CNN/Daily Mail Reading Comprehension Task

Danqi Chen, Jason Bolton, Christopher D. Manning
Presented By: Jianqiu Kong

Overview

- Introduction
- Data
- Models and Systems
- Experiment
- Conclusion

Introduction

- Reading comprehension (RC) is the ability to read text, process it, and understand its meaning.
- Genuine reading comprehension involves interpretation of the text and making complex inferences.

 This paper provides an in-depth analysis of CNN/DailyMail dataset and what level of natural language understanding is needed

Data

made from articles on the news websites CNN and Daily Mail

 It it tokenized, lowercased, and named entity recognition and coreference resolution have been run

consists of a passage p, a question q and an answer

Data

 the question is a cloze-style task, in which one of the article's bullet points has had one entity replaced by a placeholder

 the answer is this questioned entity

Passage

(@entity4) if you feel a ripple in the force today, it may be the news that the official @entity6 is getting its first gay character. according to the sci-fi website @entity9, the upcoming novel "@entity11" will feature a capable but flawed @entity13 official named @entity14 who " also happens to be a lesbian. " the character is the first gay figure in the official @entity6 -- the movies, television shows, comics and books approved by @entity6 franchise owner @entity22 -- according to @entity24, editor of "@entity6" books at @entity28 imprint @entity26.

Question

characters in " @placeholder " movies have gradually become more diverse

Answer

@entity6

Reading Comprehesion Task

• The goal is to infer the missing entity (answer a) from all the possible entities which appear in the passage.

suffer when either of entity recognition and coreference fails

Models and Systems

conventional entity-centric classifier

end-to-end neural network

Entity-Centric Classifier

Main Idea: design a feature vector f_p,q (e) for each candidate entity e, and to learn a weight vector θ such that the correct answer a is expected to rank higher than all other candidate entities.

$$\theta^\intercal f_{p,q}(a) > \theta^\intercal f_{p,q}(e), \forall e \in E \cap p \setminus \{a\}$$

Entity-Centric Classifier

feature templates employed:

- Whether entity e occurs in the passage
- Whether entity e occurs in the question
- The frequency of entity e in the passage
- The first position of occurence of entity e in the passage

Entity-Centric Classifier

feature templates employed:

- n-gram exact match: between the text surrounding the placeholder and the text surrounding entity e
- Word distance: average minimum distance of each non-stop question word from the entity in the passage
- Sentence co-occurrence
- Dependency parse match:

```
w \xrightarrow{r} @ placeholder v \xrightarrow{r} e
```

Encoding:

all the words are mapped to d-dimensional vectors

 shallow bi-directional LSTM to encode contextual embeddings of each word in the passage

$$\overrightarrow{\mathbf{h}}_{i} = \text{LSTM}(\overrightarrow{\mathbf{h}}_{i-1}, \mathbf{p}_{i}), i = 1, ..., m$$

$$\overleftarrow{\mathbf{h}}_{i} = \text{LSTM}(\overleftarrow{\mathbf{h}}_{i+1}, \mathbf{p}_{i}), i = m, ..., 1$$

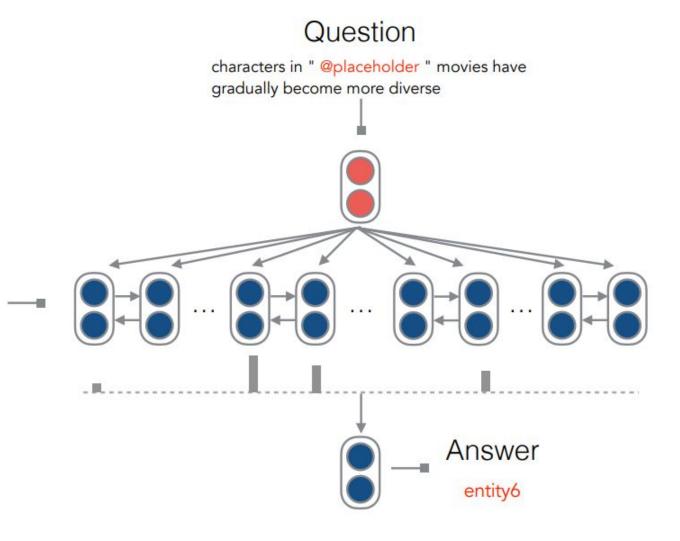
use another bi-directional LSTM to map the question

Attention:

$$\alpha_i = \operatorname{softmax}_i \mathbf{q}^\mathsf{T} \mathbf{W}_s \tilde{\mathbf{p}}_i$$

$$\mathbf{o} = \sum_i \alpha_i \tilde{\mathbf{p}}_i$$

o: a weighted combination of all contextual embeddings


Ws in bilinear form

Prediction:

$$a = \arg \max_{a \in p \cap E} W_a^{\mathsf{T}} \mathbf{o}$$

Passage

(@entity4) if you feel a ripple in the force today, it may be the news that the official @entity6 is getting its first gay character. according to the sci-fi website @entity9, the upcoming novel " @entity11" will feature a capable but flawed @entity13 official named @entity14 who " also happens to be a lesbian. " the character is the first gay figure in the official @entity6 -- the movies, television shows, comics and books approved by @entity6 franchise owner @entity22 -- according to @entity24, editor of " @entity6" books at @entity28 imprint @entity26.

Experiments

Training the conventional classifier:

Stanford's neural network dependency parser

ranking algorith: LambdaMART

Experiments

Training the neural network:

keep most frequent 50k words, others as <unk> token 100-dimensional pretrained GloVe word embeddings attention and output parameters initialized from U(-0.01,0.01) LSTM weights initialized from N(0,0.1) hidden size 128 for CNN and 256 for Daily Mail

Experiments

Main Results:

Model	CNN		Daily Mail	
	Dev	Test	Dev	Test
Frame-semantic model †	36.3	40.2	35.5	35.5
Word distance model †	50.5	50.9	56.4	55.5
Deep LSTM Reader †	55.0	57.0	63.3	62.2
Attentive Reader †	61.6	63.0	70.5	69.0
Impatient Reader †	61.8	63.8	69.0	68.0
MemNNs (window memory) ‡	58.0	60.6	N/A	N/A
MemNNs (window memory + self-sup.) ‡	63.4	66.8	N/A	N/A
MemNNs (ensemble) ‡	66.2*	69.4*	N/A	N/A
Ours: Classifier	67.1	67.9	69.1	68.3
Ours: Neural net	72.4	72.4	76.9	75.8

Feature ablation analysis of entity centric classifier

Features	Accuracy 67.1	
Full model		
 whether e is in the passage 	67.1	
 whether e is in the question 	67.0	
 frequency of e 	63.7	
 position of e 	65.9	
- n-gram match	60.5	
 word distance 	65.4	
 sentence co-occurrence 	66.0	
- dependency parse match	65.6	

A low number indicates an important feature

Breakdown of examples

- Exact match
- Sentence-level paraphrasing
- Partial clue
- Multiple sentences
- Coreference errors
- Ambiguous or very hard

Breakdown of examples

Category	Classifier		Neural net		
Exact match	13	(100.0%)	13 (100.0%)		
Paraphrasing	32	(78.1%)	39	(95.1%)	
Partial clue	14	(73.7%)	17	(89.5%)	
Multiple sentences	1	(50.0%)	1	(50.0%)	
Coreference errors	4	(50.0%)	3	(37.5%)	
Ambiguous / hard	2	(11.8%)	1	(5.9%)	
All	66	(66.0%)	74	(74.0%)	

Neural networks are better capable of learning semantic matches involving paraphrasing or lexical variation between the two sentences

Conclusion

 the CNN/Daily Mail datasets is still quite noisy due to its method of data creation and coreference errors

 current neural networks have almost reached a performance ceiling on this dataset

 the required reasoning and inference level of this dataset is still quite simple

Thanks!