Bootstrapping incremental dialogue systems from minimal data: the generalisation power of dialogue grammars

Arash Eshghi, Igor Shalyminov, Oliver Lemon Heriot-Watt University

Presenter: Prashant Jayannavar

Problem

- Inducing task-based dialog systems
 - Example: Restaurant search

Motivation

- Poor data efficiency

- Annotation costs
 - task-specific semantic/pragmatic annotations
- Lack of support for natural spontaneous dialog/incremental dialog phenomena
 - E.g.: "I would like an LG laptop sorry uhm phone", "we will be uhm eight"

Contributions

- Solution
 - An incremental semantic parser + generator trained with RL
 - End-to-end method

- Show the following empirically:
 - Generalization power
 - Data efficiency

Background

- DS-TTR parsing (**D**ynamic **S**yntax **T**ype **T**heory with **R**ecords)
 - Dynamic Syntax
 - word-by-word incremental and semantic grammar formalism

- Type Theory with Records
 - Record Types (RTs): richer semantic representations

Background

DS-TTR parsing (**D**ynamic **S**yntax - **T**ype **T**heory with **R**ecords)

```
 \left[ \begin{array}{c} \textit{event} \\ \textit{p1}_{=today(event)} \ : \ \textit{t} \\ \textit{p1}_{=today(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p3}_{=subj(event,x)} \ : \ \textit{t} \end{array} \right] \ \mapsto \ \left[ \begin{array}{c} \textit{event}_{=arrive} \ : \ \textit{e}_s \\ \textit{p1}_{=today(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p3}_{=subj(event,x)} \ : \ \textit{t} \end{array} \right] \ \mapsto \ \left[ \begin{array}{c} \textit{event}_{=arrive} \ : \ \textit{e}_s \\ \textit{p1}_{=today(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p3}_{=subj(event,x)} \ : \ \textit{t} \\ \textit{x1} \ : \ \textit{e} \\ \textit{p3}_{=from(event,x1)} \ : \ \textit{t} \end{array} \right] \ \mapsto \ \left[ \begin{array}{c} \textit{event}_{=arrive} \ : \ \textit{e}_s \\ \textit{p1}_{=today(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p2}_{=pres(event)} \ : \ \textit{t} \\ \textit{p3}_{=subj(event,x)} \ : \ \textit{t} \\ \textit{x1}_{=Sweden} \ : \ \textit{e} \\ \textit{p3}_{=from(event,x1)} \ : \ \textit{t} \end{array} \right]
```

"A: Today" \mapsto ".. $Robin\ arrives$ " \mapsto

"B: from?" \mapsto "A: Sweden"

- Treat natural language generation (NLG) and dialog management (DM) as a joint decision problem
 - Given a "dialog state" decide what to say
 - Learn to do this through learning a policy $(\pi : S \rightarrow A)$ -- RL

- Define "dialog state" using output of the DS-TTR parser

- Inputs:
 - A DS-TTR parser
 - A dataset D of dialogs in target domain

- Output:
 - Policy $\pi: S \rightarrow A$ (given a "dialog state" deciding what to say)

- MDP setup
 - S: set of all dialog states (induced from dataset D)
 - A: set of all actions (words in the DS lexicon)
 - G_d: Goal state
 - R: reaching G_d while minimizing dialog length

- Dialog state:
 - Between SYSTEM and USER utterances and between every word of SYSTEM utterances

- Dialog state:
 - Between SYSTEM and USER utterances and between every word of SYSTEM utterances

SYSTEM: [S_0] What [S_1] would [S_2] you [S_3] like [S_4]? [S_5 = S_trig_1]

USER: A phone [S_6]

SYSTEM: by [S_7] which [S_8] brand [S_9]? [S_10 = S_trig_2]

USER: ...

- Dialog state:
 - Between SYS and USER utterances and between every word of SYS utterances
 - Context up until that point in time
 - Context $C = \langle c_p, c_g \rangle$

- SYSTEM: What would you like?

USER: A phone

SYSTEM: by which brand? [S_10]

Grounded Semantics

Sys: What would you like?
Usr: a phone

```
 \begin{bmatrix} x2 & : & e \\ e2_{=like} & : & es \\ x1_{=USR} & : & e \\ p2_{=pres(e2)} & : & t \\ p5_{=subj(e2,x1)} & : & t \\ p4_{=obj(e2,x2)} & : & t \\ p11_{=phone(x2)} & : & t \end{bmatrix}
```

Current Turn Semantics

```
Sys: by which brand?
x1_{=USR}
p2_{=pres(e2)} : t

p5_{=subj(e2,x1)} : t
 p5_{=subj(e2,x1)}
 p4_{=obj(e2,x2)}
 p11_{=phone(x2)}
 p10_{=by(x2,x3)}
```

- Dialog state:
 - Between SYS and USER utterances and between every word of SYS utterances
 - Context up until that point in time
 - Context $C = \langle c_p, c_g \rangle$
 - State encoding function F: C -> S maps context to a binary vector

Grounded Semantics

Current Turn Semantics

Dialogue so far

 $\begin{bmatrix} x2 & : & e \\ e2_{=like} & : & es \\ x1_{=USR} & : & e \\ p2_{=pres(e2)} & : & t \\ p5_{=subj(e2,x1)} & : & t \\ p4_{=obj(e2,x2)} & : & t \\ p11_{=phone(x2)} & : & t \end{bmatrix}$ $\begin{bmatrix} x2 & : & e \\ e2_{=like} & : & es \\ x1_{=USR} & : & e \\ p2_{=pres(e2)} & : & t \\ p4_{=obj(e2,x1)} & : & t \\ p4_{=obj(e2,x2)} & : & t \\ p11_{=phone(x2)} & : & t \\ p10_{=by(x2,x3)} & : & t \\ p10_{=question(x3)} & : & t \\ p10_{=question(x3)} & : & t \end{bmatrix}$

SYS: What would you like? USR: a phone by which brand? SYS:

RT Feature: $\begin{bmatrix} x10 & : & e \\ p15_{=brand(x10)} & : & t \end{bmatrix} \begin{bmatrix} e3_{=like} & : & es \\ p2_{=pres(e3)} & : & t \end{bmatrix} \begin{bmatrix} x10 & : & e \\ x8 & : & e \\ p14_{=by(x8,x10)} & : & t \end{bmatrix} \begin{bmatrix} e3_{=like} & : & es \\ x5_{=usr} & : & e \\ p7_{=subj(e3,x5)} & : & t \end{bmatrix} \begin{bmatrix} x8 & : & e \\ e3_{=like} & : & es \\ p6_{=obj(e3,x8)} & : & t \end{bmatrix}$

- Dialog state:
 - Between SYS and USER utterances and between every word of SYS utterances
 - Context up until that point in time
 - Context $C = \langle c_p, c_g \rangle$
 - State encoding function F: C -> S maps context to a binary vector

RL to solve the MDP

SYSTEM: [S_0] What [S_1] would [S_2] you [S_3] like [S_4] ? [S_5 = S_trig_1]

USER: A phone [S_6] <- Simulated User

SYSTEM: by [S_7] which [S_8] brand [S_9] ? [S_10 = S_trig_2]

USER: ... <- Simulated User

SYSTEM: ...

User simulation

- Generate user turns based on context
- Monitor system utterance word-by-word

User simulation

- Generate user turns based on context
 - Run parser on dataset D and extract rules of the form:

$$S_{trig_i} \rightarrow \{u_1, u_2, ..., u_n\}$$

S_trig_i = a trigger state

u_i = user utterance following S_trig_i in D

SYSTEM: [S_0] What [S_1] would [S_2] you [S_3] like [S_4] ? [S_5 = S_trig_1]

USER: A phone [S_6] <- Simulated User

SYSTEM: by [S_7] which [S_8] brand [S_9] ? [S_10 = S_trig_2]

USER: ... <- Simulated User

SYSTEM: ...

User simulation

- Generate user turns based on context
- Monitor system utterance word-by-word
 - After system generates a word, check if new state **subsumes** one of the S_trig_i
 - If not, penalize system and terminate learning episode

SYSTEM: [S_0] What [S_1] would [S_2] you [S_3] like [S_4]?

USER: A phone [S_6]

SYSTEM: by [S_7] which [S_8] brand [S_9]?

USER: ...

SYSTEM: ...

- 2 datasets to test generalization:
 - bAbI
 - Dataset of dialogs by Facebook AI Research
 - Goal oriented dialogs for restaurant search
 - API call at the end

- bAbI+
 - Add incremental dialog phenomena to bAbI

- Hesitations: "we will be **uhm** eight"
- Corrections: "I would like an LG laptop sorry uhm phone"

- These phenomena mixed in probabilistically
 - Affect 11336 utterances in the 3998 dialogs

- Approach to compare to (MEMN2N):
 - Bordes and Weston 2017: Learning end-to-end goal-oriented dialog
 - Uses memory networks
 - Retrieval based model

- Experiment 1: Generalization from small data
 - Do not use the original system for a direct comparison
 - Use a retrieval based variant

- 1-5 examples from bAbI train set
- Test on 1000 examples from bAbI test set
- Test on 1000 examples from bAbI+ test set

- Experiment 1: Generalization from small data
 - Metric: Per utterance accuracy

# of training dialogues:	1	2	3	4	5
BABBLE on bAbI	67.12	73.36	72.63	73.32	74.08
memn2n on bAbI	2.77	59.15	70.94	71.68	72.6
BABBLE on bAbI+	59.42	65.27	63.45	64.34	65.2
memn2n on bAbI+	0.22	56.75	68.65	71.84	73.2

- Experiment 2: Semantic Accuracy
 - Metric: Accuracy of API call
 - BABBLE: 100% on both bAbI and bAbI+

- MEMN2N: Nearly 0 on both bAbI and bAbI+
- MEMN2N (when trained on full bAbI dataset): 100% on bAbI and only 28% on bAbI+

Summary

- An incremental semantic parser + generator trained with RL

- End-to-end training

- Support incremental dialog phenomena

- Showed the following empirically:
 - Generalization power
 - Data efficiency