Visual Dialog

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F. Moura, Devi Parikh, Dhruv Batra

Presented by Wei-Chieh Wu

Visual Dialog

- Requires an Al agent to hold a meaningful dialog with humans about visual content.
- Input:
 - Image
 - Dialog history
 - Question
- Output:
 - Answer to the question

VQA vs Visual Dialog

VQA

Q: How many people on wheelchairs?

A: Two

Q: How many wheelchairs?

A: One

Captioning

Two people are in a wheelchair and one is holding a racket.

Visual Dialog

Q: How many people are on wheelchairs?

A: Two

Q: What are their genders?

A: One male and one female

Q: Which one is holding a

racket?

A: The woman

Visual Dialog

Q: What is the gender of the one in the white shirt?

A: She is a woman

Q: What is she doing?

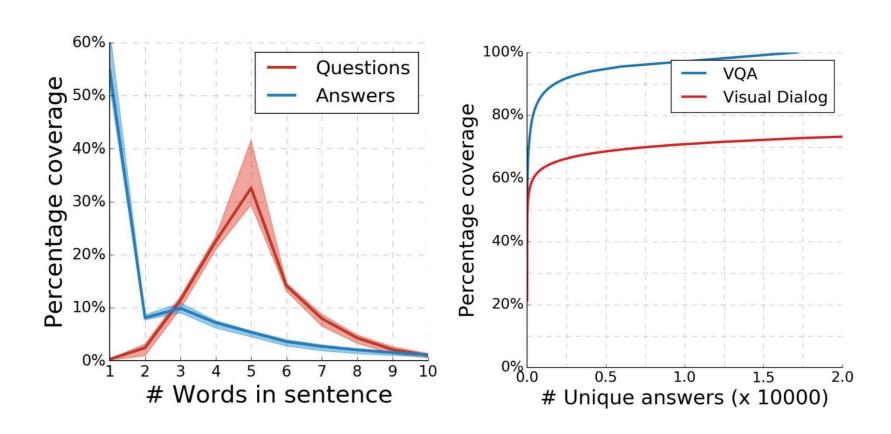

A: Playing a Wii game

Q: Is that a man to her right

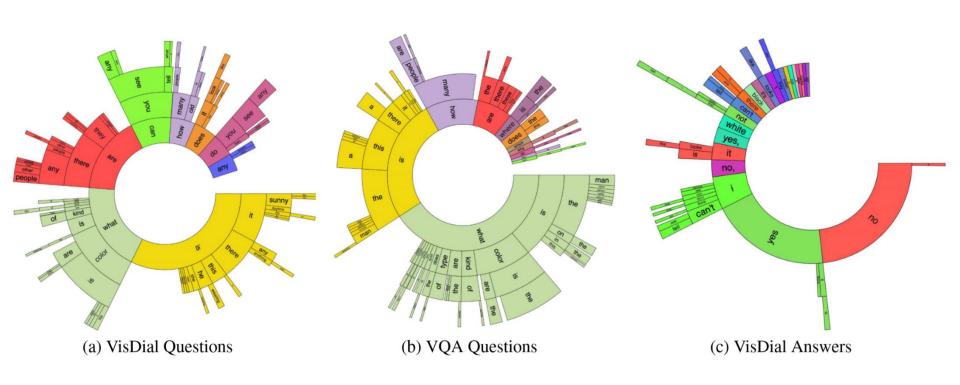
A: No, it's a woman

VisDial Dataset

- Contains ~123k images and 10 question-answer pairs for each image
- Images are from COCO dataset
- Question-answer pairs are collected on AMT with human dialog



(a) What the 'questioner' sees.


(b) What the 'answerer' sees.

(c) Example dialog from our VisDial dataset.

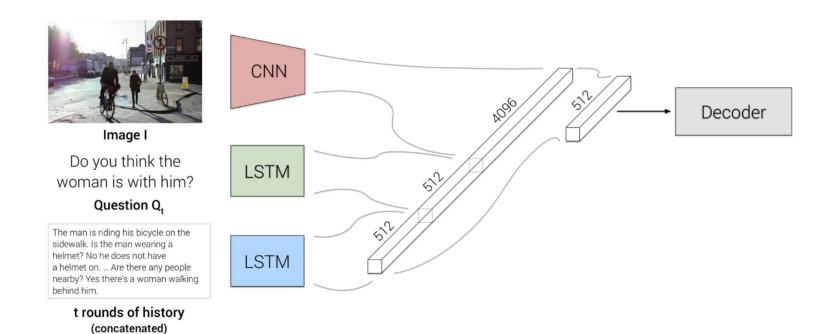
VisDial Dataset

VisDial Dataset

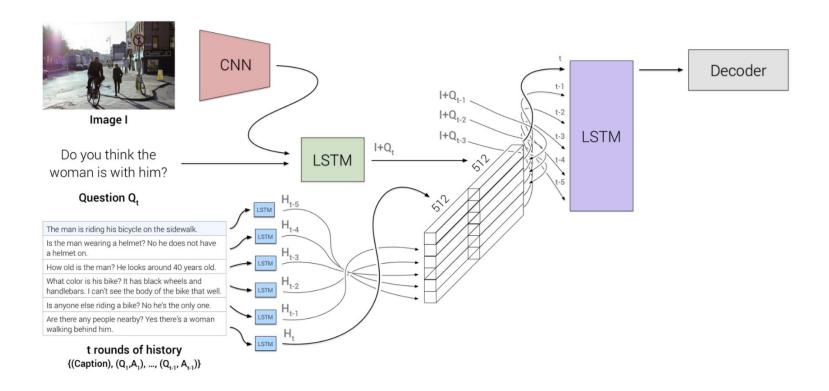
Evaluation

- Given N = 100 candidate answers, return a sorting of them
- Candidate answers:
 - The human response
 - Answers to 50 most similar questions
 - 30 most popular answers from the dataset
 - 19 random answers
- Retrieval metrics:

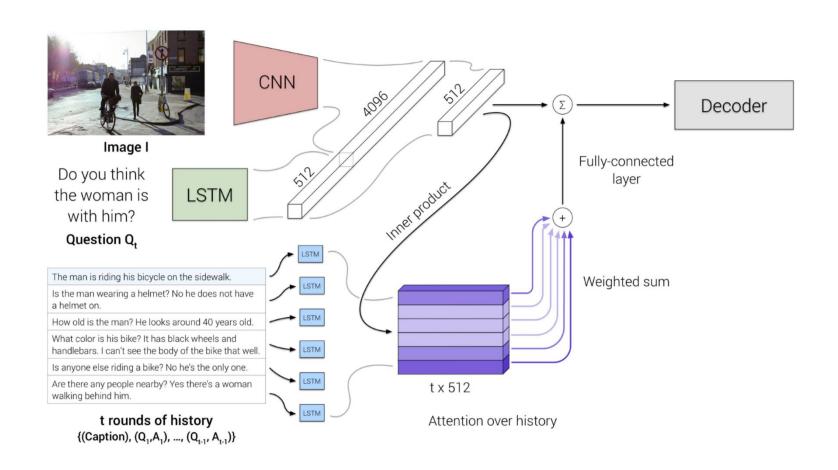
MRR, recall@k, average rank of the human response


Models

- Following the encoder-decoder framework
- 2 kinds of decoder
 - Generative Decoder
 - Discriminative Decoder
- 3 kinds of encoder
 - Late Fusion Encoder
 - Hierarchical Recurrent Encoder
 - Memory Network Encoder


Decoders

- Generative Decoder
 - LSTM decoder
 - Maximize the log-likelihood of the ground truth answer
 - Use the model's log-likelihood scores for ranking
- Discriminative Decoder
 - Compute similarity between the input encoding and LSTM encoding for candidate answers
 - Maximize softmax score of the ground truth answer
 - Use the similarities for ranking


Late Fusion (LF) Encoder

Hierarchical Recurrent Encoder (HRE)

Memory Network (MN) Encoder

Experiments

Dataset: VisDial v0.9

Baseline

• NN-Q:

Find k nearest neighbor questions for a test question, and score answers by their mean similarity with these k answers

NN-QI:

Find K nearest neighbor questions for a test question, then find a subset of size k based on image feature similarity. Score answers by their mean similarity with these k answers

VQA models

- SAN and HieCoAtt
- Feed VQA outputs to their discriminative decoder, and train end-toend on VisDial

Results

	Model	MRR	R@1	R@5	R@10	Mean
Baseline	Answer prior	0.3735	23.55	48.52	53.23	26.50
	NN-Q	0.4570	35.93	54.07	60.26	18.93
	NN-QI	0.4274	33.13	50.83	58.69	19.62
Generative	LF-Q-G	0.5048	39.78	60.58	66.33	17.89
	LF-QH-G	0.5055	39.73	60.86	66.68	17.78
	LF-QI-G	0.5204	42.04	61.65	67.66	16.84
	LF-QIH-G	0.5199	41.83	61.78	67.59	17.07
	HRE-QH-G	$0.5\overline{1}0\overline{2}$	$-40.\overline{15}$	61.59	67.36	17.47
	HRE-QIH-G	0.5237	42.29	62.18	67.92	17.07
	HREA-QIH-G	0.5242	42.28	62.33	68.17	16.79
	\overline{MN} - \overline{QH} - \overline{G}	$0.5\overline{1}1\overline{5}$	$-40.\overline{42}$	$\bar{6}1.\bar{5}\bar{7}$	$-67.\overline{44}^{-}$	17.74
	MN-QIH-G	0.5259	42.29	62.85	68.88	17.06
Discriminative	LF-Q-D	0.5508	41.24	70.45	79.83	7.08
	LF-QH-D	0.5578	41.75	71.45	80.94	6.74
	LF-QI-D	0.5759	43.33	74.27	83.68	5.87
	LF-QIH-D	0.5807	43.82	74.68	84.07	5.78
	HRE-QH-D	0.5695	$-4\overline{2}.\overline{7}0^{-}$	73.25	82.97	6.11
	HRE-QIH-D	0.5846	44.67	74.50	84.22	5.72
	HREA-QIH-D	0.5868	44.82	74.81	84.36	5.66
	$\bar{M}\bar{N}$ - $\bar{Q}\bar{H}$ - \bar{D}	0.5849	$-44.\overline{0}3$	75.26	84.49	5.68
	MN-QIH-D	0.5965	45.55	76.22	85.37	5.46
VQA	SAN1-QI-D	0.5764	43.44	74.26	83.72	5.88
	HieCoAtt-QI-D	0.5788	43.51	74.49	83.96	5.84