are marked as bold and entity mentions are marked as Italics.

Summary

- Deal with heterogeneous supervisions
- Go beyond the "source consistency assumption" in prior works and leverage context-aware embeddings to induce proficient subsets
- bridges true label discovery and relation extraction with context representation