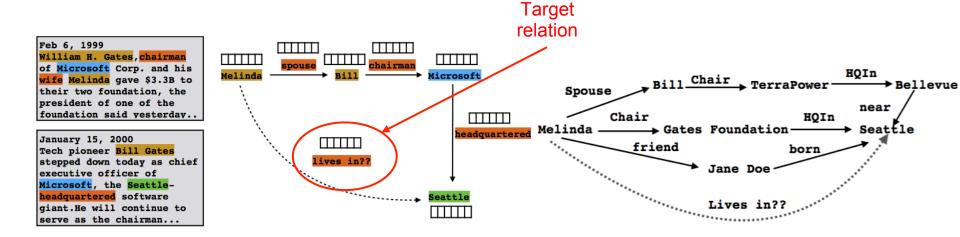
Chains of Reasoning over Entities, Relations, and Text using RNNs

Authors:

Rajarshi Das, Arvind Neelakantan, David Belanger, Andrew McCallum Presented by: Assma Boughoula

Motivation

- Knowledge Base completion through relation inference
- Infer probability of relation "Lives in" between entities "Melinda" and "Seattle"
- Given the other paths between them in the knowledge graph



Previous work: Compositional VSM for KB Completion (2015)

Previously:

- No reasoning about entities in path, just relations
- 2. Reasoning from single path
- 3. Train a separate model for each relation-type

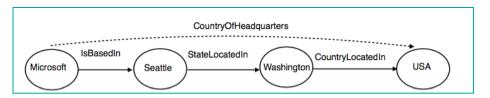
This work:

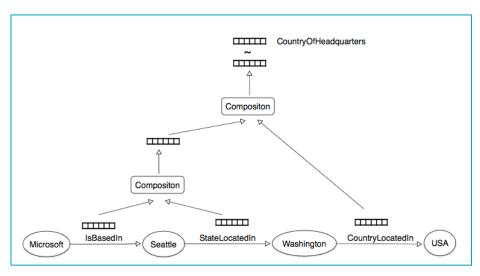
- 1. Jointly reason about relation-types, entities and entity-types
- 2. Multiple paths
- 3. Single RNN that can predict all relation types

Per-relation Model: Path-RNN

 Train a separate RNN for each relation type (CountryOfHeadquarters)

 Only relation vectors are taken into account





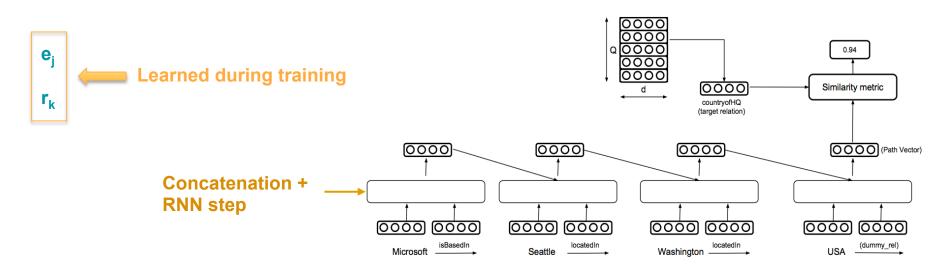
Single-Model

Target Relation: "country of HQ"

Start: "Microsoft"

Target: "USA"

 $Path(e_s \to e_t): \pi = \{e_s, r_1, e_1, ..., r_k, e_t\} \in S$



Single-Model

RNN hidden state at step t in the path

Now

$$\mathbf{h_t} = f(\mathbf{W_{hh}h_{t-1}} + \mathbf{W_{ih}y_{r_t}}).$$

 $\mathbf{h_t} = f(\mathbf{W_{hh}^r} \mathbf{h_{t-1}} + \mathbf{W_{ih}^r} \mathbf{y_{r_t}^r}).$

No dependency on target relation r here!

Single-Model: incorporating entities

 Learn Entity Vector Representation

Get annotated entity types from FreeBase:

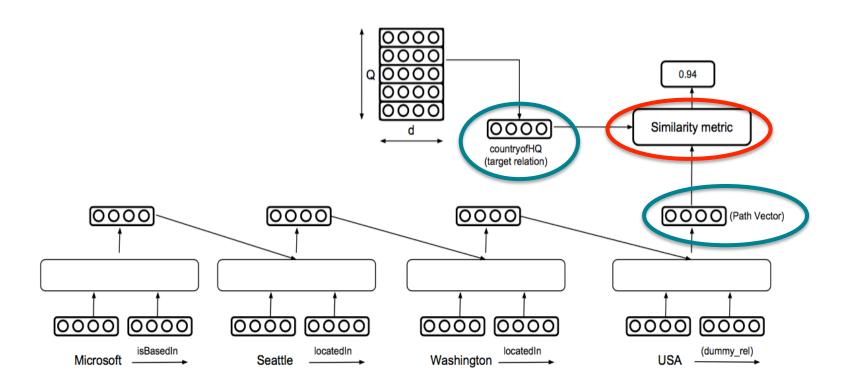
"Melinda Gates"

CEO
Duke University
Alumni
Philanthropist
American Citezen

$$\mathbf{h_t} = f(\mathbf{W_{hh}h_{t-1}} + \mathbf{W_{ih}y_{r_t}} + \mathbf{W_{eh}y_{e_t}})$$

Entity Representation

So far ...



Single-Model: score pooling

Top K
$$\mathbb{P}(r|e_s,e_t) = \sigma(rac{1}{k}\sum_j s_j), orall j \in \mathcal{K}$$

Assigns 0 weight to some paths

$$\mathbb{P}(r|e_s, e_t) = \sigma(\frac{1}{N} \sum_{i=1}^{N} s_i)$$

Each path gets same share of gradient regardless of whether it's more/less important

LogSumExp
$$\mathbb{P}(r|e_1,e_2) = \sigma(\log(\sum_i \exp(s_i))$$

Each path gets share of gradient proportional to its score since:

$$\frac{\partial \text{LSE}}{\partial s_i} = \frac{\exp(s_i)}{\sum_i \exp(s_i)}$$

Single-Model: score pooling

JFK - locatedin - NYC - locatedin - NY

YankeeStadium - locatedIn - NYC - locatedIn - NY

Target relation: airport_serves

Top K
$$\mathbb{P}(r|e_s,e_t) = \sigma(rac{1}{k}\sum_j s_j), orall j \in \mathcal{K}$$

Assigns 0 weight to some paths

Average

$$\mathbb{P}(r|e_s, e_t) = \sigma(\frac{1}{N} \sum_{i=1}^{N} s_i)$$

Each path gets same share of gradient regardless of whether it's more/less important

LogSumExp $\mathbb{P}(r|e_1,e_2) = \sigma(\log(\sum_i \exp(s_i))$

Each path gets share of gradient proportional to its score since:

$$\frac{\partial \text{LSE}}{\partial s_i} = \frac{\exp(s_i)}{\sum_i \exp(s_i)}$$

Experiments Setup

Dataset:

- Triples: (e_s, r, e_t)
- Set of paths S connecting (e_s, e_t) in the knowledge graph

Data is from FreeBase (KB) and ClueWeb(Text)

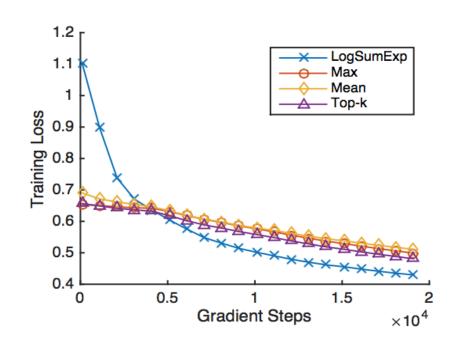
Stats	#
# Freebase relation types	27,791
# textual relation types	23,599
# query relation types	46
# entity pairs	3.22M
# unique entity types	2218
Avg. path length	4.7
Max path length	7
Total # paths	191M

Table 2: Statistics of the dataset.

Experiments: Effect of Pooling Techniques

- LogSumExp is best
 - Important to include all paths

- Average is worst
 - Important to weigh path scores according to their values



Experiments Results

Model	Performance (%MAP)	Pooling	-	
Single-Model	68.77	Max	-	
Single-Model	55.80	Avg.		Effect of
Single-Model	68.20	Top(k)		Pooling
Single-Model	70.11	LogSumExp		
PRA	64.43	n/a	-	
PRA + Bigram	64.93	n/a		
Path-RNN	65.23	Max		Other Multi-Hop
Path-RNN	68.43	LogSumExp	-	Algorithms
Single-Model	70.11	LogSumExp		
PRA + Types	64.18	n/a	-	
Single-Model	70.11	LogSumExp		
Single-Model + Entity	71.74	LogSumExp		Effect
Single-Model + Types	73.26	LogSumExp	-	- Including
Single-Model + Entity + Types	72.22	LogSumExp	_	Entities

Take-aways:

- Complete Knowledge Graph by inferring relations between entities using existing paths
- Single-Model: trains a single RNN to handle multiple relation types
- Incorporating Entity vectors improves results