Learning how to Active Learn: A Deep Reinforcement Learning Approach

Meng Fang, Yuan Li, Trevor Cohn

The University of Melbourne

Presenter: Jialin Song

April 05, 2018

Overview

Introduction

2 Model

3 Algorithms

4 Numerical Experiments

Annotation:

- Annotation:
 - select a subset of data to annotate from a large unlabelled dataset (adding labels)

Annotation:

- select a subset of data to annotate from a large unlabelled dataset (adding labels)
- \diamond then we can train a supervised learning model ϕ (classifier)

Annotation:

- select a subset of data to annotate from a large unlabelled dataset (adding labels)
- \diamond then we can train a supervised learning model ϕ (classifier)
- we hope to maximize the accuracy of the classification model

- Annotation:
 - select a subset of data to annotate from a large unlabelled dataset (adding labels)
 - \diamond then we can train a supervised learning model ϕ (classifier)
 - we hope to maximize the accuracy of the classification model
- Active learning:

- Annotation:
 - select a subset of data to annotate from a large unlabelled dataset (adding labels)
 - \diamond then we can train a supervised learning model ϕ (classifier)
 - we hope to maximize the accuracy of the classification model
- Active learning:
 - there is high cost annotating every sentence

Annotation:

- select a subset of data to annotate from a large unlabelled dataset (adding labels)
- \diamond then we can train a supervised learning model ϕ (classifier)
- we hope to maximize the accuracy of the classification model

Active learning:

- there is high cost annotating every sentence
- how to select raw data to add labels in order to maximize the accuracy of the classification model

Annotation:

- select a subset of data to annotate from a large unlabelled dataset (adding labels)
- \diamond then we can train a supervised learning model ϕ (classifier)
- we hope to maximize the accuracy of the classification model

Active learning:

- there is high cost annotating every sentence
- how to select raw data to add labels in order to maximize the accuracy of the classification model
- active learning becomes a sequential decision: as each sentence arrives, annotate it or not (our action)

Markov Decision Process (MDP):

- Markov Decision Process (MDP):
 - a framework to model a sequential decision process

- Markov Decision Process (MDP):
 - ⋄ a framework to model a **sequential** decision process
 - \diamond in each decision stage, agent observes state variables (s) and take a action (a) to maximize its current payoff

- Markov Decision Process (MDP):
 - a framework to model a sequential decision process
 - \diamond in each decision stage, agent observes state variables (s) and take a action (a) to maximize its current payoff
 - \diamond after taking the action, a reward associated with the action and state (r(s,a)) is generated and current state transits to next state

- Markov Decision Process (MDP):
 - a framework to model a sequential decision process
 - \diamond in each decision stage, agent observes state variables (s) and take a action (a) to maximize its current payoff
 - \diamond after taking the action, a reward associated with the action and state (r(s,a)) is generated and current state transits to next state
 - agent aims maximizing the expected value of rewards over all stages

• The dynamics of MDP can be modeled in Bellman equations

- The dynamics of MDP can be modeled in Bellman equations
 - ♦ Bellman equation 1: value function

$$J(s) = \max_{a} \left\{ \bar{r}(s, a) + \alpha \sum_{s'} P_{ss'}(a) J(s') \right\}$$
$$a_s^* = \operatorname{argmax} J(s)$$

- The dynamics of MDP can be modeled in Bellman equations
 - ♦ Bellman equation 1: value function

$$J(s) = \max_{a} \left\{ \bar{r}(s, a) + \alpha \sum_{s'} P_{ss'}(a) J(s') \right\}$$
$$a_s^* = \operatorname{argmax} J(s)$$

♦ Bellman equation 2 (more common!): Q-function

$$Q(s, a) = \bar{r}(s, a) + \alpha \sum_{s'} P_{ss'}(a) \max_{u} Q(s', u)$$
$$a_s^* = \operatorname{argmax} Q(s, a)$$

- The dynamics of MDP can be modeled in Bellman equations
 - ⋄ Bellman equation 1: value function

$$J(s) = \max_{a} \left\{ \bar{r}(s, a) + \alpha \sum_{s'} P_{ss'}(a) J(s') \right\}$$
$$a_s^* = \operatorname{argmax} J(s)$$

Bellman equation 2 (more common!): Q-function

$$Q(s, a) = \bar{r}(s, a) + \alpha \sum_{s'} P_{ss'}(a) \max_{u} Q(s', u)$$
$$a_{s}^{*} = \operatorname{argmax} Q(s, a)$$

 \diamond where $\bar{r}(s,a)$ is the expected reward, $P_{ss'}(a)$ is the transition probability from state s to s', α is the discount of reward

• If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!

- If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!
- $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ If $P_{ss'}(a)$ is not known, then how to compute Q-function becomes a learning problem

- If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!
- $\ensuremath{\mathbf{Q}}$ If $P_{ss'}(a)$ is not known, then how to compute Q-function becomes a learning problem
- Q-learning:

- If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!
- 2 If $P_{ss'}(a)$ is not known, then how to compute Q-function becomes a learning problem
- Q-learning:

$$\diamond Q_{t+1}(s_t, a_t) = (1 - \epsilon_t)Q_t(s_t, a_t) + \epsilon_t \left(\bar{r}(s_t, a_t) + \alpha \max_u Q_t(s_{t+1}, u)\right)$$

- If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!
- 2 If $P_{ss'}(a)$ is not known, then how to compute Q-function becomes a learning problem
- Q-learning:

$$\diamond Q_{t+1}(s_t, a_t) = (1 - \epsilon_t)Q_t(s_t, a_t) + \epsilon_t \left(\bar{r}(s_t, a_t) + \alpha \max_u Q_t(s_{t+1}, u)\right)$$

 \diamond where t is iteration and ϵ_t is the learning rate

- If $P_{ss'}(a)$ is known, then solve the Bellmen equations (VI/PI) to get the optimal policy. There is no need to 'learn'!!!
- ② If $P_{ss'}(a)$ is not known, then how to compute Q-function becomes a learning problem
- Q-learning:

$$\diamond Q_{t+1}(s_t, a_t) = (1 - \epsilon_t)Q_t(s_t, a_t) + \epsilon_t \left(\bar{r}(s_t, a_t) + \alpha \max_u Q_t(s_{t+1}, u)\right)$$

- \diamond where t is iteration and ϵ_t is the learning rate
- \diamond In practice, above is useless: $|S| \times |A|$ is huge

Deep Q-learning:

- Deep Q-learning:
 - \diamond use the output of a DNN parametrized by $\theta,$ i.e., $f_{\theta}(s,u)$ to approximate Q(s,a) :

- Deep Q-learning:
 - \diamond use the output of a DNN parametrized by θ , i.e., $f_{\theta}(s,u)$ to approximate Q(s,a) :
 - \diamond input: state s , action a , reward r(s,a) , state transition s'

Deep Q-learning:

- \diamond use the output of a DNN parametrized by $\theta,$ i.e., $f_{\theta}(s,u)$ to approximate Q(s,a) :
- \diamond input: state s, action a, reward r(s,a), state transition s'
- \diamond output: approximation of Q-function: $f_{ heta}(s,u)$

Deep Q-learning:

- \diamond use the output of a DNN parametrized by $\theta,$ i.e., $f_{\theta}(s,u)$ to approximate Q(s,a) :
- \diamond input: state s, action a, reward r(s,a), state transition s'
- \diamond output: approximation of Q-function: $f_{ heta}(s,u)$
- the loss function minimization

$$\min_{\theta} \left\{ \frac{1}{2} \left(f_{\theta_t}(s_t, a_t) - \bar{r}(s_t, a_t) - \alpha \max_{u} f_{\theta_t}(s_{t+1}, u) \right)^2 \right\}$$

lacktriangle sentence x_i from an unlabelled dataset arrives one by one

- lacktriangle sentence x_i from an unlabelled dataset arrives one by one
- for each arriving sentence, agent decides whether to annotate it or not (binary action)

- lacktriangle sentence x_i from an unlabelled dataset arrives one by one
- for each arriving sentence, agent decides whether to annotate it or not (binary action)
- ullet if agent annotates it, then the annotated set (labelled set) gets expanded, and the classifier ϕ is re-trained and updated

- lacktriangle sentence x_i from an unlabelled dataset arrives one by one
- for each arriving sentence, agent decides whether to annotate it or not (binary action)
- ullet if agent annotates it, then the annotated set (labelled set) gets expanded, and the classifier ϕ is re-trained and updated
- evaluate the updated classier on a separate independent dataset, get the test accuracy (reward)

- lacktriangle sentence x_i from an unlabelled dataset arrives one by one
- ② for each arriving sentence, agent decides whether to annotate it or not (binary action)
- ullet if agent annotates it, then the annotated set (labelled set) gets expanded, and the classifier ϕ is re-trained and updated
- evaluate the updated classier on a separate independent dataset, get the test accuracy (reward)
- next sentence arrives

• Sate (s): comprised of 2 parts:

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)
- Action (a):

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)
- Action (a):
 - $\diamond \ a_i = 1$: annotate x_i

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)
- Action (a):
 - $\diamond \ a_i = 1$: annotate x_i
 - $\diamond \ a_i = 0$: not annotate x_i

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)
- Action (a):
 - $\diamond \ a_i = 1$: annotate x_i
 - $\diamond \ a_i = 0$: not annotate x_i
- Reward (r):

- Sate (s): comprised of 2 parts:
 - \diamond input setence: x_i (encoded using a CNN, h_c)
 - \diamond trained classification model ϕ (encoded using a CNN, h_e)
- Action (a):
 - $\diamond \ a_i = 1$: annotate x_i
 - $\diamond \ a_i = 0$: not annotate x_i
- Reward (r):
 - \diamond evaluate the classification model on a held-out set after the action a is taken and get the test accuracy

An Value Iteration Q-learning Algorithm

Algorithm 1 Learn an active learning policy **Input:** data \mathcal{D} , budget \mathcal{B} Output: π 1: for episode = 1, 2, ..., N do stopping criteria $\mathcal{D}_l \leftarrow \emptyset$ and shuffle \mathcal{D} $\phi \leftarrow \text{Random}$ for $i \in \{0, 1, 2, \ldots, |\mathcal{D}|\}$ do sentence input 5: Construct the state s_i using \mathbf{x}_i The agent makes a decision according to $a_i = \arg\max Q^{\pi}(s_i, a)$ if $a_i = 1$ then action: annoate Obtain the annotation y_i 8: $\mathcal{D}_l \leftarrow \mathcal{D}_l + (\mathbf{x}_i, \mathbf{y}_i)$ annotated training set expanded 10: Update model ϕ based on \mathcal{D}_{l} 11: end if train and undate classifier 12: Receive a reward r_i using held-out set 13: if $|\mathcal{D}_l| = \mathcal{B}$ then test classifier on a separate set 14: Store $(s_i, a_i, r_i, \text{Terminate})$ in \mathcal{M} 15: Break end if 16: transition to 2nd sentence 17: Construct the new state s_{i+1} Store transition (s_i, a_i, r_i, s_{i+1}) in \mathcal{M} 18: Sample random minibatch of transitions update NN (0) using $\{(s_j,a_j,r_j,s_{j+1})\}$ from \mathcal{M} , and perform gradient descent step on $\mathcal{L}(\theta)$ Update policy π with θ 20: end for argmax of updated Q function (NN output) 22: end for

for
$$i \in \{0, 1, 2, \dots, |\mathcal{D}|\}$$
 do

Construct the state s_i using \mathbf{x}_i

The agent makes a decision according to $a_i = \arg\max Q^{\pi}(s_i, a)$

if $a_i = 1$ then

Obtain the annotation \mathbf{y}_i
 $\mathcal{D}_l \leftarrow \mathcal{D}_l + (\mathbf{x}_i, \mathbf{y}_i)$

Update model ϕ based on \mathcal{D}_l

end if

Receive a reward r_i using held-out set

Construct the new state s_{i+1} Store transition (s_i, a_i, r_i, s_{i+1}) in \mathcal{M} Sample random minibatch of transitions $\{(s_j, a_j, r_j, s_{j+1})\}$ from \mathcal{M} , and perform gradient descent step on $\mathcal{L}(\theta)$ Update policy π with θ end for

for episode =
$$1, 2, \dots, N$$
 do

• Remarks on the Q-learning algorithm:

for episode =
$$1, 2, \dots, N$$
 do

- Remarks on the Q-learning algorithm:
 - \diamond input: unlabelled dataset D

for episode =
$$1, 2, \dots, N$$
 do

- Remarks on the Q-learning algorithm:
 - \diamond input: unlabelled dataset D
 - \diamond output: a series of actions (a_i) : policy π

Relaxation 1: Transfer Policy

• train annotation policy π in source language (e.g., English) and transfer it to low-source target language

Relaxation 1: Transfer Policy

• train annotation policy π in source language (e.g., English) and transfer it to low-source target language

```
Algorithm 2 Active learning by policy transfer
Input: unlabelled data \mathcal{D}, budget \mathcal{B}, policy \pi
Output: \mathcal{D}_i
                       target low-source

 D<sub>1</sub> ← ∅

 2: φ ← Random
 3: for |\mathcal{D}_i| \neq \mathcal{B} and \mathcal{D} not empty do
         Randomly sample \mathbf{x}_i from the data pool \mathcal{D}
         and construct the state s_i
         The agent chooses an action a_i according to
         a_i = \arg \max Q^{\pi}(s_i, a)
         if a_i = 1 then
            Obtain the annotation y_i
      \mathcal{D}_l \leftarrow \mathcal{D}_l + (\mathbf{x}_i, \mathbf{v}_i)
            Update model \phi based on \mathcal{D}_{l}
         end if
10.
        \mathcal{D} \leftarrow \mathcal{D} \backslash \mathbf{x}_i exclude the annotated sentence from raw datase
11:
         Receive a reward r_i using held-out set
12.
         Update policy \pi
13:
14: end for only one episode to mimic the source scarcity
15: return \mathcal{D}_l
```

Relaxation 2: Transfer Model and Policy

• train a classification model ϕ and annotation policy π in source language (e.g., English) and transfer both to low-source target language

Relaxation 2: Transfer Model and Policy

- ullet train a classification model ϕ and annotation policy π in source language (e.g., English) and transfer both to low-source target language
- ② this relaxation is more like a test and implementation procedure

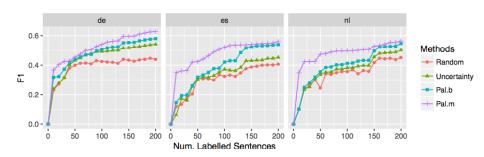
```
Algorithm 3 Active learning by policy and model
transfer, for 'cold-start' scenario
Input: unlabelled data \mathcal{D}, budget \mathcal{B}, policy \pi,
      \operatorname{model}_{\underline{\phi}} trained
Output: \mathcal{D}_l classification model

 D<sub>1</sub> ← ∅

 2: for |\mathcal{D}_l| \neq \mathcal{B} and \mathcal{D} not empty do
         Randomly sample \mathbf{x}_i from the data pool \mathcal{D}
          and construct the state s_i
         The agent chooses an action a_i according to
          a_i = \arg \max Q^{\pi}(s_i, a)
        if a_i = 1 then
             \mathcal{D}_l \leftarrow \mathcal{D}_l + (\mathbf{x}_i, -) annotate based on \phi
         end if
         \mathcal{D} \leftarrow \mathcal{D} \backslash \mathbf{x}_i
  9: end for
```

Numerical Experiments

A couple of numerical experiments show that the newly proposed active learning approach by deep Q-learning works better than some existing active learning methods such as uncertainty sampling and random sampling.



Thank You!

.....Question?