A large annotated corpus for learning natural language inference

Samuel R. Bowman, Gabor Angeli, Christopher Potts, Christopher D. Manning

Presenter: Medhini G Narasimhan

Outline

- Entailment and Contradiction
- Examples of Natural Language Inference
- Prior datasets for Natural Language Inference
- Shortcomings of previous work
- Stanford Natural Language Inference Corpus
- Data Collection
- Data Validation
- Models on this dataset
- Conclusion

Entailment and Contradiction

• Entailment: The truth of one sentence implies the truth of the other sentence.

"It is raining heavily outside."

entails

"The streets are flooded."

• Contradiction: The truth of one sentence implies the falseness of the other.

"It is cold in here."

contradicts

"It is hot in here."

- Understanding entailment and contradiction is fundamental to understanding natural language.
- Natural Language Inference: Determining whether a natural language hypothesis can justifiably be inferred from a natural language premise.

Examples of Natural Language Inference

Neutral

A woman with a green headscarf, blue shirt and a very big grin.

The woman is young.

Entailment

A land rover is being driven across a river.

A Land Rover is splashing water as it crosses a river.

Contradiction

An old man with a package poses in front of an advertisement.

A man walks by an ad.

Objective

To introduce a Natural Language Inference corpus which would allow for the development of improved models on entailment and contradiction and Natural Language Inference as a whole.

Prior datasets for NLI

- Recognizing Textual Entailment(RTE) challenge tasks:
 - High-quality, hand-labelled data sets.
 - Small in size and complex examples.
- Sentences Involving Compositional Knowledge (SICK) data for the SemEval 2014:
 - 4,500 training examples.
 - Partly automatic construction introduced some spurious patterns into the data.
- Denotation Graph entailment set:
 - Contains millions of examples of entailments between sentences and artificially constructed short phrases.
 - Labelled using fully automatic methods, hence noisy.

Issues with previous datasets

- Too small in size to train modern data-intensive wide-coverage models.
- Indeterminacies of event and entity coreference lead to indeterminacy concerning the semantic label.
- Event indeterminacy:
 - A boat sank in the Pacific Ocean and A boat sank in the Atlantic Ocean.
 - Contradiction if they refer to the same event, else neutral.
- Entity indeterminacy:
 - A tourist visited New York and A tourist visited the city.
 - If we assume coreference, this is entailment, else neutral.

Stanford Natural Language Inference corpus

- Freely available collection of 570K labelled sentence pairs, written by humans doing a novel grounded task based on image captioning.
- The labels include **entailment**, **contradiction**, and **semantic independence**.
- Image captions would ground examples to specific scenarios and overcome entity and event indeterminacy.
- Participants allowed to produce entirely novel sentences which led to richer examples.
- A subset of the resulting sentences were sent to a validation task in order to provide a highly reliable set of annotations.

Data Collection

- Premises obtained from Flickr30K image captioning dataset.
- Using just the captions, workers were asked to generate entailing, neutral and contradictive examples.

A female tennis player in a purple top and black skirt swings her racquet.

A female tennis player preparing to serve the ball.

A woman in a purple tank top holds a tennis racket, extends an arm upward, and looks up. A woman wearing a purple shirt and holding a tennis racket in her hand is looking up. Girl is waiting for the ball to come down as she plays tennis.

A man is snow boarding and jumping off of a snow hill.

A person in a black jacket is snowboarding during the evening.

A silhouette of a person snowboarding through a pile of snow.

A snowboarder flying off a snow drift with a colourful sky in the background.

The person in the parka is on a snow board.

A motorcycle races.

A motorcycle rider in a white helmet leans into a curve on a rural road.

A motorcycle rider making a turn.

Someone on a motorcycle leaning into a turn. There is a professional motorcyclist turning a corner.

Data Collection

- The sentences in SNLI are all descriptions of scenes, and photo captions.
- Reliable judgments from untrained annotators
- Logically consistent definition of contradiction.
- Issues of coreference greatly mitigated. For example, "A dog is lying in the grass", the main object is the dog.

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- Write one alternate caption that is definitely a true description of the photo. Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."
- Write one alternate caption that might be a true description of the photo. Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."
- Write one alternate caption that is definitely a
 false description of the photo. Example: For the
 caption "Two dogs are running through a field."
 you could write "The pets are sitting on a couch."
 This is different from the maybe correct category
 because it's impossible for the dogs to be both
 running and sitting.

Figure 1: The instructions used on Mechanical Turk for data collection.

Data Validation

- Measure the quality of corpus and collect additional data for test and development sets.
- Validation is done by asking four annotators to label the same pair, this gave five labels per pair.
- Based on their labelling skills, 30 trusted workers were picked.
- Sentence pair assigned a gold label if one of the three labels were chosen by at least three of the five annotators.
- Only sentence pairs with gold label used during model building.

Stanford Natural Language Inference corpus

A man inspects the uniform of a figure in some East Asian country.	contradiction CCCCC	The man is sleeping	
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.	
A black race car starts up in front of a crowd of people.	contradiction CCCCC	A man is driving down a lonely road.	
A soccer game with multiple males playing.	entailment EEEEE	Some men are playing a sport.	
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.	

Models and Results on SNLI

- Excitement Open Platform Model
 - Edit distance algorithm: Tunes the weight of the three case insensitive edit distance operations.
 - Simple lexical based classifier.
- Lexicalized feature-based classifier model
 - BLEU Score.
 - Length difference.
 - Overlap between words.
 - Indicator for every unigram and bigram.
 - Cross unigrams.
 - Cross bigrams.

System	SNLI	SICK	RTE-3
Edit Distance Based	71.9	65.4	61.9
Classifier Based	72.2	71.4	61.5
+ Lexical Resources	75.0	78.8	63.6

System	SNLI		SICK	
	Train	Test	Train	Test
Lexicalized	99.7	78.2	90.4	77.8
Unigrams Only	93.1	71.6	88.1	77.0
Unlexicalized	49.4	50.4	69.9	69.6

Models and Results on SNLI

- Neural network sequence model
 - Generate vector embedding of each sentence.
 - Train classifier to label the vectors.
 - Two sequence embedding models: Plan RNN and LSTM RNN.
 - Embeddings initialized with GloVE vectors.
 - Lexicalized model performs better.

Sentence model	Train	Test
100d Sum of words	79.3	75.3
100d RNN	73.1	72.2
100d LSTM RNN	84.8	77.6

Table 6: Accuracy in 3-class classification on our training and test sets for each model.

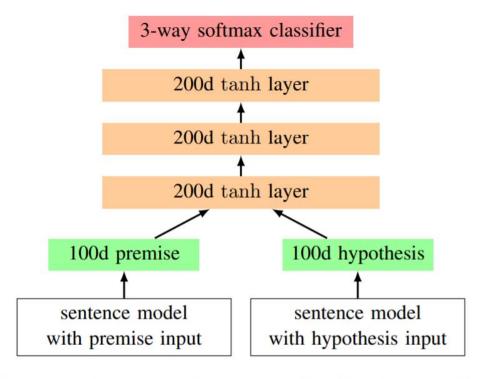


Figure 3: The neural network classification architecture: for each sentence embedding model evaluated in Tables 6 and 7, two identical copies of the model are run with the two sentences as input, and their outputs are used as the two 100d inputs shown here.

Conclusion

- SNLI draws fairly extensively on common sense knowledge.
- Hypothesis and premise sentences often differ structurally in significant ways.
- Sentences collected are largely fluent, correctly spelled English.
- Basic models were introduced which have been outperformed.
- Future directions Using entailment and contradiction pairs to generate question answers on Flickr30k.

Questions?

Thank You!