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CHAPTER 1

Introduction

3D scene understanding and object recognition are among the grandest challenges in computer
vision. A wide variety of techniques and goals, such as structure from motion, optical flow,
stereo, edge detection, and segmentation, could be viewed as subtasks within scene understand-
ing and recognition. Many of these applicable methods are detailed in computer vision books
(e.g., [208, 73, 92, 224]), and we do not aim to repeat these details. Instead, we focus on high-
level representations for scenes and objects, particularly representations that acknowledge the 3D
physical scene that underlies the image. This book aims to help the reader answer the following

questions:

e How does the 2D image relate to the 3D scene, and how can we take advantage of that

perspective relation?

e How can we model the physical scene space, and how can we estimate scene space from

an image?
e How can we represent and recognize objects in ways that are robust to viewpoint change?

e How can we use knowledge of perspective and scene space to improve recognition, or

vice versa?

1. Why We Should Interpret Images as Physical Scenes

Objects live and interact in the physical space of the scene, not in the pixel space of the image.
If we want computers to describe objects, predict their actions, and interact with the environment,
then we need algorithms that interpret images in terms of the underlying 3D scene. In some cases,

such as 3D reconstruction and navigation, we care about the 3D interpretation itself. In others,
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FIGURE 1.1. Several applications that require 3D scene interpretation from images. (a)
Automatic 3D reconstruction from a single image; (b) Interpretation of 3D surface orienta-
tions, occlusion boundaries, and detected objects; (c) Use of surface layout for long-range
path planning of a robot; (d) Insertion of objects from 3D models (left two scenes) or image
regions (right two scenes), based on inferred perspective and lighting. Figures excerpted
from: (a) [99]; (b) [103]; (c) [164]; (d, left) Kevin Karsch, unpublished; (d, right) [130].

such as object recognition and scene interpretation, we may not be particularly concerned about
the depth of objects and surfaces, but a 3D interpretation can provide a more powerful context or
frame for reasoning about physical interaction. Here, we discuss several applications and how they

can benefit from accounting for the physical nature of scenes (see Figure 1.1 for examples).

3D Reconstruction: Growing popularity of 3D displays is leading to growing demand to create
3D models of scenes from photographs. From a single image, 3D reconstruction requires interpret-
ing the pixels of the image as surfaces with depths and orientations. Often, perfect depth estimates
are not necessary; a rough sense of geometry combined with texture mapping provides convincing

detail. In Chapter 6, we will discuss two approaches for 3D reconstruction from a single image.

Robot Navigation: We are getting closer and closer to being able to create household robots and
cars that drive themselves. Such applications require finding paths, detecting obstacles, and pre-
dicting other objects’ movements within the scene space. Mobile robots and autonomous vehicles
will likely have additional depth sensors, but image analysis is required for long-range planning
and for integrating information across multiple sensors. Most important, we need to develop good

abstractions for interaction and prediction in the physical space.
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Scene Interpretation: For applications such as security, robotics, and multimedia organization,
we need to interpret the scene from images. We want, not just to list the objects, but to infer their
goals and interactions with other objects and surfaces. This requires the ability to estimate spatial

layout, occlusion boundaries, object pose, shadows, light sources, and other scene elements.

Content Creation: Every day, people around the world capture millions of snapshots of life on
digital cameras and cell phones. But sometimes we want to create our own reality. We want to
remove that ex-boyfriend from the Paris photo and fill in the background or to add a goofy alien
into our living room for the Christmas photo or to depict Harry Potter shooting a glowing Petronus
at a specter. In all of these cases, our job is much easier if we can interpret the images in terms of
occlusion boundaries, spatial layout, physical lighting, and other scene properties. For example,
to add a 3D model of an alien into the photograph, we need to know what size and perspective to

render, how the object should be lit, and how the shading will change on nearby surfaces.

2. Why We Should Model Objects in 3D

We want to recognize objects so that we know how to interact with them, can predict their move-
ments, and can describe them to others. For example, we want to know which way an object
is pointing and how to pick it up. Such knowledge requires some sense of the 3D layout of the
objects. Spatial layout could be represented with a large number of 2D views, a full 3D model,
or something in-between. Object representations that more explicitly account for the 3D nature
of objects have the potential for interpolation between viewpoints, more compact representations,
and better generalization for new viewpoints and poses. 3D models of objects are also crucial
for 3D reconstruction, object grasping, and multi-view recognition, and 3D models are helpful for

tracking and reasoning about occlusion.

3. Overview of Book

As outlined below, this book aims to provide an understanding of important concepts in 3D scene
and object representation and inference from still images. We focus on recent efforts to fuse
models of geometry and perspective with statistical learning. We do not cover some of the more
traditional approaches to geometric scene modeling, such as structure-from-motion, stereoscopic
images, laser range finders, and structured light, which tend to draw on on different techniques.
Yet, even within our limited scope, we cannot describe all related work in detail. Instead, we
introduce each of the major topics with a broad representative overview of related work, followed

by discussion of key concepts and techniques, and concluded with a more detailed description of a
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few sample approaches. The detailed samples, often drawn from our own work, are illustrative but

not fully representative of the important efforts by many research groups. We encourage the reader

to explore beyond this book and hope that some will be inspired to forge new frontiers in 3D scene

interpretation and object recognition.

Part I: Interpretation of Physical Space from an Image

Chapter 2: Background on 3D Scene Models: Provides a brief overview of theories and
representations for 3D scene understanding and representation.

Chapter 3: Single-view Geometry: Introduces basic concepts and mathematics of per-
spective and single-view geometry.

Chapter 4: Modeling the Physical Scene: Catalogues the elements of scene understanding
and organizes the representations of physical scene space.

Chapter 5: Categorizing Images and Regions: Summarizes concepts in machine learning
and feature representations needed to learn models of appearance from images.

Chapter 6: Examples of 3D Scene Interpretation: Describes three approaches to interpret

3D scenes from an image, illustrating some of the ideas from earlier chapters.

Part I1: Recognition of 3D Objects from an Image

Part I11:

Chapter 7: Background on 3D Recognition: Provides a brief overview of theories and
representations for 3D objects.

Chapter 8: Modeling 3D Objects: Reviews recently proposed computational models for
3D object recognition and categorization.

Chapter 9: Recognizing and Understanding 3D Objects: Discusses datasets and machine
learning techniques for 3D object recognition.

Chapter 10: Examples of 2D 1/2 Layout Models: Describes two approaches to represent
objects, learn the appearance models, and recognize them in novel images, exemplifying

the ideas from the earlier chapters.
Integrated 3D Scene Interpretation

Chapter 11: Reasoning about Objects and Scenes: Discusses and provides examples of
the relations of objects and scenes can be modeled and used to improve accuracy and
consistency of interpretation.

Chapter 12: Cascades of Classifiers: Describes a simple sequential approach to synergis-
tically combining multiple scene understanding tasks, with two detailed examples.
Chapter 13: Conclusion and Future Directions: Briefly discusses a few important direc-

tions for future work.



PART 1

Interpretation of Physical Space from an Image

3D scene understanding has long been considered the grand challenge of computer vision. In
Chapter 2, we survey some of the theories and approaches that have been developed by cognitive
scientists and artificial intelligence researchers over the past several decades. To even begin to fig-
ure out how to make computers interpret the physical scene from an image, we need to understand
the consequences of projection and the basic math behind projective geometry, which we lay out
in Chapter 3. In Chapter 4, we discuss some of the different ways that we can model the physical
scene and spatial layout. To apply scene models to new images, most current approaches train
classifiers to predict scene elements from image features. In Chapter 5, we provide some guide-
lines for choosing features and classifiers and summarize some broadly useful image cues. Finally,
in Chapter 6, we describe several approaches for recovering spatial layout from an image, drawing

on the ideas discussed in the earlier chapters.






CHAPTER 2

Background on 3D Scene Models

The beginning of knowledge is the discovery of something we do not understand.
Frank Herbert (1920 - 1986)

The mechanism by which humans can perceive depth from light is a mystery that has inspired
centuries of vision research, creating a vast wealth of ideas and techniques that make our own
work possible. In this chapter, we provide a brief historical context for 3D scene understanding,

ranging from early philosophical speculations to more recent work in computer vision.

1. Theories of Vision

The elementary impressions of a visual world are those of surface and edge.
James Gibson, Perception of a Visual World (1950)

For centuries, scholars have pondered the mental metamorphosis from the visual field (2D retinal
image) to the visual world (our perception of 3D environment). In 1838, Charles Wheatstone [256]
offered the explanation of stereopsis, that “the mind perceives an object of three dimensions by
means of the two dissimilar pictures projected by it on the two retina.” Wheatstone convincingly

demonstrated the idea with the stereoscope but noted that the idea applies only to nearby objects.

Hermann von Helmholtz, the most notable of the 19th century empiricists, believed in an “uncon-
scious inference”, that our perception of the scene is based, not only on the immediate sensory
evidence, but on our long history of visual experiences and interactions with the world [252]. This
inference is based on an accumulation of evidence from a variety of cues, such as the horizon,

shadows, atmospheric effects, and familiar objects.
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Gibson laid out [77] a theory of visual space perception which includes the following tenets: 1)
the fundamental condition for seeing the visible world is an array of physical surfaces, 2) these
surfaces are of two extreme types: frontal and longitudinal, and 3) perception of depth and distance
is reducible to the problem of the perception of longitudinal surfaces. Gibson further theorized that

gradients are the mechanism by which we perceive surfaces.

By the 1970s, several researchers had become interested in computational models for human vi-
sion. Barrow and Tenenbaum proposed the notion of intrinsic images [12], capturing character-
istics, such as reflectance, illumination, surface orientation, and distance, that humans are able to
recover from an image under a wide range of viewing conditions. Meanwhile, David Marr pro-
posed a three-stage theory of human visual processing [157]: from primal sketch (encoding edges
and regions boundaries), to 2%D sketch (encoding local surface orientations and discontinuities),
to the full 3D model representation.

1.1. Depth and Surface Perception

The extent and manner in which humans are able to estimate depth and surface orientations has
long been studied. Though the debate continues on nearly every aspect of recovery and use of
spatial layout, some understanding is emerging. Three ideas in particular are highly relevant: 1)
that monocular cues provide much of our depth and layout sensing ability; 2) that an important
part of our layout representation and reasoning primarily is based on surfaces, rather than metric

depth; and 3) that many scene understanding processes depend on the viewpoint.

Cutting and Vishton [39], using a compilation of experimental data where available and logical
analysis elsewhere, rank visual cues according to their effectiveness in determining ordinal depth
relationships (which object is closer). They study a variety of monocular, binocular, and motion
cues. They define three spatial ranges: personal space (within a one or two meters), action space
(within thirty meters), and vista space (beyond thirty meters) and find that the effectiveness of a
particular cue depends largely on the spatial range. Within the personal space, for instance, the
five most important cues primarily correspond to motion and stereopsis: interposition,! stereopsis,
parallax, relative size, and accommodation. In the vista range, however, all of the top five cues
are monocular: interposition, relative size, height in visual field, relative density, and atmospheric
perspective. Likewise, in the action range, three of the top five most important cues are monocular.
Cutting and Vishton suggest that stereo and motion cues have been overemphasized due to their

'Note that interposition provides near-perfect ordinal depth information, since the occluding object is always in
front, but is uninformative about metric depth.



1 THEORIES OF VISION

importance in the personal space and that much more study is needed in the monocular cues that

are so critical for spatial understanding of the broader environment.

Koenderink and colleagues [121, 120] experimentally measure the human’s ability to infer depth
and local orientation from an image. Their subjects were not able to accurately (or even consis-
tently) estimate depths of a 3D form (e.g., a statue), but could indicate local surface orientations.
They further provide evidence that people cannot determine the relative depth of two points unless
there is some visible and monotonic surface that connects them. Zimmerman et al. [273] provide
additional evidence that people can make accurate slant judgements but are unable to accurately
estimate depth of disconnected surfaces. These experimental results confirm the intuitions of Gib-
son and others — that humans perceive the 3D scene, not in terms of absolute depth maps, but in

terms of surfaces.

There has been an enormous amount of research into the extent to which scene representations
and analysis are dependent on viewpoint. If human visual processing is viewpoint-independent,
the implication is that we store 3D models of scenes and objects in our memory and manipulate
them to match the current scene. Viewpoint-independence, however, implies that the retinotopic
image must somehow be registered to the 3D model. In a viewpoint-dependent representation, dif-
ferent models are stored for different views. While it is likely that both viewpoint-dependent and
viewpoint-independent storage and processing exist, the evidence indicates that a view-dependent
representation is more dominant. For instance, Chua and Chun [31] find that implicit scene en-
codings are viewpoint dependent. Subjects were able to find targets faster when presented with
previously viewed synthetic 3D scenes, but the gain in speed deteriorates as the viewpoint in a
repeated viewing differs from the original. Gottesman [79] provides further evidence with exper-
iments involving both photographs and computer-generated images. The subjects are first primed
with an image of the scene and then presented with the target, which is the same scene rotated
between 0 and 90 degrees. When asked to judge the distance between two objects in the target
scene, response times increased with larger differences in viewpoint between the prime and the
target. See Chapter 7 for further discussion of theories of 3D object recognition by humans.

1.2. A Well-Organized Scene

Irving Biederman [16] characterizes a well-organized scene as one that satisfies five relational con-
straints: support, interposition, probability of appearance, position, and size. See Figure 2.1 for
illustrations. In order, these properties are described as follows: objects tend to be supported by
a solid surface; the occluding object tends to obscure the occluded object; some objects are more

likely to appear in certain scenes than others; objects often belong in a particular place in the scene;

9



CHAPTER 2. BACKGROUND ON 3D SCENE MODELS
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FIGURE 2.1. Examples violations of Biederman’s five relational constraints. On the left is
a violation of position; in the center, a violation of interposition; and on the right, there are
violations of support, size, and probability of appearance. Illustration from [16], used with
permission.

and objects usually have a small range of possible sizes. Though he does not explain how these re-
lationships are perceived, Biederman supplies evidence that they are extremely valuable for scene
understanding. For instance, when a subject is asked to determine whether a particular object is
present in a scene, the response time increases when the object violates one of the relational con-
straints listed above. Hollingworth and Henderson [108] have questioned these results (particularly
for probability of appearance), showing that experimental biases could account for some of the re-
ported differences. Instead, they suggest that people may be more likely to remember unusual or
unexpected objects, possibly due to memory or attentional processes responding to surprise. This
consistency effect, that humans tend to remember objects that are somehow inconsistent with their
environment, has long been studied (e.g., [98, 182]) and is further evidence that such relational

constraints play an important role in recognition and scene understanding.

2. Early Computer Vision and Al

Given a single picture which is a projection of a three-dimensional scene onto
the two-dimensional picture plane, we usually have definite ideas about the 3-D
shapes of objects. To do this we need to use assumptions about the world and
the image formation process, since there exist a large number of shapes which
can produce the same picture.

Takeo Kanade, “Recovery of the Three-Dimensional Shape of an Object from a
Single View” (1981)

In its early days, computer vision had but a single grand goal: to provide a complete semantic

interpretation of an input image by reasoning about the 3D scene that generated it. Some of this

10
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(a) Bottom-up process (b) Top-down process (c) Result

FIGURE 2.2. A system developed in 1978 by Ohta, Kanade and Sakai [174, 173] for
knowledge-based interpretation of outdoor natural scenes. The system is able to label an
image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown. Figure used
with permission.

effort focused on achieving 3D reconstructions of objects or simple scenes, usually from line draw-
ings. For example, Kanade [117] demonstrates how assumptions about geometric properties such
as planarity, parallelism and skewed symmetry can be used to reconstruct the 3D shape of a chair.
Barrow and Tenenbaum [13] suggest that contour information should be combined with other cues,
such as texture gradient, stereopsis, and shading and speculate on the primacy of geometric cues

in early vision.

Initial attempts at a broader scene understanding focused largely on toy “blocks worlds™ [188, 87],
but, by the 1970s, several extremely sophisticated approaches were proposed for handling real
indoor and outdoor images. For instance, Yakimovsky and Feldman [262] developed a Bayesian
framework for analyzing road scenes that combined segmentation with semantic domain informa-
tion at the region and inter-region level. Tenenbaum and Barrow proposed Interpretation-Guided
Segmentation [230] which labeled image regions, using constraint propagation to arrive at a glob-
ally consistent scene interpretation. Ohta, Kanade and Sakai [174, 173] combined bottom-up pro-
cessing with top-down control for semantic segmentation of general outdoor images. Starting with
an oversegmentation, the system generated “plan images” by merging low-level segments. Domain
knowledge was represented as a semantic network in the bottom-up process (Figure 2.2a) and as
a set of production rules in the top-down process (Figure 2.2b). Results of applying this semantic
interpretation to an outdoor image are shown on Figure 2.2c. By the late 1970s, several complete
image understanding systems were being developed including such pioneering work as Brooks’
ACRONYM [24] and Hanson and Riseman’s VISIONS [90]. For example, VISIONS was an am-
bitious system that analyzed a scene on many interrelated levels including segments, 3D surfaces

and volumes, objects, and scene categories.

11



CHAPTER 2. BACKGROUND ON 3D SCENE MODELS

It is interesting to note that a lot of what are considered modern ideas in computer vision — region
and boundary descriptors, superpixels, combining bottom-up and top-down processing, Bayesian
formulation, feature selection, etc. — were well-known three decades ago. But, though much
was learned in the development of these early systems, it was eventually seen that the hand-tuned

algorithms could not generalize well to new scenes.

This, in turn, lead people to doubt the very goal of complete image understanding. However, it
seems that the early pioneers were simply ahead of their time. They had no choice but to rely on
heuristics because they lacked the large amounts of data and the computational resources to learn

the relationships governing the structure of our visual world.

3. Modern Computer Vision

The failures of early researchers to provide robust solutions to many real-world tasks led to a
new paradigm in computer vision: rather than treat the image as a projection from 3D, why not
simply analyze it as a 2D pattern? Statistical methods and pattern recognition became increasingly
popular, leading to breakthroughs in face recognition, object detection, image processing, and
other areas. Success came from leveraging modern machine learning tools, large data sets, and

increasingly powerful computers to develop data-driven, statistical algorithms for image analysis.

It has become increasingly clear, however, that a purely 2D approach to vision cannot adequately
address the larger problem of scene understanding because it fails to exploit the relationships that
exist in the 3D scene. Several researchers have responded, and much progress in recent years has
been made in spatial perception and representation and more global methods for reasoning about

the scene.

Song-Chun Zhu and colleagues have contributed much research in computational algorithms for
spatial perception and model-driven segmentation. Guo, Zhu, and Wu [82] propose an imple-
mentation of Marr’s primal sketch, and Han and Zhu [89] describe a grammar for parsing image
primitives. Tu and Zhu [244] describe a segmentation method based on a generative image rep-
resentation that could be used to sample multiple segmentations of an image. Barbu and Zhu [9]

propose a model-driven segmentation with potential applications to image parsing [243].

Nitzberg and Mumford [170] describe a 2.1D sketch representation, a segmentation and layering of
the scene, and propose an algorithm for recovering the 2.1-D sketch from an image. The algorithms
consists of three phases: finding edges and T-junctions, hypothesizing edge continuations, and
combinatorially finding the interpretation that minimizes a specified energy function. They show

that the algorithm can account for human interpretations of some optical illusions. Huang, Lee,

12



3 MODERN COMPUTER VISION

and Mumford [112] investigate the statistics of range images, which could help provide a prior on

the 3D shape of the scene.

Oliva and Torralba [175, 176] characterize the “spatial envelope” of scenes with a set of continuous
attributes: naturalness, openness, roughness, expansion, and ruggedness. They further provide an
algorithm for estimating these properties from the spectral signature of an image and, in [239],
used similar algorithms to estimate mean depth of the scene. These concepts have since been
applied to object recognition [162, 219] and recovery of depth information based on objects in an
image [220].

Other recent works have attempted to model the 3D scene using a wide variety of models, includ-
ing: a predefined set of prototype global scene geometries [166]; a gist [175] of a scene describing
its spatial characteristics; a 3D box [109, 207, 94] or collection of 3D polyhedrals [88, 177];
boundaries between ground and walls [10, 43, 133]; depth-ordered planes [269]; a pixel labeling
of approximate local surface orientations [102], possibly with ordering constraints [107, 148]; a
blocks world [85]; or depth estimates at each pixel [197].

In the following three chapters, we discuss many ways to model the space of scenes and relevant
techniques and features to estimate them from images, including a detailed discussion of three

representative approaches.
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CHAPTER 3

Single-view Geometry

When we open an eye or take a photograph, we see only a flattened, two-dimensional projection
of the physical underlying scene. The consequences are numerous and startling. Size relationships
are distorted, right angles are suddenly wrong, and parallel lines now intersect. Objects that were
once apart are now overlapping in the image, so that some parts are not visible. At first glance, it
may seem that the imaging process has corrupted a perfectly reasonable, well-ordered scene into
a chaotic jumble of colors and textures. However, with careful scene representation that accounts

for perspective projection, we can tease out the structure of the physical world.

In this chapter, we summarize the consequences of the imaging process and how to mathematically
model perspective projection. We will also show how to recover an estimate of the ground plane,

which allows us to recover some of the relations among objects in the scene.

1. Consequences of Projection

The photograph is a projection of the 3D scene onto a 2D image plane. Most cameras use a
perspective projection. Instead of recording the 3D position of objects (X,Y,Z), we observe their
projection onto the 2D image plane at (u,v). In this projection, a set of parallel lines in 3D will
intersect at a single point, called the vanishing point. A set of parallel planes in 3D intersect in a
single line, called the vanishing line. The vanishing line of the ground plane, called the horizon,
is of particular interest because many objects are oriented according to the ground and gravity. See

Figure 3.1 for an illustration of vanishing points and lines.

Another major consequence of projection is occlusion. Because light does not pass through most
objects, only the nearest object along a ray is visible. Take a glance at the world around you.

Every object is occluding something, and most are partially occluded themselves. In some ways,
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T Vertical vanishing
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(at infinity)
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FIGURE 3.1. Illustration of vanishing points and lines. Lines that are parallel in 3D inter-
sect at a point in the image, called the vanishing point. Each set of parallel lines that is
parallel to a plane will intersect on the vanishing line of that plane. The vanishing line of
the ground plane is called the horizon. If a set of parallel lines is also parallel to the image
plane, it will intersect at infinity. Three finite orthogonal vanishing points can be used to
estimate the intrinsic camera parameters. Figure from [37].

Optical «—P=|Y
Center

Camera
Center

(to t, t,)

FIGURE 3.2. Illustration of pinhole camera model. The camera, with focal length f and
optical center (ug,vo), projects from a 3D point in the world to a 2D point on the image
plane.

occlusion simplifies the scene interpretation. Imagine if you could see every object for miles in
a single projection! In other ways, occlusion makes scene interpretation more difficult by hiding
parts and disturbing silhouettes.

2. Perspective Projection with Pinhole Camera: 3D to 2D

We often assume a pinhole camera to model projection from 3D to 2D, as shown in Figure 3.2.
Under this model, light passes from the object through a small pinhole onto a sensor. The pinhole
model ignores lens distortion and other non-linear effects, modeling the camera in terms of its
intrinsic parameters (focal length f, optical center (ug,vg), pixel aspect ratio ¢, and skew s) and
extrinsic parameters (3D rotation R and translation t). Although the image plane is physically

behind the pinhole, as shown in the figure, it is sometimes convenient to pretend that the image
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plane is in front, with focal length f, so that the image is not inverted. If we assume no rotation (R
is identity), and camera translation of (0,0,0), with no skew and unit aspect ratio, we can use the

properties of similar triangles to show that u —ug = f % andv—vy=f %

We can more easily write the projection as a system of linear equations in homogeneous coor-
dinates. These homogeneous coordinates add a scale coordinate to the Cartesian coordinates,
making them convenient for representing rays (as in projection) and direction to infinitely distant
points (e.g., where 3D parallel lines intersect). To convert from Cartesian to homogeneous coor-
dinates, append a value of 1 (e.g., (u,v) — (u,v,1) and (X,Y,Z) — (X,Y,Z,1)). To convert from

homogeneous to Cartesian coordinates, divide by the last coordinate (e.g., (u,v,w) — (u/w,v/w)).

Under homogeneous coordinates, our model of pinhole projection from 3D world coordinates

(X,Y,Z) to image coordinates (u,v) is written as follows:

X X

w-u % w-u f s u ril ri2 ri3 te %

3.1) | w-v | =K[R] Zlor|wy = 0 af v 1 TR 3ty 7
w 1 w 0 0 1 r31 ri rz i 1

Note that the intrinsic parameter matrix K has only five parameters and that the rotation and transla-
tion each have three parameters, so that there are 11 parameters in total. Even though the rotation
matrix has nine elements, each element can be computed from the three angles of rotation. We
commonly assume unit aspect ratio and zero skew as a good approximation for most modern cam-
eras. Sometimes, it is also convenient to define world coordinates according to the camera position

and orientation, yielding the simplified

w-u f 0 uy X
3.2) wv [ =10 f v Y
w 0 0 1 Z

From this equation, we get the same result as we found using similar triangles in Figure 3.2. In

Cartesian coordinates, u = f % +upand v = f% +vp.

3. 3D Measurement from a 2D Image

As illustrated in Figure 3.3, an infinite number of 3D geometrical configurations could produce
the same 2D image, if only photographed from the correct perspective. Mathematically, therefore,
we have no way to recover 3D points or measurements from a single image. Fortunately, because
our world is so structured, we can often make good estimates. For example, if we know how the
camera is rotated with respect to the ground plane and vertical direction, we can recover the relative

3D heights of objects from their 2D positions and heights.
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A
e

Original Image Interpretation 1: Painting on Ground

Interpretation 2: Floating Objects Interpretation 3: Man in Field

FIGURE 3.3. Original image and novel views under three different 3D interpretations.
Each of these projects back into the input image from the original viewpoint. Although
any image could be produced by any of an infinite number of 3D geometrical configura-
tions, very few are plausible. Our main challenge is to learn the structure of the world to
determine the most likely solution.

Depending on the application, the world coordinates can be encoded using either three orthogonal
vanishing points or the projection matrix, leading to different approaches to 3D measurement.
When performing estimation from a single image, it is helpful to think in terms of the horizon line

(the vanishing line of the ground plane) and the vertical vanishing point.

For example, look at the 3D scene and corresponding image in Figure 3.4. Suppose the camera
is level with the ground, so that the vertical vanishing point is at infinity and the horizon is a line

through row v;,. Then, if a grounded object is as tall as the camera is high, the top of the object
Vi—Vp
Vi—Vp’

will be projected to v, as well. We can use this and basic trigonometry to show that % =
where Y, is the 3D height at the top of the object (defining the ground at Y = 0), Y, is the camera
height, and v, and v, are the top and bottom positions of the object in the image. This relationship
is explored in more detail in Hoiem et al. [104] and used to aid in object recognition, a topic we

will discuss in a later chapter.
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3 3D MEASUREMENT FROM A 2D IMAGE

FIGURE 3.4. The measure of man. Even from one image, we can measure the object’s
height, relative to the camera height, if we can see where it contacts the ground.

R (reference point)

[T-B||>-R| &
| [R-B||=-T| R
T (top of object) scene cross ratio

[H kbllv,-r 1
[e=bllv.-t R
image cross ratio

w
B (bo of object)

ground plane

FIGURE 3.5. This figure by Steve Seitz illustrates the use of the cross-ratio to make world
measurements from an image.

As shown by Criminisi et al. [38], the cross ratio invariant can be used to relate the 3D heights of
objects under more general conditions. The cross ratio of 4 collinear points (e.g., %,
for any collinear points p;.4) does not change under projective transformations. If one of those
points is a vanishing point, then its 3D position is at infinity, simplifying the ratio. Using the
vertical vanishing point, we can recover the relative heights of objects in the scene (see Figure 3.5

for an illustration).
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We have a special case when the camera is upright and not slanted so that the vertical vanishing

point is at infinity in the image plane. In this case, vz = o, so we have Q%’;’; = ﬁ, where Y is
the height of the top of the object, ¥}, is the height at the bottom, Y, is the height of the camera, and

V¢, Vp, and vy, are the image row coordinates of the object and horizon.

4. Automatic Estimation of Vanishing Points

Recall that all lines with the same 3D orientation will converge to a single point in an image, called
a vanishing point. Likewise, sets of planes converge to a vanishing line in the image plane. If a
set of parallel lines is also parallel to a particular plane, then their vanishing point will lie on the

vanishing line of the plane.

If we can recover vanishing points, we can use them to make a good guess at the 3D orientations
of lines in the scene. As we will see, if we can recover a triplet of vanishing points that correspond
to orthogonal sets of lines, we can solve for the focal length and optical center of the camera.
Typically, two of the orthogonal vanishing points will be on the horizon and the third will be in the
vertical direction. If desired, we can solve for the rotation matrix that sets the orthogonal directions
as the X, Y, and Z directions.

Most vanishing point detection algorithms work by detecting lines and clustering them into groups
that are nearly intersecting. If we suspect that the three dominant vanishing directions will be
mutually orthogonal, e.g., as in architectural scenes, we can constrain the triplet of vanishing
points to provide reasonable camera parameters. However, there are a few challenges that make
the problem of recovering vanishing points robustly much more tricky than it sounds. In the scene,
many lines, such as those on a tree’s branches, point in unusual 3D orientations. Nearly all pairs of
lines will intersect in the image plane, even if they are not parallel in 3D, leading to many spurious
candidates for vanishing points. Further, inevitable small errors in line localization cause sets of
lines that really are parallel in 3D not to intersect at a single point. Finally, an image may contain
many lines, and it is difficult to quickly find the most promising set of vanishing points.

Basic algorithm to estimate three mutually orthogonal vanishing points:

1. Detect straight line segments in an image, represented by center (u;,v;) and angle 6; in ra-
dians. Ignore lines with fewer than L pixels (e.g., L=20), because these are less likely to be
correct detections or to have large angular error. Kosecka and Zhang [123] describe an ef-
fective line detection algorithm (see Derek Hoiem’s software page for an implementation,

currently at http://www.cs.illinois.edu/homes/dhoiem/software).
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2. Find intersection points of all pairs of lines to create a set of vanishing point candidates.
It’s easiest to represent points in homogeneous coordinates, p; = [w;u; w;v; wi T, and lines
in the form 1; = [q; b; c,-]T using the line equation ax + by 4+ ¢ = 0. The intersection of
lines 1; and 1; is given by their cross product: p;; = 1; X 1;. If the lines are parallel, then
w;j = 0. Likewise, the line formed by two points p; and p; is given by their cross product:
lij =pi xpj.

3. Compute a score s; for each vanishing point candidate (u;,v;): s; = Y;|l;|exp (— W#;f”) ,
where |/;| is the length and 6; is the orientation (in radians) of line segment i, ¢; is the
angle from the center of the line segment (u;,v;) to (u;,v;) in radians, and o is a scale
parameters (e.g., ¢ = 0.1). In the distance between angles, note that —27 = 0 = 2.

4. Choose the triplet with the highest total score that also leads to reasonable camera param-
eters. For a given triplet, p;, p;, Pk, the total score is s; jx = s;+ 5 + s;. Orthogonality con-
straints specify: (K*Ipi)T (K~ 'p;) =0; (K*Ip,-)T (K~ 'px) =0; and (K*ij)T (K 'py) =
0, where K 1is the 3x3 matrix in Eq. 3.2 and the points are in homogeneous coordinates.
With three equations and three unknowns, we can solve for ug, vg, and f. We consider

(up, vp) within the image bounds and f > 0 to be reasonable parameters.

The algorithm described above is a simplified version of the methods in Rother [189] and Hedau et
al. [94]. Many other algorithms are possible, such as [123, 226, 11], that improve efficiency, handle
vanishing points that are not mutually orthogonal, incorporate new priors, or have different ways
of scoring the candidates. Implementations from Tardif [226] and Barinova et al. [11] are available
online. Sometimes, for complicated or non-architectural scenes, example-based methods [239,

104] may provide better estimates of perspective than vanishing point based methods.

5. Summary of Key Concepts

The camera projects 3D points onto a 2D imaging plane. In consequence, parallel 3D lines con-
verge to a vanishing point on the image plane, size relationships and angles between lines are
distorted, and nearer objects occlude further objects along a ray. The true sizes, positions, and
orientations of objects and surfaces can often be recovered by modeling the camera, typically with
a pinhole camera model. The reader should understand and memorize the pinhole projection equa-
tion (Eq. 3.1) and the notation of the intrinsic and extrinsic camera matrices. To recover 3D size
and position in an image, we need to know the distance and orientation between the camera and the

supporting 3D plane, typically through vanishing point estimation or detection of known objects.
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CHAPTER 4

Modeling the Physical Scene

All models are wrong, but some are useful.
George E.P. Box and Norman R. Draper, Empirical Model-Building and Re-
sponse Surfaces (1987)

When we humans see a photograph, we see not just a 2D pattern of color and texture, but the world
behind the image. How do we do it? Many theories have been proposed, from Gestalt emergence to
Helmholtzian data-driven unconscious inference to Gibson’s ecological approach. We can think of
the world as a set of schema or frames, with each scene organized according to some overarching
structure or as a set of local observations that somehow fits together. The brain is elegant for its
robustness, not for its simplicity. More like a spaceship, with lots of redundant systems, than a
race car in which non-essentials are pared away. In short, there are many ways to represent a scene
and many ways to infer those representations from images. We researchers do not need to come up
with the single best representation. Instead, we should propose multiple modes of representation
and try to understand how to organize them into a functioning system that enables interpretation of
physical scenes from images.

In this chapter, we consider how to model the physical scene. In Section 1, we separately describe
many components of the scene. Then, in Section 2, we survey some proposed approaches to model

the overall scene space.

1. Elements of Physical Scene Understanding

Though not a perfect dichotomy, it is sometimes helpful to think of the world as composed of

objects and surfaces, or, in Adelson’s terms “things” and “stuff” [1]. Objects, the things, have a
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finite form and tend to be countable and movable. Surfaces, the stuff, are amorphous and uncount-
able like sand, water, grass, or ground. If you break off a piece of stuff, you still have stuff. If
you break off a piece of an object, you have part of an object. Surfaces are the stage; objects are
the players and props. To understand a 3D scene, we need to interpret the image in terms of the
various surfaces and objects, estimating their visual and semantic properties within the context of

the event.

1.1. Elements

Surfaces can be described by geometry (depth, orientation, closed shape, boundaries), material,
and category. For example, we may want to know: that a particular surface is flat, horizontal,
long, and rectangular; that the material absorbs little water, is very hard and rough, and is called
concrete; and that the surface as a whole is called a sidewalk. Sometimes, it is helpful to decompose
the pixel intensity into shading and albedo terms. The resulting shading and albedo maps are often
called “intrinsic images” [225], though the original definition of intrinsic images [12] encompassed
geometric properties of surfaces as well as illumination properties. Shading, a function of surface
orientation and light sources, provides cues for surface orientation and shape. Albedo specifies the
fraction of reflected light as a function of the wavelength (the surface brightness and color) and is

a property of the material.

Objects can be described according to their surfaces (geometry and material), as well as their
shapes, parts, functionality, condition, pose, and activity, among other attributes. For a particular
object, we may want to find its boundaries, to identify it as an animal, and specifically a dalmatian
(dog), determine that it is lying down on the sidewalk several feet away, and that it is looking
towards its owner who is holding it on a leash. Object categories are useful for reference, but we

also want to know what an object is doing and its significance within a particular scene.

Materials can be described by category names (mostly useful for communication) or properties,
such as hardness, viscosity, roughness, malleability, durability, albedo, and reflectivity. The mate-
rial properties tell us what to expect if we walk on, touch, or smell an object or surface, and how it

might look under particular lighting conditions.

Boundaries are discontinuities in the depth, orientation, material, or shading of surfaces. Detecting
and interpreting boundaries is an important part of scene understanding (remember that many
early works were based entirely on line drawings). Discontinuities in depth, called occlusion
boundaries, are particularly important because they indicate the extent of objects and their parts.

An occlusion boundary can be represented with a curve and a figure/ground label, which tells
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1 ELEMENTS OF PHYSICAL SCENE UNDERSTANDING

which side is in front. Occlusion complicates vision by obscuring objects, but recovered occlusion
boundaries provide valuable information about depth orderings. Neurological studies emphasize
the fundamental role of occlusion reasoning. In macaque brains, Bakin et al. [S] find that occlusion

boundaries and contextual depth information are represented in the early V2 processing area.

Junctions occur where two or more boundaries meet in an image. For example, the corner of a
room is a junction of a wall-wall boundary and a wall-floor or wall-ceiling boundary. Junctions and
their angles provide constraints and valuable cues for the figure/ground labels of the boundaries

between surfaces.

Light sources strongly influence an object’s appearance; the observed shading and color depend on
the position and brightness of each light source. Face recognition researchers have developed many
techniques to improve robustness to variations in illumination. For example, Basri and Jacobs
show that the images of convex Lambertian surfaces under arbitrary illumination can be modeled
in a nine-dimensional subspace, and Lee et al. [134], in “Nine Points of Light”, showed that this
subspace can be effective captured by taking nine photographs of a subject with different positions
of a single light source. More generally, knowledge of light source positions and orientations can
provide strong cues to surface geometry, help to reason about shadows, and account for variation

in object appearance due to lighting.

Shadows can either aid or confound scene interpretation, depending on whether we model the
shadows or ignore them. Shadows are created wherever an object obscures the light source, and
they are an ever-present aspect of our visual experience. Psychologists have shown that humans
are not sensitive to the direction and darkness of cast shadows [27], but the presence of a shadow
is crucial for interpreting object/surface contact [118]. If we can detect shadows, we can better
localize objects, infer object shape, and determine where objects contact the ground. Detected
shadows also provide cues for lighting direction [128] and scene geometry. On the other hand, if
we ignore shadows, spurious edges on the boundaries of shadows and confusion between albedo
and shading can lead to mistakes in visual processing. For these reasons, shadow detection has

long been considered to be a crucial component of scene interpretation (e.g., [251, 12]).

1.2. Physical Interactions

To understand a scene, it’s not enough to break it down into objects and surfaces. We also must
understand their physical interactions, such as support, proximity, contact, occlusion, and contain-

ment. We want to know when people are walking or talking together. We should be more alert if a
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security guard is holding a gun than if he is wearing a holstered gun. A bird in the hand is worth
two in the bush.

Despite their importance, few recent efforts have been made to model the interactions of objects.
As one example, Farhadi et al. [S8] try to produce <object, action, scene> triplets that can be
mapped to sentences, such as <horse, ride, field> mapped to “A person is riding a horse in a field.”
The triplets were generated by computing features from object detector responses and textural gist
descriptors over the image and using them to predict individual object, action, and scene labels.
Then, these predictions are matched to the predictions of labeled training data to generate triplets
and sentences.

To accurately interpret physical interactions, we need to infer the physical space of the scene, to
recognize objects and infer their pose, and to estimate shading. For example, if we know the
geometry of the ground plane, we can determine whether a detected person is likely to be standing
on the ground (more on this in Chapter 11). By detecting shadows, we can determine what surfaces
are directly beneath an object. Finally, when objects interact, they often take on certain poses or
appearance [84, 267, 60]. A person riding a horse looks different than a person standing next to
a horse. A dog that is eating its food will take a different pose than a dog standing near its food.
None of the intermediate problems of inferring scene space or object identity and pose are yet

solved, but it is worthwhile to start working towards the larger problem of describing interactions.

2. Representations of Scene Space

One of the greatest challenges in computer vision is how to organize the elements of the physical
scene into a more coherent understanding. In the last several years, many scene models have been
proposed, ranging from a rough “gist” characterization of the spatial envelope [175] to a map of
the depth at each pixel [197]. See Figure 4.1 for several examples. We have a better chance of
correctly estimating a very simple structure, such as a box-shaped scene, from an image, but such
simple structures might not provide a good approximation for complex scenes. On the other hand,
a very loose structure, such as a 3D point cloud, may be general enough to model almost any scene,
but without much hope of recovering the correct parameters. Also, simpler models may provide
more useful abstractions for reasoning about objects and their interactions with scene surfaces.
To choose the right scene model, one must consider the application. An indoor robot could take
advantage of the structure of man-made indoor scenes, while an algorithm to help a small outdoor

wheeled robot to navigate might want more detailed estimates of depth and orientation.
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FIGURE 4.1. Examples of several representations of scenes. (a) Left: input image; Cen-
ter: log-polar plots, illustrating the gist representation [175, 176] which encodes the av-
erage absolute filter responses at different orientations and scales within a 4x4 grid of
spatial cells; Right: a reconstruction created by perturbing random noise to result in the
same features as the input image. (b) Canonical 3D scenes represented as one of a set
of stages [166]. (c) Geometric context [102], pixel labels according to several geometric
classes: support (green), sky (blue), and vertical (red), with the latter subdivided into pla-
nar (left/center/right, denoted by arrows), non-planar porous (“O”), and non-planar solid
(“X”). (d) Input image and depth map [196, 199] (yellow is close, blue is far). (e) Sample
image and 3D point cloud computed from 457 images [2] (photo by andypick at Flickr).
(f) Ilustration of ground plane, which can be parameterized by camera height and horizon
and used to put the reference frame into perspective [104]. g) Ground plane with vertical
billboards for objects [99, 103]. (h) Model of an indoor scene as ground plane with vertical
walls along orthogonal directions [132]. (i) Model in which objects can be supported by one
of multiple parallel planes [8]. (j) Rough 3D model composed of several blocks [85]. (k)
Left: model of the scene as a 3D box with surface labels on pixels; Right: 3d reconstruction
based on estimates on left.

Retinotopic Maps Loosely Structured
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In this section, we organize 3D scene representations into scene-level geometric descriptions,
retinotopic maps, highly structured 3D models, and loosely structured 3D models. The repre-
sentations range in detail from tags that characterize the scene as a whole to detailed models of
geometry. The scene descriptions and retinotopic maps are highly viewpoint-dependent, while the
highly structured and loosely structured 3D models are scene-centric. In the following text, we

describe several examples of scene representations and discuss their usefulness.

2.1. Scene-Level Geometric Description

One approach is to define properties or categories that holistically describe the spatial layout. Oliva
and Torralba [175] characterize the 3D space of the scene as “open” or “deep” or “rough”. Col-
lectively, the properties are called the “spatial envelope”. This work, which was among the first
data-driven attempts to glean 3D information from an image, makes a key observation that simple
textural features can provide a good sense of the overall space and depth of the scene. The features,
often called gist features, are measurements of the responses of frequency at multiple orientations
and scales (typically measured by linear filter responses) within the cells of a spatial grid on the im-
age. The characteristics of the spatial envelope have not been used widely in computer vision, but
the underlying gist features have been used effectively for scene classification, object recognition,

and geometry-based scene matching.

Nedovic et al. [166] take a different approach, assigning scenes into one of a set of geometric
categories called “stages”. For example, many television programs have prototypical shots, such
as a person sitting behind a desk, that have consistent 3D geometry. By analyzing the image

texture, the image can be assigned to one of these stages.

2.2. Retinotopic Maps

Going back to the intrinsic image work of Barrow and Tenenbaum [12], one of the most popular
ways to represent the scene is with a set of label maps or channels that align with the image.
We call these “retinotopic maps” in reference to their alignment with the retina or image sensor.
In the original work, a scene is represented with a depth map, a 3D orientation map, a shading
map, and an albedo map. We can create other maps for many other properties of the scene and
its surfaces: material categories, object categories, boundaries, shadows, saliency measures, and
reflectivity, among others. The RGB image is a simple example, with three channels of information
telling us about the magnitude of different ranges of wavelengths of light at each pixel. Such

maps are convenient to create because well-understood techniques such as Markov Random Fields
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and region-based classification are directly applicable. The maps are also convenient to work
with because they are all registered to each other. In Chapter 12, we’ll see methods to provide
more coherent scene interpretations by reasoning among several retinotopic maps. One significant
limitation of the maps is the difficulty to encode the relations across pixels or regions or surfaces.
For example, it is easy to represent which pixels correspond to the surfaces of cars, but much harder

to represent that there are five cars.

2.3. Highly Structured 3D Models

Because recovering 3D geometry from one 2D image is an ill-posed problem, we often need to
make assumptions about the structure of the scene. If we are careful with our model designs,
we can encode structures that are simple enough to infer from images and also provide useful

abstractions for interpreting and interacting with the scene.

2.3.1. Ground Plane Model. One of the simplest and most useful scene models is that there
is a ground plane that supports upright objects. The position and orientation of the ground plane
with respect to the camera can be recovered from the intrinsic camera parameters (focal length,
optical center), the horizon line, and the camera height. As shown in [104], if the photograph is
taken from near the ground without much tilt, a good approximation can be had from just two
parameters: the horizon vertical position and the camera height. Earlier (Chapter 3), we showed

how to estimate an object’s 3D height from its 2D coordinates using these parameters.

The ground plane model is particularly useful for object recognition in street scenes (or for nearly
all scenes if you live in Champaign, IL). Street scenes tend to have a flat ground, and objects of
interest are generally on the ground and upright. In Chapter 11, we will discuss an approach from
Hoiem et al. [104] to detect objects and recover scene parameters simultaneously. Likewise, for
object insertion in image editing, knowledge of the ground plane can be used to automatically
rescale object regions as the position changes [130]. Autonomous vehicles can use the horizon
position and camera parameters to improve recognition or to reduce the space that must be searched
for objects and obstacles. The model may not be suitable in hilly terrain or when important objects
may be off the ground, such as a bottle on a table or a cat on a couch. For non-grounded objects,

simple extensions are possible to model multiple supporting planes [8].

Because the model has so few parameters, it can be accurately estimated in a wide variety of
photographs. The horizon can be estimated through exemplar-based matching of photographs with
known horizon [104] or through vanishing point estimation. Also, the horizon and camera height

can be estimated by detecting objects in the scene that have known height or known probability
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distributions of height. The ground plane provides a reference frame that is more useful than 2D
image coordinates for reasoning about object position and interaction in the scene, but it does not

provide much information about the layout of the scene itself.

2.3.2. Billboard Model, or Ground Plane with Walls. As a simple extension to the ground
plane model, we can add vertical billboards or walls that stick out vertically from the ground, pro-
viding a sense of foreground objects and enclosure. Such models are suited to rough 3D recon-
structions [99, 10] and navigation [164] in corridors and street scenes. These models can provide
good approximations for the spatial layout in many scenes, such as beaches, city streets, fields,
empty rooms, and courtyards, but they are not very good for indoor scenes with tables, shelves,
and counters, where multiple support surfaces play important roles. More generally, billboard
models do not provide good approximations for hilly terrain or the internal layout of crowded
scenes. For example, a crowd of hundreds of people is not well-modeled by a single billboard, and

it is usually not possible to pick out the individuals in order to model them separately.

To model the scene as a ground plane with walls or billboards, we must estimate the parameters
of the ground plane and provide a region and orientation for each wall. In indoor scenes, straight
lines and their intersections can be used to estimate wall boundaries [133]. In Chapter 6, we
discuss an approach for outdoor scenes that categorizes surfaces as ground, vertical, or sky, and
fits lines to their boundaries. The distance and orientation of each wall can be modeled with two
2D endpoints. Usually, estimating these endpoints requires seeing where an object contacts the
ground, which may not be possible in cluttered scenes. In that case, figure/ground relationships,
if known, can be used to bound the depth of objects [105]. As Gupta et al. [85] show, it may help
to consider common structures, such as buildings, that compose multiple walls as single units that
are proposed and evaluated together.

2.3.3. 3D Box Model. The 3D box model is an important special case of the ground plus
walls model. A 3D box provides a good approximation for the spatial envelope of many indoor
scenes, with the floor, walls, and ceiling forming the sides of the box. The box model, illustrated in
Figure 4.2, can be parameterized with three orthogonal vanishing points and two opposite corners
of the back wall.

Because it has few parameters, the box model can often be estimated even in cluttered rooms,
where the wall-floor boundaries are occluded [94]. It also provides a more powerful reference
frame than the ground plane, as orientation and position of objects can be defined with respect to
the walls. This reference frame can be used to provide context for spatial layout and to improve

appearance models with gradient features that account for perspective [95, 132].
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FIGURE 4.2. Illustration of the 3D box model. Top,left: the projection of the scene onto the
image. Top,center: a single-point perspective box, parameterized by the central vanishing
point and two corners of the back wall. Top,right: a general box, parameterized by three
vanishing points and two corners of the back wall. Bottom: several examples of scenes that
are well-modeled by a 3D box (photo credits, left to right: walknboston (Flickr), William
Hook (Flickr), Wolfrage (Flickr), Alexei A. Efros).

In addition to texture and color cues, which can help identify wall and floor surfaces, the orienta-
tions of straight line segments and junctions formed by line segments can be used to estimate wall
regions and boundaries [94, 133]. In Chapter 6, we’ll discuss an approach to model indoor scenes
with a 3D box.

2.3.4. Grammar-based Structures. More flexible structures can be modeled with gram-
mars, or parses that define the shapes and spatial relations of the scene components. Many of
the earliest efforts at 3D scene modeling, such as Robert’s 1965 “Blocks World” [188] employed
grammars. Recently, Gupta et al. adapted this model (shown in Fig. 4.1) to incorporate statisti-
cal image analysis methods. In Gupta et al.’s model, the scene is represented with a series of 3D
blocks and planes and their positional and relationships. Several examples of parses can be found at
http://balaton.graphics.cs.cmu.edu/abhinavg/3D_Parse/index.html. Han
and Zhu [89] provide another good example; they parse a scene into rectangles, cubes, and other
line-based structures that reflect the underlying 3D geometry. Other works parse architectural
scenes into floors, walls, and windows [124, 248].

31



CHAPTER 4. MODELING THE PHYSICAL SCENE

2.4. Loosely Structured Models: 3D Point Clouds and Meshes

More generally, we can represent the scene geometry as a 3D point cloud or mesh. For example,
Saxena et al. [197] estimate depth and orientation values for each pixel. Rather than reducing the
parameterization through a fixed structure, these general models achieve generalization through
data-driven regularization. In Saxena et al.’s approach, surface orientation are strongly encouraged
but not constrained to be vertical or horizontal through terms in the objective function. Likewise,

planarity is encouraged through pairwise constraints.

These more general 3D models may be better suited for 3D reconstruction in the long run because
they apply to a wide variety of scenes. However, the model precision makes accurate estimation
more difficult, leading to frequent artifacts that may reduce visual appeal. Such models are also
well-suited to robot navigation, which may require more detail than provided by the billboard or
box models and offers the possibility of error correction as the robot moves.

The main disadvantage of point cloud and mesh models is that they provide limited abstraction for
higher level reasoning. For example, it may be difficult to identify which surfaces can support a

coffee mug based on a point cloud.

3. Summary

We can think of a 3D scene in terms of its subcomponents (surfaces, objects, materials, boundaries,
junctions, light sources, shadows, and physical relations) or geometric structures (e.g., ground
plane, walls, depth maps, point clouds). Major tradeoffs in modeling include precision vs. abstrac-
tion, viewpoint-centric vs. scene-centric, and holistic vs. modular. For example, 3D point clouds
are precise but provide poor abstractions, while the 3D box model provides a good reference frame
for spatial reasoning but lacks detail. Viewpoint-centric depth maps and surface orientation maps
are easy to align, but the scene representation depends on the camera position. Holistic models,
such as the stages of Nedovic [166], can be robustly estimated from an image, but they are not as
flexible as the decomposable grammar-based models, such as Blocks World [188, 85].

We consider the application of the discussed models to different types of scenes:

e Indoor scenes are highly structured, with orthogonal floors and walls, but are also full
of occluding objects, and nearby objects have strong perspective effects. The 3D box
model of Hedau et al. [94] attempts to provide the rough room shape in a way that is
robust to clutter, but applicability is limited to rectangular spaces. The floor/walls model

of Lee et al. [135] is appropriate for more general floor layouts but requires non-occluded
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floor/wall or floor/ceiling boundaries. Very recently, Gupta et al. [86], used a combination
of these models to help infer supporting and resting surfaces, recovering the potential for
actions in a room. The stages model [166] is useful for representing canonical scenes
depicted on television, such as a news anchor sitting behind a desk.

Outdoor urban scenes are also strongly structured and tend to have highly textured walls
and open areas that facilitate geometric estimation. The ground/walls models and many of
the grammar-based models are suitable for these scenes. Detection of cars and pedestrians
can aid in estimating the ground geometry [101].

Outdoor rural scenes pose the greatest challenge for both single-view and multi-view
estimation methods. The scenes typically contain irregular textures, without prominent
perspective cues. In addition, the geometries can vary greatly with hills, groves of trees,
cliffs, beaches, and so on. For more open scenes, the techniques of Hoiem et al. [99] and
Saxena et al. [200] often work well.
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CHAPTER 5

Categorizing Images and Regions

Once we have decided on how to represent the scene, we must recover that representation from
images. As discussed in the background (Chapter 2), early attempts at scene understanding in-
volved many hand-tuned rules and heuristics, limiting generalization. We advocate a data-driven
approach in which supervised examples are used to learn how image features relate to the scene

model parameters.

In this chapter, we start with an overview of the process of categorizing or scoring regions, which is
almost always a key step in recovering the 3D scene space from a single image. Then, we present
some basic guidelines for segmentation, choice of features, classification, and dataset design. Fi-

nally, we survey a broad set of useful image features.

1. Overview of Image Labeling

Although there are many different scene models, most approaches follow the same basic process
for estimating them from images. First, the image is divided into smaller regions. The regions
could be a grid of uniformly shaped patches, or they could fit the boundaries in the image. Then,
features are computed over each region. Next, a classifier or predictor is applied to the features
of each region, yielding scores for the possible labels or predicted depth values. For example,
the regions might be categorized into geometric classes or assigned a depth value. Often, a post-
processing step is then applied to incorporate global priors, such as that the scene should be made

up of a small number of planes.
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Many approaches that seem unrelated at first glance are formulated as region classification:

e Automatic Photo Pop-up [99]:

1.

Create many overlapping regions.

Compute color, texture, position, and perspective features for each region.

Based on the features, use a classifier to assign a confidence that the region is good
(corresponds to one label) and a confidence that the region is part of the ground, a
vertical surface, or the sky.

Average over regions to get the confidence for each label at each pixel. Choose
largest confidence to assign each pixel to “ground”, “vertical”, or “sky”.

Fit a set of planar billboards to the vertical regions, compute world coordinates and
texture map onto the model.

e Make3D [198]:

1
2.
3.
4

Divide the image into small regions.

Compute texture features for each region.

Predict 3D plane parameters for each region using a linear regressor.

Refine estimates using a Markov Random Field model [143], applying pairwise pri-

ors such as that neighboring regions are likely to be connected and co-planar.

e Box Layout [94]:

Estimate three orthogonal vanishing points.

Create regions for the walls, floor, and ceiling by sampling pairs of rays from two of
the vanishing points.

Compute edge and geometric context features within each region.

Score each candidate (a set of wall, floor, and ceiling regions) using a linear classifier.
Choose the highest scoring candidate.

In the above descriptions, critical details of features, models, and classification method were omit-

ted. The point is that many approaches for inferring scene space follow the same pattern: divide

into regions, score or categorize them, and assemble into a 3D model.

Classifiers and predictors are typically learned in a training stage on one set of images and applied

in a testing stage to another set of images (Figure 5.1). For region classification, the sets of fea-

ture values computed within each image are examples. In training, both labels and examples are

provided to the learning algorithm, with the goal of learning a classifier that will correctly predict

the label for a new test example. The efficacy of the classifier depends on the how informative the

features are, the form and regularization of the classifier, and the number of training examples.
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FIGURE 5.1. Overview of the training and testing process for an image categorizer. For
categorizing regions, the same process is used, except that the regions act as the individual
examples with features computed over each.

2. Guiding Principles

The following are loose principles based on extensive experience in designing features and in

application of machine learning to vision.

2.1. Creating Regions

When labeling pixels or regions, it is important to consider the spatial support used to compute the
features. Many features, such as color and texture histograms must be computed over some region,
the spatial support. Even the simplest features, such as average intensity tend to provide more
reliable classification when computed over regions, rather than pixels. The region could be created
by dividing the image into a grid, by oversegmenting into hundreds of regions, or by attempting to
segment the image into a few meaningful regions. Typically, based on much personal experience,
oversegmentation works better than dividing the image into arbitrary blocks. Useful oversegmen-
tation methods include the graph-based method of Felzenszwalb and Huttenlocher [66, 100], the
mean-shift algorithm [35, 265], recursive normalized cuts [209, 161], and watershed-based meth-
ods [3]. Code for all of these is easily found online. Methods based on normalized cuts and
watershed tend to be more regular but also may require more regions to avoid merging thin ob-
jects. With a single, more aggressive segmentation, the benefit of improved spatial support may be
negated by errors in the segmentation. A successful alternative is to create multiple segmentations,

either by varying segmentation parameters or by randomly seeding a clustering of smaller regions.
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Then, pixel labels are assigned by averaging the classifier confidences for the regions that contain

the pixel.

Depending on the application, specialized methods for proposing regions may be appropriate. For
example, Hedau et al. [94] generates wall regions by sampling rays from orthogonal vanishing
points, and Lee et al. [133] propose wall regions using line segments that correspond to the prin-
cipal directions. Gupta et al. [85] propose whole blocks based on generated regions and geometric

context label predictions.

2.2. Choosing Features

The designer of a feature should carefully consider the desired sensitivity to various aspects of
the shape, albedo, shading, and viewpoint. For example, the gradient of intensity is sensitive to
changes in shading due to surface orientation but insensitive to average brightness or material
albedo. The SIFT descriptor [153] is robust to in-plane orientation, but that discarded information
about the dominant orientation may be valuable for object categorization. Section 3 discusses

many types of features in more detail.
In choosing a set of features, there are three basic principles:

e Coverage: Ensure that all relevant information is captured. For example, if trying to
categorize materials in natural scenes, color, texture, object category, scene category,
position within the scene, and surface orientation can all be helpful. Coverage is the most
important principle because no amount of data or fancy machine learning technique can

prevent failure if the appearance model is too poor.

e Concision: Minimize the number of features without sacrificing coverage. With fewer
features, it becomes feasible to use more powerful classifiers, such as kernelized SVM
or boosted decision trees, which may improve accuracy on both training and test sets.
Additionally, for a given classifier, reducing the number of irrelevant or marginally rele-
vant features will improve generalization, reducing the margin between training and test

performance.

e Directness: Design features that are independently predictive, which will lead to a simpler

decision boundary, improving generalization.
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FIGURE 5.2. Left: As the complexity of the classifier increases, it becomes harder to cor-
rectly estimate the parameters. With few training examples, a lower complexity classifier
(e.g., a linear classifier) may outperform. If more training examples are added, it may
improve performance to increase the classifier complexity. A highly constrained (low com-
plexity) classifier will have low “variance”, meaning that similar parameters will be learned
from different random sets of examples, but may have “bias”, which is the error that results
when the hypothesis space is so constrained that the true function cannot be learned. Right:
As more training examples are added, it becomes harder to fit them all, so training error
tends to go up. But the training examples provide a better expectation of what will be seen
during testing, so test error goes down.

2.3. Classifiers

Features and classifiers should be chosen jointly. The main considerations are the hypothesis
space of the classifier, the type of regularization, the amount of training data, and computational
efficiency. See Figure 5.2 for an illustration of two important principles relating to complexity,

training size, and generalization error.

In the discussion below, we will refer to the logistic regression classifier, which learns a weighting
of the features that predicts whether an example should be assigned a positive or negative label.
The weights w are learned to maximize the likelihood of the labels y (y; € {—1,1}) given the

features x for the training data, while preferring small weights:

N
(5.1) Whes = argmax Y logP (yi[xi;w) — 4 ||w||*
woi=l
1
(5.2) P (yi|xi; w)

~1+exp(—y;wlx;)
Specifically, this function maximizes the total log likelihood of the labels of the training set con-
ditioned on the corresponding features, minus a regularization term proportional to the norm of

the weights, assuming that examples are independently sampled from the same distribution. The
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parameter A determines the tradeoff between maximizing the label likelihood and minimizing the

weight magnitudes.

The hypothesis space is determined by the form of the decision boundary and indicates the set of
possible decision functions that can be learned by the classifier. Sometimes the hypothesis space is
measured by the VC-dimension, which is the maximum number of examples for which a classifier
could be parameterized to correctly predict the label, for any possible labeling. For example, the
linear logistic regression classifier described above has a VC dimension that is Ny + 1, where N is
the number of features. As another example, consider the nearest neighbor classifier which outputs
the label of the training example whose features are most similar to the input features. Because the
nearest neighbor classifier can accommodate any arbitrary labeling of training examples, it has an

infinite VC-dimension.

When there are few examples and many features or parameters, it is likely that some features
will coincidentally lead to very confident correct predictions for the training examples but not be
predictive for new examples. To avoid such cases, it is common to incorporate a regularization
term to express a preference for some hypotheses (classifier parameters) over others, typically
penalizing more complex decision functions. The regularization term in L2 logistic regression
(-1 ||W||%) encodes a preference that no particular feature should have too much weight. Support
Vector Machines (SVMs) include a similar regularization term. Sometimes L1 regularization is
used instead (—A ||w||1), which specifies that the total absolute value of weights should be as small

as possible, typically leading to a small set of non-zero weights.

If few training examples are available, then a classifier with a simple decision boundary (small
hypothesis space) or strong regularization should be used to avoid overfitting. Overfitting is when
the margin between training and test error increases faster than the training error decreases. If
many training examples are available, a more powerful classifier may be appropriate. Similarly,
if the number of features is very large, a simpler classifier is likely to perform best. For example,
if classifying a region using color and texture histograms with thousands of individually weak
features, a linear SVM is a good choice. If a small number of carefully designed features are used,

then a more flexible boosted decision tree classifier may outperform.

Though out of scope for this document, it is worthwhile to study the generalization bounds of the
various classifiers. Though not good predictors of performance on a particular problem, general-
ization bounds provide insight into expected behavior of the classifier with irrelevant features or

small amounts of data.
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As a basic toolkit, we suggest developing familiarity with the following classifiers: SVM [205]
(linear and kernelized), Adaboost [76] (particularly with decision tree weak learners), logistic re-
gression [167], and nearest neighbor [47].

2.4. Datasets

See Berg et al. [15] for a lengthy discussion on datasets and annotation. In Chapter 9, we intro-
duce several datasets for 3D object recognition. The main considerations in designing a dataset
(assuming that a representation has already been decided) is the level of annotation, the number
of training and test images, and the difficulty and diversity of scenes. More detailed annotation is
generally better, as parts of the annotation can always be ignored, but cost of collection must be
considered. More data makes it easier to use larger feature sets and more powerful classifiers to
achieve higher performance.

The issue of bias in datasets must be treated carefully. Formally, bias occurs when the training and
test examples are drawn from different distributions. Informally, a dataset is often called biased if
its images are not representative of typical scenes or photographs. All datasets have some bias, in
the informal sense. Bias could be due to the acquisition or sampling procedure, to conventions in
photography, or social norms. For example, a random selection of photos from Flickr would have
many more pictures of people and many more scenes from mountain tops than if you took pictures
from random locations and orientations around the world. Bias is not always bad. If we care about
making algorithms that work well in consumer photographs, we may want to take advantage of
the bias, avoiding the need to achieve good results in photographs that are pointed directly at the
ground or into the corner of a wall. The structure of our visual world comes from both physical

laws and convention, and it would be silly not to take advantage of it.

But we should be careful to distinguish between making improvements by better fitting the foibles
of a particular dataset or evaluation measure and improvements that are likely to apply to many
datasets. As a simple example, the position of a pixel is a good predictor of its object category in the
MSRC dataset [211], so that including it as a feature will greatly improve performance. However,
that classifier will not perform well on other datasets, such as LabelMe [192], because the biases in
photography are different. Likewise, it may be possible to greatly improve results in the PASCAL
challenge [54] by improving the localization of bounding boxes, but that improvement may not

apply to other evaluation criteria.

Although it may seem that big datasets avoid bias, they don’t. Whether you sample one hundred or
one hundred million examples from Flickr, a large number of them will be framed around people

41



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS
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FIGURE 5.3. Gradients, edges, and examples of color spaces for the input image.

looking at the camera, which is different than what would be observed on an autonomous vehicle.
In fact, big datasets make it easier to exploit the foibles of the dataset by making large feature
sets more effective, so that care with dataset bias is more important than ever. See Efros and

Torralba [49] for an interesting discussion of dataset bias.

In summary, we cannot avoid bias, but we should consider the biases that are encoded by a particu-
lar dataset and consider whether measured improvements indicate a better fit to a dataset or a more
general phenomenon. Towards this, we encourage experimentation in which training and test sets

are drawn from different sources.

3. Image Features

Although there are many possible prediction tasks, the same basic features apply to all of them:
color, gradients, histograms of gradients, edges, histograms of edges, position, and region shape.

See Figure 5.3 for examples of several color spaces, gradient features, and edges.

3.1. Color

Color is predictive of material and lighting and is helpful for segmenting regions into separate
objects and materials. By far, the greatest variation in color is due to changes in the luminance
or brightness. For this reason, color spaces that decouple luminance, such as YCbCr, HSV, and
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CIELAB, may be preferable to RGB. YCbCr is quickly computed and commonly used in display
electronics, such as televisions. HSV, which decomposes into hue, saturation, and value, is the
most intuitive, though the angular measurement of hue (e.g., the maximum and minimum values
are both red) can be a nuisance. CIELAB is designed to be perceptually uniform, meaning that
small changes in color with equal Euclidean distance will be perceived by humans as having similar

degrees of change.

Luminance encodes most of the useful information for scene understanding. People can understand
grayscale images and movies without difficulty. From luminance alone, most changes in albedo
are perceivable. Additionally, luminance encodes the shading information that is predictive of
physical texture and overall shape. To better analyze shape, intensity values are typically not used

directly. Instead, gradients and zero-sum filters, which better encode changes in shading, are used.

For categorization, color is often represented using averages or histograms. For example, the
mean values of YCbCr indicate the overall brightness, the blueness, and the redness of a region.
Histograms are estimates of the probability that a randomly selected pixel will have a particular
color value. Histograms are computed by counting the number of times that each value is observed
and dividing by the total value. It is possible to compute separate histograms for each channel or
for all channels jointly. Commonly, the three color channels are quantized into a smaller number
of values before counting them. One method is to divide the color space into bins (or cubes for
three channels). For instance, the values with R<0.25, G<0.25, B<0.25 could be assigned the
a value of 1, with all other possible RGB values assigned to one of 64 (4x4x4) discrete values.
Then, these discrete values are counted. Another quantization method is clustering. Typically, a
sampling of color values is clustered with K-means [47] to learn a set of cluster centers. Then, new
values are assigned a number corresponding to the closest center. The K-means clustering aims to
provide a quantization that minimizes the mean squared error of the reconstruction of the original
values. The clustering approach is more computationally expensive but usually provides a better

representation than simple binning for a fixed number of quantized values.

For segmentation, the difference of mean values or histograms is often used to measure region
similarity. To compute the difference of histograms, the measures histogram intersection (HIN) and
chi-squared (x2) are often used. HIN is faster to compute. x> has attractive theoretical justification
and sometimes leads to better performance. HIN or x? are also often used as kernels for SVM

classifiers with histogram features.

The gain a better intuition for color, we encourage students to play around with sample images,

visualizing them using separate color channels in various color spaces. To compare effectiveness
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of quantization approaches, it may also be helpful to visualize reconstructions of the images after
quantizing the colors.

3.2. Texture

Texture is predictive of material and material properties and is helpful for separating regions into
different objects and materials. Texture is typically represented by computing statistics of re-
sponses to zero-mean filters, such as oriented edge filters, bar filters, or blob filters. Commonly
used filter banks include those by Leung and Malik [140] (LM filter bank; see Figure 5.4) and
Varma and Zisserman [249] (MR filter banks). Like color, the texture of a region is typically repre-
sented by computing the average magnitude of filter responses within the region or by computing
histograms of quantized values of the filter responses. Histograms of quantized filter responses are
often called “textons” [140].

3.3. Gradient-based

Local differences in intensity or gradients are predictive of shape, due to shading, and boundaries
of objects and materials. Gradients may computed simply, with filters such as [—1 1] or [—1 0 1]
for a horizontal gradient. Often, particularly for detecting important boundaries, the image is first
filtered with a Gaussian filter. Gradients can be computed at multiple scales and orientations by
changing the bandwidth of the Gaussian pre-filter and by taking weighted averages of the vertical
and horizontal filter responses (see the classic work on steerable filters by Freeman and Adel-
son [74] for details). The magnitude of the gradient between two regions is a strong indicator for
the likelihood of an object or material boundary, a depth discontinuity, or a surface orientation

discontinuity.
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Gradients are also the basis of the most powerful features in object recognition. Oriented gradi-
ent values are used to compute many frequently used patch descriptors, such as SIFT [153] and
HOG [41] (histogram of gradient). Most descriptors are computed by dividing a patch into differ-
ent spatial bins (called cells), computing histograms within each spatial bin, and normalizing the
values of the histograms. In SIFT, the descriptor is first registered to the dominant orientation so
that an in-plane rotation has little effect, and normalization is achieved within each cell by division
of total magnitude and thresholding. The HOG descriptor is sensitive to rotation (which is often
beneficial for object categorization), and the values in each HOG cell are normalized several times

based on the values in the surrounding cells.

HOG features were originally proposed for pedestrian detection [41] and have since been shown
effective for other object categories [67] and for a variety of other tasks, such as categorizing
scenes and predicting the 3D orientation of materials. HOG features are insensitive to changes
in brightness of the light source (due to use of the gradient) and small shifts in position, due
to computation of histograms within spatial bins. They are also insensitive to overall changes in
contrast, due to the normalization. HOG features are sensitive to shading patterns caused by surface
shape and to changes in albedo, and they are sensitive to oriented textures which can predict surface
orientation [241]. Object parts, such as eyes, vertical legs, and wheels, often have distinctive
HOG feature values. For object categorization, HOG features are often used directly at several
fixed positions within a proposed object window. For other tasks, such as scene categorization,
histograms of SIFT or HOG features are often computed, in the same way as with color and

texture.

3.4. Interest Points and Bag of Words

The idea of detecting distinctive points was first developed for tracking [91, 236] and then for
more general image matching [203] and object instance recognition [152]. Now, interest points
and their descriptors, such as SIFT, are used as a general purpose region and image descriptor.
After detecting interest points, or placing them at dense intervals along a grid [171], descriptors
are computed and quantized. Then, histograms are computed for regions of interest or the image
as a whole, depending on the task. Such histogram representations are called bag of words models.
Many, many papers have been written proposing variants on the descriptor, how many visual words
to use, what points to sample [171], faster clustering techniques [169], discriminative quantization
techniques, and more. In most cases, simple k-means clustering of densely sampled SIFT or HOG

descriptors will work well.
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3.5. Image Position

Due to conventions of photography and the structure of our natural world, image position is often
strongly predictive of surface orientation [100], material [211], and object category. Position can
be defined within the image coordinates, or relative to an estimated horizon. Especially if defined
in image coordinates, position may increase accuracy on the dataset used for training but lead to
poorer generalization on other image collections. The position of a region can be encoded by a
centroid, a bounding box, or percentiles of sorted positions (e.g., the Sth and 95th percentile of

sorted vertical positions for a more robust top and bottom estimate).

3.6. Region Shape

Defying intuition and many efforts to devise good representations of shape, region shape tends to
provide only a weak cue for categorization in natural images. In part, this is because it is difficult
to obtain precise segmentations of objects and surfaces. Also, the 2D silhouette of an object often
looks like an indistinct blob. Consider the silhouette of a duck or of a car. These shapes have iconic
profiles, but if seen from the front or a three-quarters view, the silhouette will be indistinctive. One
simple approach to shape-based categorization is to feed a binary mask into a classifier [187].
Another possibility is to characterize the shape with orientation, eccentricity, major axis length,
minor axis length, and so on (see Matlab documentation for regionprops for a nice list of

simple shape measures).

3.7. Perspective

Useful perspective cues include statistics of intersecting lines and detected vanishing points, his-
tograms of edges that are oriented consistently with the vanishing points, and more general his-
tograms of oriented straight edges [102, 94, 133]. Such features can provide powerful cues for
surface orientation, although histograms of oriented gradient filters can often work nearly as well.

4. Summary

Appearance models learned from training images can help to predict geometry for new scenes. One
key challenge is to define image feature representations that are robust to unimportant variations
but sensitive to important differences. It is also necessary to choose a learning method to specify
the parameters of the mapping from the features to the predicted labels. The variety of features

and classifiers can be overwhelming, but, in the experience of the first author, using a diverse set
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of features with a boosted decision tree (if few features) or a linear SVM (if many features) tends
to work well. Large improvements typically require careful thought about feature representation
or what should be actually be predicted.
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CHAPTER 6

Examples of 3D Scene Interpretation

In this chapter, we provide three examples of algorithms for learning and inferring spatial layout

from images.

1. Surface Layout and Automatic Photo Pop-up

As our first example, we describe a method by Hoiem et al. [99, 102], which first labels the pixels of
the image into geometric classes and then constructs a 3D model of the scene based on those labels.
The approach uses several techniques and features that are described in Chapter 5. The method is to
provide spatial support by clustering small regions into multiple segmentations and using a variety
of color, texture, position, and perspective cues to classify the regions into geometric classes.
Then, a 3D billboard model (Chapter 4) is estimated by fitting line segments at the boundaries of
the bottom of regions classified as “vertical” and regions classified as “support”. Because these
boundaries are assumed to be on the ground plane, an estimate of the horizon enables the depths
of the scene points to be estimated up to a scale (determined by the camera height), using the

techniques described in Chapter 3 and assuming a typical focal length.

1.1. Intuition

Humans can easily grasp the overall structure of the scene sky, ground, relative positions of major
landmarks. Moreover, we can imagine reasonably well what this scene would look like from a
somewhat different viewpoint, even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives rise to an infinite number of

possible 3D interpretations! How do we do it?
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FIGURE 6.1. Geometric classes. In these images and elsewhere, main class labels are in-
dicated by colors (green=support, red=vertical, blue=sky) and subclass labels are indicated
by markings (left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid).
Figure from [102].

The answer is that our natural world, despite its incredible richness and complexity, is actually a
reasonably structured place. Pieces of solid matter do not usually hang in mid-air but are part of
surfaces that are usually smoothly varying. There is a well-defined notion of orientation (provided
by gravity). Many structures exhibit high degree of similarity (e.g. texture), and objects of the
same class tend to have many similar characteristics (e.g. grass is usually green and can most often
be found on the ground). So, while an image offers infinitely many geometrical interpretations,
most of them can be discarded because they are extremely unlikely given what we know about
our world. This knowledge, it is currently believed, is acquired through life-long learning, so, in a

sense, a lot of what we consider human vision is based on statistics rather than geometry.

The main idea of this approach is to pose the classic problem of geometric reconstruction in terms
of statistical learning. Instead of trying to explicitly extract all the required geometric parameters
from a single image (a daunting task!), the approach is to rely on other images (the training set)
to furnish this information in an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such as cars, vegetation, roads, or
buildings, the goal is to model geometric classes that depend on the orientation of a physical object
with relation to the scene. For instance, a piece of plywood lying on the ground and the same piece
of plywood propped up by a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a set of labeled training images
and use that model to synthesize a 3D scene given a new photograph.

1.2. Geometric Classes

99 ¢

Every region in the image is categorized into one of three main classes: “support”, “vertical”, and
“sky”. Support surfaces are roughly parallel to the ground and could potentially support an object.

Examples include road surfaces, lawns, dirt paths, lakes, and table tops. Vertical surfaces, which
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FIGURE 6.2. Surface layout estimation algorithm. The input image is oversegmented into
superpixels, which are then grouped into multiple segmentations. The final surface layout
combines estimates from all of the segmentations. Figure from [102].

are defined as too steep to support an object, include walls, cliffs, curb sides, people, trees, or cows.

The sky is the image region corresponding to the open air and clouds.

To provide further geometric detail, we can divide the vertical classes in to several vertical sub-
classes: planar surfaces facing to the “left”, “center”, or “right” of the viewer, and non-planar
surfaces that are either “porous” or “solid”. Planar surfaces include building walls, cliff faces, and
other vertical surfaces that are roughly planar. Porous surfaces are those which do not have a solid
continuous surface. Tree leaves, shrubs, telephone wires, and chain link fences are all examples
of porous surfaces. Solid surfaces are non-planar vertical surfaces that do have a solid continuous

surface, including automobiles, people, beach balls, and tree trunks.

1.3. Approach to Estimate Surface Layout

The algorithm to predict geometric labels from an image is illustrated in Figure 6.2 and outlined

below.

1. Divide the image into hundreds of small regions. The small regions, called “superpix-
els”, provide spatial support for color and texture histograms. The graph-based method
of Felzenszwalb and Huttenlocher [66] is used because it creates relatively few regions

(roughly 500 per image) and segments thin objects reliably.

2. Group the superpixels into multiple larger regions that provide better spatial support for
perspective cues. First, a logistic regressor is trained to predict the likelihood that two
superpixels belong to the same surface, based on a comparison of their color, texture, and
position. Then, clusters are greedily formed to maximize this pairwise likelihood within
the clusters. By varying the number of cluster centers and the initialization, multiple

segmentations are produced.
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3.

4.

Compute features for each region. The feature set is designed to encode cues about the
material (means and histograms of color and texture), surface orientation (texture, his-
tograms of orientations and intersections of straight line segments, and histograms of
edges assigned to vanishing points), and other region properties (size, shape, and posi-
tion). For color features, the HSV and RGB color spaces are used, and texture responses
are measured with the LM filter bank.

Assign the confidence that each region belongs to each geometric class using boosted
decision tree classifiers [34] and the computed features. Also, assign the confidence that
each region corresponds to a single surface, using the same features and classification
method. The classifiers are learned using regions on training images that have been cre-
ated using the same multiple segmentation approach and labeled by hand. The boosted
decision trees are highly flexible classifiers that output scores based on conjunctions of

selected features.

Compute the confidence of each geometric class for each pixel by averaging over the
regions that contain the pixel, weighted by the confidence that the region corresponds to
a single surface. Sometimes, we want to keep the confidence value; other times, we want

to choose the label with the most confidence.

1.4. Examples of Predicted Surface Layout

On a dataset of 300 outdoor images, using five-fold cross-validation, Hoiem et al. [102] report the

average accuracy of the pixel labels to be 88% for the main classes and 62% for the subclasses.

Figure 6.3 displays a sample of qualitative results. The same algorithm, when applied to a dataset

of indoor images from Delage et al. [43] (replacing “sky” with “ceiling”), achieves an accuracies

of 77% and 45% after training on the outdoor images or 93% and 77% when trained on indoor

images, for main and subclasses respectively.

At the time, even the authors were amazed by these results. Theoretically, there is no reason to

think that color and texture features would be good predictors for the underlying geometry of a

surface. The high accuracy is a testament to the strong regularities of our physical world and of

our photographs.
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FIGURE 6.3. Representative sample of results of surface layout algorithm (from [102]),
sorted in descending order of main class accuracy. See Figure 6.1 for explanation of colors

and markings. Brighter colors indicate higher levels of confidence for the main class labels.
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(a) Fitted Segments (b) Cuts and Folds

FIGURE 6.4. From the noisy geometric labels, line segments are fit to the ground-vertical
label boundary (a) and formed into a set of polylines. Then, the image is “folded” (red solid)
along the polylines and “cut” (red dashed) upward at the endpoints of the polylines and at
ground-sky and vertical-sky boundaries (b). The polyline fit and the estimated horizon
position (yellow dotted) are sufficient to “pop up” the image into a simple 3D model. Figure
from [99].

1.5. 3D Reconstruction using the Surface Layout

So far, the geometric labels tell us whether each pixel is part of the ground, an object, or the sky,

but it doesn’t provide a 3D model by itself. Hoiem et al. [99] take an approach of constructing

simple models, like those of a children’s pop-up book, by finding where vertical regions contact

the ground and folding up at those boundaries.

The photo pop-up algorithm is illustrated in Figure 6.4 and outlined below.

1.

54

Find connected components for the vertical regions. These regions will be modeled with
a set of connected planes. Sometimes, due to labeling error, regions are loosely con-
nected even though they correspond to distant objects. To improve robustness, a small
morphological erosion is used to separate tenuously connected regions before running the
connected components algorithm.

Fit a polyline to the base of each vertical region. Line segments are fit using the Hough
transform [46] to the boundary of vertical and support regions. Then, within each region
the disjoint line segments are formed into a set of polylines. If no line segment can be
found using the Hough transform, a backup procedure is used that greedily searches for
a small number of segments that approximates the boundary.

Compute the depth at each point. Each vertical region with a polyline is treated as a sep-
arate object, modeled with a set of planes that are perpendicular to the ground plane. The
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polyline is on the ground plane. The horizon position is estimated by fitting a horizontal
line to the intersecting points of extended line segments (a simplistic but often effective
solution). To set camera parameters, skew is set to zero, the aspect ratio to one, and the
focal length to a typical value (the length of the image diagonal). Using the techniques
discussed in Chapter 3, the ground is projected into 3D coordinates. The ground inter-
section of each vertical plane is determined by its segment in the polyline; its height is
specified by the region’s maximum height above the segment in the image and the cam-
era parameters. To map the texture onto the model, a separate texture map is created for
ground and vertical regions, and the vertical image is feathered. The 3D model is saved

in VRML format, which can be viewed on web pages with free plug-ins.

Several successful and unsuccessful attempts at automatic 3D reconstruction are shown in Fig-
ures 6.5 and 6.6. Hoiem at al. [99] report a success rate of 30% for input images of outdoor scenes,
based on qualitative inspection. Common causes of failure are 1) labeling error, 2) polyline fitting
error, 3) modeling assumptions, 4) occlusion in the image, and 5) poor estimation of the horizon
position. The billboard model is too simple to handle crowded scenes, slanted surfaces, and multi-
ple support planes. Also, since no attempt is made to segment connected vertical regions, occluding
foreground objects cause fitting errors or are ignored and made part of the ground plane. Addi-
tionally, errors in estimating the horizon position (which is quite difficult for many outdoor scenes)
can cause angles between connected planes to be overly sharp or too shallow. Overall, though, the
ability to automatically create compelling 3D models from one image seemed miraculous, even if

it only works on a fraction of images.

2. Make3D: Depth from an Image

Make3D [196, 198] is similar to Automatic Photo Pop-up in that it starts by breaking down the
image into superpixels and estimates the likelihood that neighboring superpixels correspond to the
same surface. However, rather than relying on strong assumptions in the global model, Make3D
uses a much more general model and employs local data-driven constraints and priors to regularize
the parameters. Rather than assigning regions to one of a few geometric classes, the Make3D
algorithm assigns a 3D orientation and depth value to each superpixel. Despite the difference in
approach, the behavior of Make3D is often similar to that of Automatic Photo Pop-up. A strong
prior is learned that most surfaces are horizontal or vertical, so that with the connectivity priors,
the predicted 3D model tends to produce something close to a ground plane with vertical surfaces

sticking up from it. Nevertheless, the predictions of Make3D can be more general if sufficient
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FIGURE 6.5. Good results for automatic single-view 3D reconstruction from the Automatic
Photo Pop-up approach. Shown are input images and novel views created from automati-
cally generated 3D models. Figure from [99].

visual evidence is available. Further, the direct prediction of depth makes it easy to incorporate

stereo or multiview geometry cues as well, as is shown in [197].
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FIGURE 6.6. Failures of the Automatic Photo Pop-up algorithm. In (a) some foreground
objects are incorrectly labeled as being in the ground plane; others are correctly labeled
as vertical but are incorrectly modeled due to overlap of vertical regions in the image. In
(b), the reflection of the building is mistaken for being vertical. Major labeling error in (c)
results in a poor model. The failure (d) is due to the inability to segment foreground objects
such as close-ups of people. Figure from [99].

The Make3D algorithm has two parts. The first is to make separate predictions of the depth and
orientation of each superpixel. The second is to perform global inference using an MRF model
based on local constraints. In training, the parameters for the superpixel predictions and for the
local constraints are trained jointly to minimize log difference of predicted depth from ground truth
depth. Ground truth is obtained by capturing registered photographs and depth maps from a laser
range finder.

2.1. Predicting Depth and Orientation

The following procedure is used to predict a set of three plane parameters, encoding depth and

orientation, for each superpixel:
1. Divide the image into small regions (superpixels) using [66].

2. Compute features for each superpixel, including the position, color, mean response mag-

nitude and kurtosis of texture and edge filters, and region shape and position.

3. Predict 3D plane parameters for each superpixel using a linear predictor. The predic-
tor uses a concatenation of the features within the superpixel and features within four of
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FIGURE 6.7. Using a Markov Random Field (MRF) model, the Make3D algorithm encode
priors that neighboring regions such as (k, 1) and (m, n) are likely to be connected. Further,
most neighboring superpixels will be co-planar, such as (k, 1). Even when not adjacent,
superpixels that lie on the same side of the boundary of the same straight line, such as (i, j),
are likely to be co-planar. Figure adapted from [198].

its neighbors. To account for expected scene variation with changes in position, with-
out resorting to non-linear predictors, the image is divided into 11 horizontal strips, and

separate parameters are learned and applied to each.

4. Compute the confidence in the prediction using linear logistic regression with the same
features as in step 3. It could be learned, for example, that depth predictions for smooth
regions are unreliable so that such regions rely more on the pairwise constraints with their

neighbors than on their own features.

5. Perform global inference, incorporating local constraints, as described next.

2.2. Local Constraints and Priors

In the natural world, most 3D surfaces are smooth, and many are planar. Make3D takes advantage
of this structure by placing a data-driven prior on the plane parameters of pairs of neighboring
superpixels. In MREF inference, the depth is predicted that is most likely according to both the

individual and pairwise predictions.
The pairwise terms encode the following intuitions (illustrated in Figure 6.7):

e Connected Structure: The surfaces corresponding to neighboring superpixels are likely
to be connected. For each pair of neighboring superpixels, a linear logistic classifier is

used with color and texture features to predict the likelihood of a depth discontinuity

58



2 MAKE3D: DEPTH FROM AN IMAGE

between them. A cost is assigned for predicting a depth discontinuity. This cost grows
with the difference in predicted depth; the cost shrinks if a depth discontinuity is highly
likely based on the features.

e Co-planarity: The surfaces corresponding to neighboring superpixels are likely to be
part of the same plane. Similarly to connected structure, a cost is assigned for neigh-
boring pairs that are not co-planar. This cost increases with growth of non-planarity and
decreases if a depth discontinuity is likely based on the features. Coplanarity is measured
by comparing the predicted depth at a given point using plane parameters for each of the
neighboring superpixels. If the same depth is predicted, then the surfaces are coplanar,

and no cost is assigned.

e Co-linearity: If the same line passes through two superpixels, then the corresponding
surfaces are probably co-planar. A cost is assigned for non-coplanarity for superpixels
that share a detected line segment, even if the superpixels are not adjacent. The cost
increases with increasing non-coplanarity and with the length and straightness of the line

that connects the superpixels.

2.3. Results

Image Ground Truth Predicted Image Ground Truth Predicted

FIGURE 6.8. Input image, ground truth depth from laser range finder, and predicted depth
from Make3D algorithm. Yellow is close, red is medium, and light blue is far. Figure
from [197].

Because the training and test sets contain paired photographs and depth images, the pixel-wise
depth predictions of the Make3D algorithm can be evaluated [198]. On average the log; error
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FIGURE 6.9. Input image and novel views created using automatic single-view 3D recon-
structions from Make3D. Figure from [198].

is reported as: 0.300 using only location priors (no image features); 0.205 using only individual
superpixel predictions (no pairwise constraints); 0.191 using individual predictions and coplanar
constraints; and 0.187 for the full model. These improvements are noticeable quantitatively, but
make an even bigger difference qualitatively, where small errors may lead to distracting artifacts.
Qualitative results are shown in Figure 6.8 for depth prediction and in Figure 6.9 for texture-
mapped 3D reconstructions.
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FIGURE 6.10. This process identifies line segments in the original image (A) and uses them to
estimate orthogonal vanishing points (B). The segments in (A) are colored with the color of the
vanishing point they vote for. Candidates for the box layout (C) are created by sampling pairs of
rays from two vanishing points, and the candidates are ranked based on line membership features.
For each highly ranked candidate, surface label confidences are estimated (shown in D for “left
wall”, “floor”, “right wall” and “object”). In turn the confidence maps are used to compute new
features that are used to re-rank the layouts. The final top ranked layout for this image is in (F).
Figure from [94].

3. The Room as a Box

In the next example, the goal is to model the visible surfaces of a room and the full extent of the
walls. The earlier described methods of Automatic Photo Pop-up and Make3D will not work well
for indoor scenes, because rooms are full of objects that obscure wall-floor boundaries.

The approach of Hedau et al. [94] is to model the scene jointly in terms of a 3D box layout and the
surface labels of pixels. The box layout coarsely models the space of the room as if it were empty.
The surface labels, similarly to geometric classes from Section 1.2, provide pixel localization of
the visible object, wall, floor, and ceiling surfaces. To achieve robustness to clutter, three strategies
are employed. First, the strongly parameterized 3D box model (see Chapter 4, Section 2.3.3) can
be estimated robustly from sparse visual evidence. Second, the parameters are estimated jointly
using structured prediction based on global perspective cues. Third, clutter is explicitly modeled
through the surface labels, so that confusion due to clutter can be avoided when estimating the box.

Likewise, the 3D box estimate provides valuable cues to refine the surface label estimates.

3.1. Algorithm

The algorithm is illustrated in Figure 6.10:

1. Estimate three mutually orthogonal vanishing points (Fig. 6.10A,B), using a similar edge-
based algorithm to that described in Chapter 3, Section 4. The vanishing points specify
the orientation of the box, providing constraints on its layout.
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2. Generate many candidates for the box layout (Fig. 6.10C) by sampling pairs of rays from
two of the vanishing points (Figure 4.2).

3. Compute perspective cues for each box. The features are the fraction of edge pixels within

each box face that have been assigned (in step 1) to the face’s vanishing points.

4. Compute the confidence of each 3D box hypothesis using a linear classifier. The classifier
is learned using structured learning [242] to minimize the error in predicting the corners
of the box and to minimize the overlap of the predicted wall/floor/ceiling regions with the

true ones in the training set.

5. Estimate the surface labels given the most likely box candidate. The surface layout al-
gorithm and features (from Section 1) are used, with the addition of features that tell
what fraction of each region overlaps with the walls, floor, and ceiling of the box layout.
Rather than storing the most confident label, confidence maps are stored that indicate the
likelihood of each surface label for a pixel (Fig. 6.10D).

6. Re-estimate the box layout using features from the surface labels (Fig. 6.10E). Features
are added that indicate the average confidence of each surface label within each box
face. Also, to improve robustness to clutter, new perspective features are computed that
are weighted by the confidence of object labels (edges within likely object regions have
small weight).

3.2. Results

On a dataset of 204 training and 104 test images of indoor scenes, Hedau et al. [94] report that
the pixel error in surface labels drops from 26.9% to 18.3% when considering the box layout.
Additionally, the features from the surface label estimates improve the estimates of the box labels.
When measured as the pixel error in the wall/floor/ceiling regions, error drops from 26.5% to
21.2%. When measured as RMS distance between predicted and true corners, error drops from

7.4% to 6.3%, as a ratio of the image diagonal length. Qualitative results are shown in Figure 6.11.

It is possible to get a good sense of the 3D space from the surface labels and box layout, shown
in Figure 6.12. Once the camera height and focal length are specified, a 3D model of the walls,
floor, and ceiling can be constructed. The three orthogonal vanishing points can be used to recover
the focal length and optical center (Chapter 3). The scale is specified by fixing the camera height,
and the 3D occupancy of objects is estimated with a heuristic. Using the camera projection matrix,

the visual hull corresponding to object pixels is computed (which gives the maximum volume of
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FIGURE 6.11. A representative sample of results for estimation of the 3D box layout and
surface labels [94]. For each image, original image with detected lines is shown in the
top row, the detected surface labels in the middle row, and estimated box layout in the
bottom row. Lines corresponding to the three vanishing points are shown with red, green
and blue color and the outliers are shown in cyan. Each surface label is shown in differ-
ent color (floor=green; left wall=red; middle wall=yellow; right wall=blue; ceiling=purple;
objects=magenta) and the saturation of color is varied according to the confidence of that
surface label. Notice that due to the accuracy of estimated vanishing points, most of the
images have nearly all correct line-memberships. The estimates of box rotation suffer (e.g.
6th row, 5th column) and the line membership features are not effective (e.g. 6th row,
6th column and 4th row, 2nd column), if the Manhattan world assumption is violated or
the available line support in any particular direction is small. These cases account for the
highest pixel errors.
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FIGURE 6.12. 3D model and occupancy computed from the box layout algorithm [94]. The
first and third column show the estimated wall boundaries (red lines) and detected object
pixels (magenta). The second and fourth column show the 3D model with voxels occupied
by objects in magenta. In the two results on the left, the underlying box layout and surface
labels are accurate, resulting in a good sense of the 3D space. In the upper-right, the box
layout estimate is wrong, and on the lower-right, the surface labels are poorly estimated.
Note that small errors in the box layout can lead to considerable errors in the 3D space.

occupancy). Then, assuming that the objects are supported by floor and are cuboid shaped, the
footprint of the object is estimated by projecting object pixels onto the floor face and used to
provide a vertical hull for the object. The intersection of visual hull and vertical hull provides
us with the occupied portion of the room. In Figure 6.12, occupied voxels or object pixels are
magenta, and the red lines indicate the boundaries of the walls.

4. Summary

We have discussed three approaches to estimating 3D scene geometry from an image. The surface
layout algorithm of Hoiem et al. [102] labels pixels into one of several geometric classes and
then computes a rough 3D model using heuristics based on the ground-object contact points. The
Make3D algorithm of Saxena et al. [198] assigns surface orientations and depths to image regions,
forming a 3D mesh. Both of these algorithms work best in large-scale scenes, such as open outdoor
spaces. The algorithm of Hedau et al. [94] models an indoor room as a simple 3D box taking
advantage of the orthogonal structure of indoor scenes and providing robustness to clutter. These
methods are just a small sample of recent work, and we encourage the reader to follow up with the

references provided in the earlier chapters.
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PART 11

Recognition of 3D Objects from an Image

In this part of the book, we review methods for recognizing objects from images observed under
arbitrary viewing conditions as well as for estimating critical object geometrical attributes. We
start with a brief overview of the main theories for representing 3D objects in the human visual
system and some of the early computer vision methods in Chapter 7. In Chapter 8, we review
recent computational models for 3D object recognition and categorization. We discuss the main
characteristics of such models and some of the key learning methodologies in Chapter 9. Finally,
in Chapter 10 we present in details a recent state-of-the-art method for 3D object recognition and

pose estimation.
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CHAPTER 7

Background on 3D Recognition

The ability to recognize objects plays a critical role in scene understanding. When looking at the
image of the scene in Fig. 7.1, we humans can easily identify all the objects in the scene (e.g. a
chair, a desk, etc...), organize them in the scene physical space, and interpret such objects as part
of a coherent geometrical and semantically meaningful structure (e.g the office). How do we do
this? It appears that two tasks are critical for accomplishing this goal: i) build representations of
3D objects that allow us to recognize objects regardless of their viewpoint or location in the image.
This requires that we have learnt models that are robust with respect to viewpoint changes to enable
the identification of object instances or object categories in poses that we have not seen before; ii)
infer object geometric attributes such the scale and pose of objects or characteristics about the
object shape. These geometrical attributes may provide strong cues for interpreting the interaction
among objects in the scene, estimating object functionalities, and, ultimately, for inferring the 3D

layout of the scenes as we shall see in more detail in Part III of this book (Fig. 7.1-c).

1. Human Vision Theories

The mechanisms that enable the human visual system to categorize 3D objects are yet to be fully
understood. It seems easy for us to accurately recognize object instances that we may have (or
may not have) seen before regardless of the viewpoint, the background or whether or not these
are occluded by other objects. How do we do this? How do we represent 3D objects and perform
such a formidable recognition task so effectively? How do we achieve such levels of efficiency
and accuracy? How can we scale such ability to as many as thousands of visual categories? Vision
scientists have proposed several computational theories that try to explain (with different degrees
of success) how objects can be identified within the human visual system. We give an overview

of the most important contributions in the next paragraphs. These theories contain several key
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FIGURE 7.1. We humans can easily identify all objects in the image in panel (a) regard-
less of their viewpoint or location. This assumes that we have learnt models that enable
the identification of objects in poses that we have not necessarily seen before as well as
inference geometrical attributes such as pose and scale (b). In the example, the object pose
is described by an azimuth angle 0 and elevation angle ¢. The ability to infer object ge-
ometrical attributes such the scale and pose helps us organize such objects in a coherent
geometrical and semantically meaningful structure in the scene physical space as we shall
see in more detail in Part III of this book (c).

intuitions that have been subsequently extended and reformulated in more recent computational

works for 3D object categorization.

1.1. The Geon Theory

One of the most influential theories for 3D recognition is the Geon theory introduced by Biederman
in the mid-eighties [17, 18]. The theory introduces the concept of 3D geometric primitives, called
geons, which are are related to definition of generalized cylinders. The main idea is to describe
the object as a graph structure wherein nodes are the geons and edges capture different types of
relationships among the geons. Examples of relationship types are side-connected, top-connected,
or not connected. By combining a set of such elements from an alphabet of geons using different
relationship types, it is possible to represent a large number of 3D objects (Fig. 7.2). Categoriza-
tion is carried out by defining a distance metric that can be used to compare the graph structural
representation of the query object with that of one of the stored models. The Geon theory has
several important properties: i) it introduces an intrinsic 3D representation for the object category
whose atomic elements - the geons - are volumetric and, as such, view invariant. This allows a
more parsimonious description compared to 2D template based representations as we shall discuss
next. Notice, however, that since the relationships among geons are not always view invariant (e.g.,
the left-side connection), the overall representation is not necessarily view invariant. ii) it enables
a hierarchical structural representation of the object wherein the model retains information object
parts and their relationship at different level of granularity. These representations are related to
early works by [19, 156, 179, 258]. Despite these desirable properties, Geon theory has a num-
ber of drawbacks: 1) it is unclear how to estimate and recognize the geons from (retinal) images.
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Although neuronal implementations [113] have been proposed, a plausible method that is also bi-
ologically motivated has yet to be introduced. ii) The derivation of structural representations by
generalized cylinders is often problematic for certain object categories (think about a tree). iii) the
derivation of a structural decomposition is often unstable: the same image of an object can lead
to completely different decompositions. Structural representations based on Geons elements have

been quite influential among computational methods.

1.2. 2D-view specific templates

An alternative and complementary approach to the Geon theory, is the concept of matching 2D-
input views to a view-specific representation for an object category. The simplest version of this
theory is based on the idea of representing shapes as a single or multiple view-specific templates.
Such templates correspond to viewpoints that are more representative than others for humans.
This intuition is supported by psychophysical experiments that suggested that some views are
recognized faster (with lower naming latency) or more easily than other views for certain object
categories. For instance, a horse observed frontally is recognized faster than an horse seen from the
top. Human vision scientists have called these views canonical perspective [180]. More recently,
Tarr and Pinker [227, 228], in a series of experiments, showed that human subjects became faster at
recognizing unfamiliar objects from viewpoints that were shown before in a training stage, whereas
they were slower if these viewpoints were not shown before. Interestingly, they also showed that
the response time in recognizing the object increased as the distance transform between the query
viewpoint and closest viewpoint in training increased. The observation that subjects become more
accurate and faster at recognizing objects as more viewpoints are presented during the training
stage suggests that humans may learn (store in memory) “dictionaries” of canonical view templates
for each object category that are used eventually during recognition. While the multiple-view
template theory explains convincingly well empirical phenomena such as the naming latency, it
suffers from the following limitations: i) it does not naturally provide a structural description of
the object in term of parts and their hierarchical dependencies; ii) it requires to store in memory
a extremely large number of view-templates in order to effectively capture viewpoint, intra-class

and inter-class variability of all existing object categories.

A strategy for lightening the daunting requirement of storing large number of views in template-
based methods is suggested by the 2D alignment theories by Poggio and Edelman [184] and Ull-
man and Basri [247]. In such theories input object views are matched with model views which
are either stored in memory (as in standard template-based theories) or derived from existing 2D

viewpoint templates. For instance, Ullman and Basri [247] show that, under certain restrictions and
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FIGURE 7.2. (a) In the Geon theory an object is described by a graph structure wherein
nodes are the geons and edges capture different types of relationships among the geons.
Left: Examples of Geons. Right: Examples of objects representations by the Geons). (b) In
the Aspect Graph (AG) theory, an object is characterized by a graph structure wherein each
node corresponds to an aspect of the object, that is a collection of views from which the
object topology is constant (i.e., no new facets appear or disappear). Two nodes (aspects) of
the graph are connected if at least one object face is shared between the aspects. The figure
shows the AG associated to a cube.

conditions, it is possible to synthesize a novel view of an object from a linear combination of three
2D views of the same of object. Some of the assumptions are that novel views can be derived only
for those regions that are visible from all the interpolating views. Poggio and Edelman [184] show
that it is possible to generate novel views from an ensemble of stored views (typically more than
3) using a technique called generalized radial basis function. This can be viewed as generalization
of the Ullman and Basri [247] theory.

1.3. Aspect graphs

The theory based on aspect graphs, proposed in 1979 by Koenderink and Van Doorn [119], miti-
gates some of the limitations of the view-specific template representation. The aspect graph theory
follows the intuition that nearby views of the same object yield very similar observations. This
enables a more parsimonious representation where the number of views that need to be stored as
templates can be greatly reduced. The aspect graph (AG) theory assumes that an object can be
expressed as a piecewise collection of smooth surface faces (or facets). For instance, a cube has
6 of such faces. An AG is in essence a graph structure where each node corresponds to an aspect
of the object, that is a collection of views from which the object topology is constant (i.e., no
new facets appear or disappear). Two nodes (aspects) of the graph are connected if at least one

object face is shared between the aspects (see Fig. 7.2). Important properties of the aspect graph
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representation are: i) the number of nodes in AG is finite (the graph traversal is discrete) even if
the viewpoint changes are continuous; ii) the AG naturally accounts for object self-occlusions: the
transition from one node to another of the AG regulates the process of having some object faces
to appear or disappear because of self-occlusions; iii) each aspect of the AG can be associated
to an object viewpoint template (which effectively captures one specific configuration of object
faces) and, thus, the overall number of templates that are required to be stored is greatly reduced.
Drawbacks of AG theories are: i) the complexity of the AG representations is a function of the
complexity of the object topological structure: objects that are represented by complex piecewise
structures would result into AGs with an extremely large number of nodes and connections; more-
over the complexity of the AG is function of the level of resolution used to describe the object;
the finer the details that are needed to be encoded into the object representation, the more com-
plex is the resulting AG; i1) AGs describe classes of topological structures. For instance, a cube
and parallelepiped share the same topology of aspects. Objects that belong to the same class of
topological structures cannot be discriminated even if they may be associated to different semantic
labels (e.g. an armchair or coach). Notice that this limitation is not suffered by a geons-based or
template-based representation wherein quantitative descriptions such as aspect ratios can be easily
captured; 1i1) An AG cannot predict (extrapolate) the appearance of the object from an aspect that
is not previously captured in training. iv) Despite the appeal of AG and template-based theories,
unlike the Geon theory, representing an 3D object as a collection of (stored or synthesized) 2D
views cannot fully account for the sense of three-dimensionality that humans have in perceiving

objects.

1.4. Computational theories by 3D alignment

This latter limitation is partially addressed by computational theories that advocate that objects
are stored in memory as full 3D models. According to these theories recognition takes place by
matching (aligning) the stored 3D model with the input object view via geometrical transforma-
tions (such as rotation, translations and projectivity) [150, 115, 246]. For this reason these methods
are called pose consistency or alignment theories. The matching procedure has two basic steps: 1)
hypothesis generation; ii) geometrical verification. This two-step framework has been picked up
and extended up in various forms by several computational theories for 3D object recognition in
the past three decades. In the hypothesis generation step, a number of correspondences between (a
few) features in the input image and features on the 3D model stored in memory are found. These

correspondences enable estimation of the viewpoint transformation between observer and the 3D
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model. In the validation step, all the remaining features characterizing the model are (back) pro-
jected into the input image. A score that measures the degree of similarity between the projected
features and the observed ones is computed. If the score is above a certain threshold, the hypothe-
sis along with the resulting model is accepted. Because the geometrical verification stage is based
on a precise alignment between model and input image, such theory enables a more discriminative

recognition procedure than aspect graphs or structural methods such as the Geon theory.

1.5. Conclusions

In summary, structural representations (such as the Geon theory) and template-based (holistic)
representations appear to be quite complementary in their strengths and weaknesses. Structural
representations are more adequate for representing object categories because of their ability to
generalize well and accommodate variations across exemplars within the same category. On the
other hands, view-specific methods appear to be more suitable to recognize specific instances of
object categories because of their discrimination power. Recently, vision theorists proposed to
combine these structural and template-based representations (e.g., Hummel and Stankiewicz [114])

and suggested strategies for using these two models concurrently.

2. Early Computational Models

The development of theories for 3D object representation in the human visual system is tightly
coupled with early and ongoing progress in computer vision research: many of the relevant com-
putational models have been inspired from psychophysical phenomena observed in human sub-
jects. In turn, computational models are used to help predict and validate theories that describe
how the human visual system interprets objects and scenes. We already mentioned some of the
early approaches. Notable examples are the methods based on pose alignment [151, 191, 247, 115,
62, 61, 154], pose clustering [233], generalized Hough voting [6], geometric hashing [259, 215],
random sampling consensus [71] and its variants [237] or by using invariants for indexing recogni-
tion hypotheses [72]. The interested reader can find more details in [73]. Such approaches focused
on limited class of objects such as rotationally symmetric objects or un-textured polyhedra and
found limited applicability to real world objects. Moreover, most of these methods are capable
of recognizing single instances of objects (that is, the input object is already seen in training, but
under different viewpoints) rather than object categories.

Several computational approaches inspired by aspect graph theories have also been proposed. As-

pect Graphs have been defined for simple shapes like polyhedra [216, 210], solids of revolution

72



2 EARLY COMPUTATIONAL MODELS

[50], and curved objects [165]. For details, the reader is encouraged to consult the survey by
Bowyer and Dyer [22]. These early approaches suffer the limitation of generating a large num-
ber of aspects whose large storage requirement are impractical for any modestly complex object.
Eggert et al. [51] observe that the aspect graph is often based on a level of details not fully ob-
servable in practice and explore a notion of a scale-space aspect graph to reduce the number of
views. Dickinson et al. [45] construct a hierarchical aspect graph system based on a set of primi-
tives. More recently, Cyr and Kimia [40] use the shape similarity metric, extracted from 2D views
of the object, to generate a graph structure used in recognition. Similarly to other computational
methods for single instance object recognition, Aspect Graph methods have shown limited success
in modeling intra-class variability and have limited ability to handle nuisances such as occlusions

and background clutter.
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CHAPTER 8

Modeling 3D Objects

In this chapter we explore models and methods for recognizing 3D object categories from a single
2D image. We concentrate on methods that propose object representations that seek to capture
the intrinsic 3D nature of object categories. These methods enable recognition procedures that are
robust with respect to viewpoint variability — that is, enable the identification of object instances
or object categories in poses that have not been necessarily seen before. Moreover, we focus on
methods that allow inference of object geometrical attributes such the scale, pose and shape from a
single image. Such object geometrical attributes provide strong cues for interpreting the interaction
among objects in the scene and its layout. We review and discuss methods that have been presented

to the computer vision community over the past decade.

1. Overview

Recognizing objects from arbitrary viewpoints is a highly challenging problem: not only does
one need to cope with traditional nuisances in object categorization methods (objects appearance
variability due to intra-class changes, occlusions and lighting conditions), but also to obtain rep-
resentations that capture the intrinsic viewpoint variability of object categories. In turn, one can
use these for detecting objects from images and determining their pose or other geometrical at-
tributes. In the next sections, we review the main models that researchers have proposed over
the past decade for addressing these challenges. We start with an overview of methods that aim
to address the single instance 3D object recognition problem in Sec. 2. In such a problem the
object one wishes to recognize is already observed in training, but only from a limited number
of viewpoints. The goal is to recognize the object of interest from a potentially novel viewpoint

and to determine the object pose. In most of these approaches, objects are represented by highly
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discriminative and local invariant features related by local geometric constraints. These in turn en-
able the recovery of object geometrical attributes such as pose and shape. Most of these methods
follow the framework explored in early computer vision methods (Chapter 7) of aligning the query
image with either a collection of view-templates or a learnt 3D model of the object instance. This
process is often carried out using two basic steps in the alignment theories: hypothesis generation
and geometric validation (verification) based on geometrical constraints. While critical for en-
suring sufficient discrimination power for distinguishing and recognizing single instance objects,
geometrical constraints become inadequate in object categorization problems wherein shape and

appearance intra-class variability must be accounted for.

In Sec. 3, we review methods that specifically address the object categorization problem. In such
problems, the goal is to obtain a suitable representation for object categories that is capable of
accounting for appearance and shape variability of object instances within the same object class.
Such methods cope with this type of uncertainty by limiting viewpoint variability to either one or
very few canonical views (i.e. side-view cars or frontal view faces) following the paradigm intro-
duced in computational theories based on 2D view-point templates (Chapter 7). While endowed
with good generalization power, these methods suffer from similar limitations as the 2D view-point
templates approaches: they require one to store in memory a large number of view-templates in
order to effectively capture viewpoint variability. Moreover, they are not capable of capturing the
intrinsic three-dimensional nature of the object category. We call these methods single views or

mixture of views object categorization methods.

Finally, in Sec. 4 and Sec. 5, we introduce a recent paradigm for 3D object categorization where
ideas from single-view object categorization and single instance 3D object recognition methods are
combined. These methods attempt to address the problem of object classification in a true multi-
view setting. We divide these methods in two groups. In Sec. 4, we review 2-1/2D layout models
wherein object diagnostic elements (features, parts, contours) are connected across views to form
an unique and coherent 2-1/2D model for the object category (Fig. 8.2). Relationships between
features or parts capture the way that such elements are transformed as the viewpoint changes.
These methods share some key ideas with computational theories based on aspect graphs or 2D or
2-1/2D structural representations (Sec. 7). In Sec. 5 we review 3D layout models wherein the object
elements are organized in a common 3D reference frame and form a compact 3D representation
of the object category (Fig. 8.3). Such 3D structures of features (parts, edges) can give rise, for
instance, to 3D object skeleton models, 3D star models or hybrid models where features (parts or

edges) lie on top 3D object reconstructions or CAD volumes. These methods re-elaborate some
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FIGURE 8.1. (a) Detection results from Lowe’s method [152]. Lowe’s approach leverages
the discrimination power of the SIFT features [152] and relies on identifying SIFT features
on a query image that are in correct geometrical correspondences to features associated to
training images. (b) Detection results from the Rothganger et al. method [190]; In [190] an
object is represented as a 3D collection of affine-invariant features (right). Recognition is
performed by matching the affine-invariant features detected on the query image with those
associated to the learnt models. A geometric validation step is followed based on 3D pose
alignment akin to early computational methods

of the concepts introduced in the 3D alignment theories and, to a certain degree, the Geon theory
(Chapter 7).

2. Single instance 3D category models

Beginning from the late 90s, surfing the wave of important contributions on robust feature detec-
tion and description [159, 152], researchers explore novel techniques for addressing the recognition
of single 3D object instances. The aim is to move away from the restrictions typically imposed
by early methods on the object types (e.g., un-textured polyhedra, symmetric surfaces, no back-
ground clutter), but rather consider objects with generic topology, generic appearance properties
and observed in cluttered scenes. Single instance 3D object models can be roughly divided into
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two classes: those that represent objects as collections of 2D view-templates (Sec. 2.1) and those

that introduce a global 3D construction for representing the object (Sec. 2.2).

2.1. Single instance 2D view-template models

Several approaches in the late 1990s and early 2000s, explore the idea of using discriminative
features and view invariant (e.g., scale, rotation or affine-invariant) descriptors [159, 152, 160]
for obtaining object models that are robust to viewpoint variability. Related to the computational
theories based on 2D alignment, these methods propose to represent the object as a collection
features associated to an handful of 2D view templates. In recognition, by matching features of
the query image with those associated to the 2D view templates, it is possible to identify the object
of interest. A geometrical verification step is typically applied after feature matching for further
validating the quality of the matching and for estimating the pose transformation between the
query object and object model. Methods differ by the type of detectors or descriptors or the type of
geometric validation process. They have been successfully applied for matching images of objects
(or scenes) observed across widely separated views. [158, 172, 245, 202, 152, 229, 185, 201, 32,
268].

A notable example of single instance 2D view-template model is the work by Lowe [152]. Lowe’s
approach leverages the discrimination power of the SIFT features [152] and relies on identifying
SIFT features on a query image that are in correct geometrical correspondences to features asso-
ciated to training images. Features are first matched to the model by appearance similarity using
a generalized Hough transform formulation. This process greatly benefits from the ability of the
SIFT descriptor to return a rotationally and scale invariant representation of the image around the
point of interest. Then a detailed geometrical verification step is performed based on least square
estimation of the object pose via affine or perspective transformation. The method was validated

on several objects with moderate viewpoint variation in cluttered scenes (Fig. 8.1,a).

In order to further increase the robustness of the feature matching process with respect to view
transformations, methods have been proposed to group together features into regions that form
a consistent geometrical construction such as a 2D affitinity or 2D homography. In Lazebnik
et al. [131] groups of local affine regions are identified. These groups are subject to an affine
mapping across viewpoint transformations and capture intra-class variations across different in-
stances within the same object class. A validation procedure against a training set is also used
to further increase the discrimination power of such regions. Experimental results indicate that
discriminative local affine regions can be successfully used to match objects observed from dif-

ferent viewpoints especially in presence of repeated structures (texture) and in images containing
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significant clutter and noise. Geometrically consistent regions are also studied in the work by
Ferrari et al. [70, 69] wherein the concept of group of aggregated matches (GAM) is introduced.
Model views are connected by a number of feature-tracks that are used to transfer GAMs across
views. GAMs are obtained by applying an iterative technique that alternates between an expansion
phase and contraction phase which allows estimation of the optimal spatial extent of the GAM re-
gion. By capturing GAM region relationships between the query image and multiple model views,
the model enables the recognition of 3D single instance objects. The method is qualitatively and

quantitatively evaluated against a dataset of textured objects collected by the authors.

The idea of using segmentation methods to guide the process of grouping feature matches is ex-
plored by Toshev et al. [240]. The authors propose a framework for segmenting the images into
regions by jointly imposing local perceptually coherency within the same image and feature sim-
ilarity across different viewpoints. These regions are called co-salient. The authors apply this

framework for matching urban scene elements against a large database of images of places.

2.2. Single instance 3D models

The object representation in the methods discussed so far is essentially a collection of features or
2D regions associated to a number of template viewpoints rather than to a full 3D object model.
The work by Jacobs and Barsi [116] presents one of the early computational models that is built
upon the arrangement of regions in the 3D physical space. The method relaxes some of assump-
tions that previous approaches make on the topology or on the properties of the objects of interest
(e.g., rotationally symmetry, un-textured polyhedra). The authors provide a set of provably correct
and approximated algorithms based on linear programming for handling the challenging case of
self-occlusions and arbitrary occlusions (a problem that, up to date, researchers have yet to find a
satisfying answer for). The algorithms were tested on a few single instance textured objects with
arbitrary topology such soda cans or boxes and show successful examples of object pose determi-

nation.

Rothganger et al. [190] go back to the idea of modeling the 3D object as a collection of points in
3D. The key novelty here is to associate each of the 3D points to an affine-invariant local descrip-
tor. These capture the normalized local appearance of the object in a neighborhood of the image
around detected salient features [159]. Recognition is performed by matching features detected on
the query image with those associated to the learnt models. Matched features along with global
geometric constraints are used to obtain proposals for the object pose which are further validated
using a RANSAC-like algorithm [71]. The method was quantitatively evaluated on a database
comprising several objects observed under arbitrary viewpoints, in highly cluttered scenes and
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under severe occlusions. This is one of the largest databases for systematically testing detection
accuracy in single instance recognition problems. Anecdotal results on pose estimation were also
presented (Fig. 8.1,b).

The approaches by Brown and Lowe [26] and Gordon and Lowe [78] also represent objects as
3D point clouds and associate each 3D element to a SIFT descriptor. In [78] SIFT features from
the input image are matched against each object model. Random subsets of points are chosen
and used to estimate a pose hypothesis via RANSAC [71]. The pose is eventually determined by
minimizing the re-projection error using optimization techniques. Brown and Lowe [26] focus on
the ability to match images of the same object (scene) observed from different viewpoints so to
acquire the 3D object (scene) models in a unsupervised fashion from a unordered collection of
images containing outliers. This work created the foundation for large scale 3D reconstruction

engines such as Photosynth [212].

In recent work, Collet et al. [33] extend these ideas and propose a method for detecting multiple
object instances from a single image (i.e. finding objects in an image containing more than one
object instance). Recognition is still performed by matching the descriptors between the query
image and the stored models, and by applying a geometrical verification step. The novelty relies
on using a combination of RANSAC and a clustering technique such as meanshift [35] to avoid the
exponential growth in computational time (due to fact that multiple object instances are present).
Interestingly, Hsiao et al. [110] demonstrate there is a trade-off between feature discriminability
and recognition accuracy. Indeed, by retaining a certain degree of ambiguity in feature matching

is it possible to increase the performance of 3D object recognition systems.

3. Mixture of Single-View Models

Most of the recent advances in object categorization have focused on modeling the appearance and
shape variability of objects viewed from a limited number of poses following the 2D view template
paradigm introduced in computational theories (Ch. 7). If similar views in the training set are avail-
able, and there is a way of modeling such information, the recognition problem is reduced to match-
ing a new image with the known model. This is the approach taken in a number of existing works
where each object class model is either learnt from an unique pose [250, 138, 65, 254, 68, 63, 64],
or from a mixture of poses [204, 253, 168, 270, 144]. Schneiderman and Kanade [204] propose to
use multiple single-view detectors to detect objects in images. Each of these single-view detectors
is specialized to specific object orientations and modeled by learning distributions of wavelets co-
efficients and their position on the object. Weber et al. [253] leverage the 2D constellation model

introduced in [254] and represent 3D objects using a mixture of joint probability density on region
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appearance and shape learnt for each viewpoint. Both [204] and [253] were tested on a few object
categories such as faces or cars. The drawback of mixture model approaches is that different poses
of the same object category results in completely independent models, where neither features or
regions are shared across views. Mixture models typically determines the object pose by returning
the viewpoint label of the winning single-view detector in the mixture. Because each single-view
models are independent, these methods are are costly to train and prone to false alarms, if sev-
eral views need to be encoded. An exception is the work by [238] where an efficient multi-class

boosting procedure is introduced to limit the computational overload.

Recently, the work by Gu and Ren [81] proposes to use a representation similar to [64] for achiev-
ing accurate pose determination. Appearance information is captured using a bank of single-view
models of the 3D object. Novel viewpoints are extrapolated (via regression) from the single-view
models to enable the modeling of continuous viewpoint angles. The authors show very competitive
results in determining discrete object poses on a state-of-the dataset [194] and present one of the
first quantitative evaluation of continuous viewpoint estimation. Estimating accurate object pose is
also the focus of the work by Ozuysal et al. [178]. Here the authors propose a two-stage procedure
for object detection and pose determination: In a first stage, candidate bounding-box sizes and
viewpoints are selected. A subsequent validation stage is followed wherein a view-specific classi-
fier is applied to validate the hypotheses. Even if the method does not enable continuous viewpoint
estimation as in [81], compelling results were reported on a 16-pose classification experiment using

a car dataset created by the authors.

4. 2-1/2D Layout Models

In 2-1/2D layout models, object elements (i.e., features, regions, contours) are linked across views
so to form an unique and coherent 2-1/2D model for the object category (Fig. 8.2). In 2-1/2D mod-
els, links between image features (regions) capture the geometrical transformation of the same
object physical feature (part) observed across different viewpoints. Thus, the object is not rep-
resented as a 3D entity in the physical 3D space but rather as graph structure where nodes are
associated to features (regions) and edges capture the geometrical relationship between features
(regions). Interestingly, 2-1/2D layout models can be interpreted as multi-view generalizations of
2D part-based models proposed by [65, 254], for single-view object categorization. Moreover,
such models are similar to structural representations such as the Geon theory (Chapter 7) wherein
geons are here replaced by object 2D regions. Methods based on 2-1/2D layout models differ by
the way features (parts) and the relationships between features (parts) are constructed and learnt.

In Sec. 4.1 we discuss methods that propose to link features within the same view or across views
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FIGURE 8.2. (a) In the model by Thomas et al. [232], an object is represented as a 2D
collection of features associated to entries of a dictionary of codewords (codebook) for
each viewpoint. Codebook entries of each single-view model are connected across views
by links using [69]. (b) In extension presented in Thomas et al. [231], occurrences of
codebook entries are associated with semantic labels describing object regions or other
meta-data characteristics. This results into a framework for jointly detecting objects as
well as estimating the 3D spatial arrangement (layout) of object semantic regions such as
a car wheel or windshield. (c) In the approach proposed in Kushal et al. [127] an object is
represented as a loose collection of pairs of regions which are linked by local affine trans-
formations.

using Implicit Shape Model representations [137] and its extensions. In Sec. 4.2 we discuss repre-
sentations constructed on view-invariant parts and their geometrical relationship across views. In
Sec. 4.3 we review a proposal for constructing a hierarchical 2D-1/2D layout model where parts are
linked across levels of the hierarchy. Finally, we introduce the concept of discriminative aspects
in Sec. 4.4 for capturing discriminative appearance properties that are capable of relating objects

across viewpoints.
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4.1. 2-1/2D Layout by ISM models

In the pioneering contribution by Thomas et al. [232], the implicit shape model (ISM) [137] - a
2D single-view object category model- is combined with the single 3D object instance model in
Ferrari et al. [69] (Fig. 8.2). The ISM is in essence a probabilistic extension of the generalized
Hough voting transform [6, 137]. In the ISM model, an object is represented as a 2D collection
of features which can be associated to entries of a dictionary of codewords (codebook). Codeword
entries are used to cast probabilistic votes for the centroid location of an object category. An
ISM model can be learnt for each object viewpoint and the ensemble of these can form a bank
of single-view object detectors for the object category. The main idea of Thomas et al. [232] is
to connect codebook entries of each single-view model by enforcing across-view constraints to
obtain what the authors call the activation links (Fig. 8.2). Activation links are provided by the
dense multi-view correspondences introduced in [70] ( 2.1). This allows the system to obtain
an augmented voting space where each feature cast votes for the object class, scale and centroid
depending not only on the specific viewpoint but also on the adjacent views. The algorithm was
tested on two classes car and bike. Each model was learnt using a database comprising several
instances of objects, where each object instance was observed from multiple viewpoints. Images
from the PASCAL VOC 2005 [48] were used for evaluating the ability of the algorithm to detect
objects observed from arbitrary viewpoints. Although the framework enables estimation of object

viewpoints, the authors did not report pose estimation results.

Several extensions of the ISM model have been proposed to couple the object detector with the
ability to estimate object geometrical attributes such as object pose, the 3D object parts’ configura-
tions or the object 3D shape. In Thomas et al. [231], occurrences of codebook entries are associated
with semantic labels describing object regions or other meta-data characteristics. This results into
a framework for jointly detecting objects as well as estimating the 3D spatial arrangement (layout)
of object semantic regions such as a wheelchair seat or a car door (Fig. 8.2). In the 3D-Encoded
Hough voting technique introduced in [222], an object depth map is explicitly used in training for
establishing an unique mapping between codeword entries and the relative scale of the object. In
recognition, even when 3D information is not available, the authors demonstrate that such mapping
produce more consistent votes in the voting space than other state-of-the-art ISM based models.
This property helps reduce the sensitivity of the detection method to false alarms. Moreover, the
authors show that such framework can be used to estimate the rough 3D shape of the object from

a single image. Another notable extension of ISM is discussed in details in Sec.5 [4].
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4.2. 2-1/2D Layout by view-invariant parts

As opposed to the ISM model in [232] where single features are linked across views (via codebook
entries), and similarly to methods for single object recognition such as [131, 69], 2-1/2D layout
models have been proposed where collections of features are grouped into regions and, in turn,
regions are linked across views via geometrical transformations. An early example is the work by
Bart et al. [14] where an object is represented by a collection of view-invariant regions (or extended
fragments as termed by the authors). Extended fragments act as templates for measuring similarity
across viewpoints. Extended fragments are view-invariant in that they are a collection of image
templates of the same object physical region under different viewing conditions. The object model,
however, is a loose 2-1/2D representation in that it does not does capture any 2D or across-view
relationship of regions. The algorithm was validated against one class dataset (faces) and showed
promising results in recognizing objects from viewing directions that were not seen in the past.
Severe viewpoint changes (up 45 degrees) were tested. Other semi-view invariant representations

based on constellation of features are explored in [234].

Moving forward toward a more structured 2-1/2D layout representation, the approach proposed
in Kushal et al. [127] follows the idea of representing the object as a loose collection of pairs of
regions (called partial surface models or PSMs) which are linked by local affine transformations
(Fig. 8.2). Unlike Bart et al. [14], however, PSMs are not view-invariant. Similarly to [131], PSM
are local rigid groups of features and are learnt by matching patterns of features across training
images within the same category. The affine transformation captures the local geometric relation-
ship of features as the same object part is observed from different viewpoints in the training set.
PSM and their relationships are combined into a probabilistic graphical model that effectively cap-
tures multi-view appearance and geometry information of the object category. The method showed
competitive detection results on the Pascal VOC 2005 [48], but no experiments on pose estimation

were reported.

In Savarese and Fei-Fei [194, 195] compact models of an object category are obtained by linking
together diagnostic regions (called canonical parts) of the objects with the same view or across dif-
ferent viewpoints via affine or homographic transformations (Fig. 10.1). Similarly to [14], canon-
ical parts are discriminative and view-invariant representations of local planar regions attached to
the object physical surface. Unlike [14, 127], however, the object is represented as a full linkage
structure capturing the 2-1/2D layout of the object category where nodes are canonical parts and
edges encode the geometrical transformation of parts with respect the canonical views. The model
is further extended into a generative probabilistic framework in [223, 218]. The main contribu-

tion in [223, 218] is the capability to synthesize object part configuration, shape and appearance
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from arbitrary viewpoint locations on the viewing sphere. We will discuss this approach and its

extensions in more detail in Chapter 10.

4.3. 2-1/2D hierarchical layout models

While the idea of representing an object as a collection regions has been successfully used in
numerous recognition scenarios, the issue of determining the extent and the correct level of granu-
larity for defining a region still remains an open problem. The model presented in Zhu et al. [272]
offers an interesting solution for constructing a hierarchical region-based object representation
wherein regions are recursively formed by composition from more elementary region elements.
The authors call such regions recursive compositional models (RCMs). RMCs are shared (linked)
across viewpoints as well as across object instances resulting into a hierarchical 2-1/2D part layout
model. Regions are mainly constructed upon object boundaries whereas holistic object appear-
ance (e.g., texture or material properties) is used to provide view-invariant evidence describing the
object category. As opposed to [194, 127], however, the model does not capture the geometrical
transformation of regions across views, but only the child-parent dependency which is, in essence,
a 2D translational relationship for each given viewpoint. The authors quantitatively validated the
model’s ability to detect objects, determine the object pose and estimate the part layout on an
handful of categories from the PASCAL 2005 dataset [48].

4.4. 2-1/2D Layout by discriminative aspects

The methods discussed so far follow the intuition that features and regions can be effectively used
to describe geometrical aspects (views) whose combination is used to characterize a 3D object
instance or category. An alternative approach is taken by Farhadi et al. [S9] where the concept
of discriminative aspects is introduced. Discriminative aspects can capture discriminative appear-
ance properties that relate objects across viewpoints regardless of their specific category label or
viewpoint label. This allows to capture the relationship between aspects and appearance properties
rather than the relationship between appearance and viewpoint label across object classes. Since
such discriminative aspects are unknown in training (one of the goals of their method is to discover
these aspects automatically), Farhadi et al. [S9] propose to represent the discriminative aspects as
latent variables using a bilinear latent model similar to [75]. The authors demonstrate that this
paradigm has the appealing property of transferring aspects across views and allows to recognize

object aspects which are never seen in training.
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(c) (d)

FIGURE 8.3. (a) In Hoiem et al. [106] an object category is represented using a 3D lay-
out model which is constructed by grouping together pixels into regions following local
and global consistency criteria. The 3D region layout is modeled using a conditional ran-
dom field (CRF). (b) Chiu et al. [29, 30] propose to represent an object category using the
Potemkin model which is a constellation of nearly planar regions localized in a 3D refer-
ence system. (c) [146, 145] propose to model the object as a mixture of 3D regions in a 3D
common reference frame. Regions are transferred from training images with the help of a
CAD model. (d) In Yan et al. [264] the 3D object category is represented as a constellation
of 2D features (collected across training images) which are mapped into a 3D reconstruction
of the object.

5. 3D Layout Models

In 3D layout models the object is represented by a collection of diagnostic object elements orga-

nized in a common 3D structure in the physical 3D space. In recognition, a registration step aimed
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at aligning the model with the query object is typically required. This alignment step is in spirit
similar to that introduced in the computational theories for human vision (Chapter 7) or for single
instance object recognition methods (Sec. 2). Different techniques use different types of diagnostic
elements (e.g., features, regions, edges), or different 3D structures (3D object skeletons, 3D star
models, hybrid models where features lie on top 3D object reconstructions or CAD volumes). In
Sec. 5.1 we discuss methods that propose representations constructed upon 3D object reconstruc-
tions or CAD models (object prototype). In Sec. 5.2 we review methods that propose to represent

objects as 3D configuration of features or parts in the object reference system.

5.1. 3D Layout Models constructed upon 3D prototypes

In Yan et al. [264] the 3D object category is represented as a constellation of 2D features (collected
across training images) which are mapped into a 3D reconstruction of the object (Fig. 8.3). Such
reconstruction is obtained from a single object instance for which several views are available.
The method leverages the 3D shape reconstruction framework proposed in [193]. This allows to
automatically establish homographic transformations between the 2D views and the 3D models.
This property becomes crucial in detection when hypotheses for the camera pose are to be validated

by projecting features of the 3D object model to the query image.

Moving from a feature-based representation to a region-based one, Hoiem et al. [106] propose a
3D layout model which is constructed by grouping together pixels into regions following local and
global consistency criteria (Fig. 8.3). The former accounts for the coherency of regions within the
2D layout of the object (i.e., 2D relative position of regions should be coherent for each given view-
point) similarly to [257]. The latter ensures that regions are globally consistent with the position,
scale and viewpoint of the object, thus extending the 2D region-based construction into a coherent
representation for the 3D object. Global consistency is enforced by introducing a 3D prototype
model of the object on top of which training images are matched after suitable alignment. The
3D region layout is modeled using a conditional random field (CRF). The CRF formulation is ap-
pealing in enables the object to be identified across viewpoints and also enables part identification
and refined object segmentation, as demonstrated in numerous experiments. The authors did not,

however, report quantitative results on pose classification.

A part-based representation is also explored in the series of works by Liebelt et al. [146, 145]
(Fig. 8.3). Unlike [106] or [264] where appearance is associated to a single 3D prototype of the
object category, [146, 145] propose to capture 3D shape geometric intraclass variations using mul-
tiple CAD 3D models of the object category. Regions are automatically transferred from training

images into the CAD models by assuming that images of the objects from several viewpoints are
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available and that they can be roughly registered with underlying CAD models. This allows to
learn mixture of 3D regions in a 3D common reference frame for each object category. Detection
follows a two-step algorithm where: 1) a object is detected and its pose estimated based on 2D
appearance cues; this produces a detection hypothesis. ii) the hypothesis is validated and accurate
3DOF pose is determined using the mixture models via an optimization procedure over the pose
parameters. Other ideas based on representing objects via collection of 3D examplars or CAD
models are explored in [260, 111, 214, 96]

5.2. 3D Layout Models without 3D prototypes

Unlike [264, 106, 145], the 3D layout representation in Arie-Nachimson et al. [4] is constructed
as a 3D constellation of features without the need introducing an underlying 3D prototype. The
authors propose to do so by extending the ISM formulation [138] in 3D and by having codebook
entries of the ISM to cast probabilistic votes to the object centroid location in a common 3D frame.
The authors apply this model for detecting objects and determining its 3D pose using the classic
paradigm based on hypothesis generation and geometrical verification: 1) determine triplets of
matching pairs between features detected in the query images and features in the 3D ISM model;
ii) compute a 3D-to-2D similarity transformation using geometrical verifications techniques such
as RANSAC. Such transformation allows to accurately estimate the object pose. Quantitative pose

estimation results are presented using state-of-the art datasets.

Another representation based on a 3D constellation of regions (without introducing an underlying
3D prototype object model) is proposed in Chiu et al. [29, 30] which the authors call the Potemkin
model (Fig. 8.3). In the Potemkin model regions are assumed to be nearly planar and are localized
in a 3D reference system using the region centroid. Viewpoint transformations are modeled by
rigidly transforming the arrangements of region centroids and transforming each region shape as
a 2D perspective transformation. The authors propose to use the Potemkin model in two fashions.
In [29] the model is used for generating synthetic views of the training objects from a wide range of
viewpoints, generating training data for generic multi-view object detection systems. In [30], the
authors extend their model to recover geometrical attributes of the object from a single 2D image.
These include the 3D region layout, region 3D orientations and auxiliary functional properties.
The concept of synthesizing novel views in either training or testing for obtaining more robust
object detection or pose estimation is also used in earlier work by Ratan et al. [255, 96] as well
as [195, 218].
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CHAPTER 9

Recognizing and Understanding 3D Objects

In this chapter, we discuss important practical considerations, including datasets, annotation, and

learning strategies, for recognizing and understanding 3D objects.

1. Datasets

Different datasets are used to assess the detection performance of 3D object recognition methods
and to evaluate the accuracy in inferring object geometrical attributes such as pose and 3D shape.
Traditional datasets used in object categorization [57, 80, 192, 44] are not necessarily suitable to
test the ability of 3D object categorization methods to detect objects from arbitrary viewpoints. In
such datasets the distribution of viewpoints (under which objects are observed) has strong biases
toward certain viewpoints (that is, some of the viewpoints are poorly represented). This, in turn,
affects the ability of the algorithms to effectively train and test the models. Moreover, with the
exception of the 2006 (and subsequent) releases of the PASCAL dataset (e.g., [57, 55, 56] which
assign 4 viewpoint labels (front, side-left, back, side-right) to some of the object categories, most
datasets do not have pose labels. Again, this creates problems for algorithms that require pose

annotation in training, or for providing ground truth labels in pose estimation experiments.

One of the earliest dataset specifically designed for training and testing 3D object categorization
algorithms is the 3D Object dataset [194]. The 3D Objects dataset contains images of 10 object
classes. For each of the object classes, the database comprises images of 10 object instances
portrayed from 8 azimuth angles, 3 zenith angles and at three different 3 scales (distances from
the observer) for a total of almost 7000 images. Viewpoint labels are also provided. Unlike the
PASCAL or LabelMe datasets [57, 55, 192], however, the 3D Objects dataset typically contains
only one object instance per image with no occlusions (Fig 9.1).
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Other datasets for 3D object categorization and pose estimation have also been introduced. In
Thomas et al. [232], images of several instances of motorbikes and shoes are collected from as
many as 16 viewpoints. In Xiao et al. [260] images of several instances of motorbikes and shoes are
collected from several viewpoints; 3D reconstructions are also provided. The dataset introduced
by Lopez-Sastre [149] comprises 26 object categories with (up to) 8 viewpoint annotations per
category. In Ozuysal et al. [178] 20 sequences of cars are acquired as they rotate by 360 degrees
with a view-angle gap of 3 —4 degrees (Fig 9.1). In Zhu et al. [272, 192] a subset of the car dataset
from LabelMe [192] is annotated with pose labels. In Arie-Nachimson et al. [4] 86 segmented
images of cars seen from different viewpoints are collected. In Gu and Ren [81] a continuous
object pose database is acquired. The database comprises 17 daily objects with a variety of shape,
appearance and scale. Images for each object are captured using a turn table while hand-holding a

camera and moving it at varying heights and orientations.

A valuable dataset for evaluating the accuracy in estimating region configurations and 3D object
layout is presented in [231]. This dataset comprises two classes: wheelchairs and cars. Both classes
include ground truth region segmentations and annotations as well as ground truth depth maps.
Images of wheelchairs and cars were collected from the Internet and the LabelMe dataset [192].
Finally, a dataset comprising images of three object categories (PC mice, staplers and mugs) ob-
served under a wide range of viewpoints and distributed on a desk top in various configurations
is presented in [222]. The interesting property of this dataset is that each image is associated to a
depth map. The depth map can be conveniently employed by methods such as [222, 4] that require

depth information during training.

2. Supervision and Initialization

Methods discussed thus far significantly differ by the level of supervision required to learn the 3D
models. A typical assumption is that images of objects are labeled according to their object class.
Thus, for instance, all images containing car instances are grouped together and used to learn
the car category model. Typically, each training image either contains only one object instance

occupying a dominant position in the image, or the object is identified by a bounding box.

Some methods require additional level of supervision and necessitate viewpoint labels for either
learning or validate the model parameters [232, 4, 127, 223, 106, 81]. While pose annotations
facilitate the learning procedure, the process of annotating new viewpoints is problematic in that:
1) it requires large amount of human labor for labeling all the views for all of the instances; this

is an extremely demanding and laborious task; ii) even by using recent methods such as Amazon
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(@) (b)
FIGURE 9.1. (a) Images from the 3D Object dataset [194]; the dataset includes almost
7000 images of 10 object categories portrayed from 8 azimuth angles, 3 zenith angles and
3 different scales. (b) The dataset proposed in Ozuysal et al. [178] contains images of 20
car instances observed from as many as 90 azimuth viewpoints.

Mechanical Turk [213], accurate pose annotation is prone to errors as humans are not good at

quantifying 3D viewpoints [181].

Techniques such as [194, 195, 14] do not need pose annotations, but require that multiple observa-
tions of the same object instance from different views are provided. This is the case when multiple
views are required to construct 3D models such as in [264] or to form canonical or view invariant
regions [194, 195, 14]. This assumption may be problematic if training data are not coherently
organized and it is hardly scalable if a large number of categories need to be modeled.

Most of the methods based on 3D layout representations require CAD models or 3D reconstruc-
tions as a critical ingredient of the learning procedure. For instance, [106, 264] initialize the learn-
ing procedure using a rough 3D reconstruction of a single instance of the object. Moreover, these
methods require special care in aligning images to the 3D reconstructions according the viewpoints
or need follow some specific guidelines during training. Liebelt et al. [145] assume that several
CAD models are available for learning the 3D distribution of regions in a common 3D reference
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frame. Unlike, [106, 264] however, Liebelt et al. [145] do not require supervision in annotating
object regions. Finally, some of the techniques that are capable of inferring 3D region configura-
tions such as [29, 231, 106] require extra supervision in annotating objects regions or in accurately

segmenting the object contours in the training set.

Among all the methods for 3D object categorization and pose estimation, Hao et al [218], Zhu et
al. [272] and Gu and Ren [81] are those that require the least amount of supervision and allow to
learn object models from un-organized and unstructured collection of images of objects portrayed
from arbitrary (unlabeled) poses. Both methods also enable the automatic determination of the ob-
ject regions without the need for extra annotations. Methods such [218], however, do require some
degree of supervision for initializing the learning procedure. For instance, the method assumes
that one video sequence of a single object instance is available for initializing the model construc-
tion. This is required to initialize part correspondence across views. Once this is done, training
images can be incrementally added in a unsupervised fashion without the need of extra pose or
part annotation. The discriminative approach presented in Gu and Ren [81] do not require any
pose labels in training as pose labels are considered as latent variables. Likewise [218], however,

model initialization is crucial as the method relies on suitably partitioning the training set.

3. Modeling, Learning and Inference Strategies

Methods differ by the modeling strategies, the formulation used to learn model parameters, and
the inference procedure. The probabilistic generalized Hough voting formulation introduced in
Implicit Shape Models (ISM) [137, 232] has been successfully used for learning and capturing
dependencies of objects features (via codebook entries) across views. Probabilistic hough voting
is also suitable for learning models that allow to infer geometrical attributes such as pose [4, 222],
3D shape [222], 3D part configurations, functional properties and other meta-data associated to
object categories [231].

Because of their modeling flexibility, generative graphical models are popular tools for model-
ing 3D object categories. Among the methods based on 2-1/2D layout representations, Kushal et
al. [127] propose to use a Markov Random Field to model the relationship among object parts and
a loopy belief propagation procedure [163] to approximately learn the parameters of the observed
configurations using a validation training set. Another example is the generative graphical model
introduced in Su et al. [218], where the process of generating object part shape and appearance
is expressed by conditional dependencies on a continuous parameterization of the viewing sphere.

Such continuous parametrization is obtained by means of a view morphing formulation that allows
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to synthesize part location, shape and appearance at any location on the viewing sphere. Parame-
ters of the graphical model are learnt using a EM variational inference method [20]. Geometrical
constraints and view-morphing relationships are introduced as penalty terms during variational in-
ference. We discuss this in more detail in Chapter 10. Among the methods based on 3D layout
models, Hoiem et al. [106] introduce a conditional random field (CRF) to jointly model the object
appearance and the part configuration in 3D. Training leverages randomized trees method [139] to
estimate the likelihood of labels given evidence. Inference is carried out by following a optimiza-
tion algorithm where local consistency of part labeling and layout consistency of the connected
components (obtained via message passing [122]) are sequentially enforced. The CRF requires to

be initialized using a 3D prototype of the object as already discussed in Sec. 5.

Following the success in 2D object detection problems, discriminative approaches constructed
upon latent support vector machines (LSVM) [67] have been also used in 3D object categorization.
Gu and Ren [81] use such formulation to achieve high discrimination power in pose estimation
problems. In his work, the LSVM formulation, which considers the viewpoint labels as discrete-

valued latent variables, has been extended so as to enable continuous viewpoint modeling.

It is interesting to notice that the construction of the building blocks (i.e,, features, regions) which
are at the foundation of 2-1/2D or 3D layout representations often rely on learning methods. For
instance, view invariant and informative object regions are extracted using the measure of mutual
information in [14] or multi-model fitting methods such as J-linkage [235] in [194, 195]. Most
of the learning and inference strategies used in 3D layout representations leverage geometrical
validation schemes such as RANSAC [71] or its variations. The idea is to sample a number of
matching candidates between object models and the query object for generating object hypotheses.
Such hypotheses are typically obtained by fitting a transformation which allows to align the object
model to a certain location and pose in the image. The hypothesis is then validated by verifying
that the predicted object location and pose is consistent with the image evidence. Methods such
as [190, 78, 33, 4] follow this paradigm.
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CHAPTER 10

Examples of 2D 1/2 Layout Models

In this chapter, we review the model proposed in Savarese and Fei-Fei [194, 195] as an illustrative
example of a 2D 1/2 layout model. In [194, 195] object categories are modeled as a collection of
viewpoint invariant parts connected by relative viewpoint transformations (Sec. 1). Moreover, we
discuss in detail the extension into the probabilistic framework proposed in [223, 218]. Here, a
generative model is used for learning the relative position of parts within each viewpoint, as well
as corresponding part locations across viewpoints. The main idea in this work is to introduce a
parametrization of the viewing sphere for selecting viewpoints and generating novel mixtures of
parts (Sec. 2).

1. Linkage Structure of Canonical Parts

In the 2-1/2D layout representation introduced by Savarese and Fei-Fei in [194, 195], an object
category model is obtained by linking together diagnostic parts (also called canonical parts) of the
objects from different viewpoints. Canonical parts are discriminative and view-invariant represen-
tations of local planar regions attached to object physical surface. They retain the appearance of
a region that is viewed most frontally on the object. For instance, consider a car’s rear bumper.
This could render different appearances under different geometric transformations as the observer
moves around the viewing sphere. The canonical part representation of the car rear bumper is
the one that is viewed the most frontally (Fig.10.1(a)). Similarly to other part-based methods for
recognition, a canonical part is modeled by distributions of vector quantized features [42]. Criti-
cally, instead of expressing part relationships by recovering the full 3D geometry of the object as
in [190, 26, 69], canonical parts are connected through their mutual homographic transformations
and positions (the linkage structure). Specifically, given an assortment of canonical parts (e.g. the

colored patches in Fig.10.1(b)), a linkage structure connects each pair of canonical parts {p;, p;}
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(@) (b) (©
FIGURE 10.1. Model Summary. Panel a: A car within the viewing sphere. As the ob-

server moves on the viewing sphere the same part produces different appearances. The
location on the viewing sphere where the part is viewed the most frontally gives rise to a
canonical part. The appearance of such canonical part is highlighted in green. Panel b:
Colored markers indicate locations of other canonical parts. Panel ¢: Canonical parts are
connected together in a linkage structure. The linkage indicates the relative position and
change of pose of a canonical part given the other (if they are both visible at the same time).
This change of location and pose is represented by a translation vector and a homographic
transformation respectively. The homographic transformation between canonical parts is
illustrated by showing that some canonical parts are slanted with respected to others. A col-
lection of canonical parts that share the same view defines a canonical view (for instance,
see the canonical parts enclosed in the area highlighted in yellow.

if they can be both visible at the same time (Fig.10.1(c)). The linkage captures the relative position
(represented by the 2 x 1 vector t;;) and change of pose of a canonical part given the other (rep-
resented by a 2 X 2 homographic transformation .<7;). If the two canonical parts share the same
pose, then the linkage is simply the translation vector t;; (since 7;; = I). For example, given that
part p; (left rear light) is canonical, the pose (and appearance) of all connected canonical parts
must change according to the transformation imposed by <7 for j = 1---N, j # i, where N is the
total number of parts connected to p;. This transformation is depicted in Fig. 10.1(c) by showing a
slanted version of each canonical part.

A canonical view V 1is defined as the collection of canonical parts that share the same view V
(Fig.10.1(c)). Thus, each pair of canonical parts {p;,p;} within V is connected by %; = I and
a translation vector t;;. A canonical view V can be interpreted as a subset of the overall linkage
structure. Effectively, the linkage structure can be interpreted as the generalization to the multi-
view case of single 2D constellation or pictorial structure models [254, 68, 65]) wherein parts
or features are connected by a mere 2D translational relationship. Similarly to other methods

based on constellations of features or parts, the linkage structure of canonical parts is robust to
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occlusions and background clutter. The resulting model is a compact summarization of both the
appearance and geometrical information of the object categories across views (rather than being

just a collection of single-view models).

1.1. The view-morphing formulation

An important property of the linkage structure model introduced above is the ability to predict
appearance and location of parts that are not necessarily canonical. This capability leverages the
view-morphing formulation introduced in the work by Seitz and Dyer [206], and Chen and Will-
liams [28]. In [206, 28] methods are presented for synthesizing novel views by linear interpolation
of two or more existing views of the same scene. This idea is further explored in the view-morphing
object model introduced by Sun et al. [223, 218] as we shall see in Sec. 2. It is interesting to note
that the output of the linkage structure (as well as the view-morphing object model in [223, 218] )
is a novel view of the object category, not just a novel view of a single object instance, whereas all
previous morphing techniques [206, 28] aim at synthesizing novel views of single objects. This is
useful to recognize an object observed from arbitrary viewing conditions (that is from views that
are not seen in learning) and it is critical for improving false detection rates (a consequence of

single-view object representations).

1.2. Supervision

Compared to competing techniques based on 2-1/2D or 3D layout representations [232, 127, 106,
264, 147, 260], the construction of a linkage structure of canonical parts requires relatively less
supervision. For instance, unlike [232, 127, 106, 264, 147, 260], learning a linkage structure does
not require viewpoint annotations and, similarly to [127, 106, 263, 147], it does not require to
manually specify the parts needed to build the model. One limitation of the learning procedure,
however, is that it does rely on a certain degree of parameter-tuning which prevents the model from
achieving good generalization if the intra class variability is high. This limitation, along with the
absence of an explicit background model, gives rise to a limited accuracy in object detection and
pose estimation. This limitation is specifically addressed in the view morphing models in Sun et
al. [223, 218] where model parameters are learnt in a principled way using a probabilistic Bayesian
formulation (Sec. 2).
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FIGURE 10.2. Schematic illustration of key concepts of the view morphing model. (a) The viewing sphere
is defined as the set of locations from which the object is visible from an unit distance. Examples of views
from different locations on the viewing sphere are shown. (b) The viewing sphere and all the key views are
parameterized as a triangle mesh. The figure also illustrates the proposed view morphing machinery. (c)
Illustration of a 3D geometrical constraint across viewpoint triangles. (d) A schematic representation of the
part-based generative object model.

2. View-morphing models

In this section, we give a detailed overview of the 2-1/2D layout representation introduced by
Sun et al. [223, 218] which we call the view-morphing object model. The view morphing object
model has the following main properties: i) Dense and generative: If one defines the unit viewing
sphere as the set of locations from which an object is visible, the view morphing object model is
dense and generative in that it has the ability to generate (synthesize) and explain object appear-
ance properties (i.e., features, parts and contours) from every locations on the viewing sphere. ii)
Semi-supervised: the view morphing object model is semi-supervised in that category labels are
provided, but viewpoint labels are not necessarily available. iii) Incrementally learnt: The pa-

rameters of the view morphing object model are incrementally updated as more unstructured visual
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Symbol | Meaning

morphing parameter
triangle on the viewing sphere
post-warping transformation
part proportion prior

part proportion

object part

part geometry

part center

part shape

feature location

feature appearance
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FIGURE 10.3. Notations used in the view morphing model

data is provided using incremental learning methodologies. Overall, the view-morphing model in-
herits some of the critical properties from [194, 195] (linkage of parts across views, ability to
generate new object views in recognition) while addressing its shortcomings. In the following

subsections, we examine details of some of the main properties.

Viewing sphere parametrization and dense representation via view morphing: The viewing
sphere is defined as a relatively dense collection of views from which the object is visible from
an unit distance (Fig. 10.2(a)). From this collection of views, it is possible to obtain a parameter-
ization of the viewing sphere by grouping adjacent triplets of views into triangles 7" (meshes) and
expressing each location within 7" by a parameter S. S is a 3D vector in the simplex space defined

by T. Thus any position on the viewing sphere can parameterized by {7, S} (Fig. 10.2(b)).

By using the {7, S} parametrization of the viewing sphere and some of ideas behind the view mor-
phing theory in [206, 261], one can show that it is possible to to synthesize the appearance of the
object in any location within 7" given the appearance of the object from the three views forming
T. Such synthesis is regulated by the parameter S which is defined as the morphing parameter.
Assume for now that three key views are lying on the same plane (i.e. the views are parallel or
rectified). Such a plane can be denoted as a view plane. Under the assumption that feature corre-
spondences are available across key views, a new view within 7" can be synthesized by using the
interpolating (morphing) parameter S and a homography A, called post-warping transformation.
The homography A enables the correct alignment (registration) between the synthesized view and
a query view. If the assumption of parallel views does not hold (e.g. the key views forming the
triangle are not close enough), it is possible to use feature correspondences across the key views

to align the key views to the plane formed by the triangle [261]. Note that different triangles may

99



CHAPTER 10. EXAMPLES OF 2D 1/2 LAYOUT MODELS

correspond to view planes that are not mutually parallel (Fig. 10.2(c)). In this case key views can
be re-aligned and their viewpoints adjusted through a homographic transformation H (pre-warping

transformation).

Part-based 3D category generative model over the viewing sphere: For each location on the
viewing sphere {T,S}, the object is represented as a collection of parts. Parts are defined as re-
gions within an object that: 1) enclose discriminative features that are frequently observed across
different instances of the object class; ii) can be easily identified as the part undergoes viewpoint
changes. A part based generative model is learnt following the two criteria above. The generative
part-based model is summarized in Fig. 10.2(c). Following the convention used in probabilistic
graphical model representations, each circular node represents a random variable, and each rect-
angular node represents a parameter. Solid arrows indicate conditional probability relationship
between a pair of variables. Dashed arrows indicate the influence of the viewpoint triangle 7" and
morphing parameter S on the variables. The following sets of parameters are introduced for gov-
erning the distribution of each object part k under a specific viewpoint: part geometry (60), part
appearance (1) and part proportion (7); 7 is governed by the Dirichlet parameter o and regulates
the likelihood of the different parts that appear under the specific viewpoint. Object part assign-
ments Ks are sampled according to the distribution Mult (7). Part geometry 0 is in turn expressed
as 0 = [mX], where m indicates the part center and ¢ = [0, 0] describes part shape modeled by
its enclosing ellipsoid. Each of these parameters depends on the view triangle 7 and morphing
parameter S. Given m, X, the position of each image feature X on the view plane is generated ac-
cording to the Gaussian distribution .#"(m,X). The matrix A is introduced to align (register) the
image plane and the view plane. This is also called post-morphing transformation. The position of
each image feature X on the view plane will be equivalent to AX, where X is the position of each
image feature on the image plane. Finally, the appearance of each image feature Y is generated
from Mult(n), where 1 is the multinomial distribution parameter that governs the proportion of

the codewords.

Given the viewpoint parameters, {7, S}, the view morphing machinery is used to approximately
generate part appearance 6 and location 7] parameters from a set of the part parameters {1], é} of

key views in triangle T'. Specifically, the part center m is modeled as
3
(10.1) m=mg(S) =) mf-S*
g=1

that is, as the linear interpolation of part centers {r?le,n%%,n%T} in the key views of triangle 7.
Appearance parameter 1 and part shape parameter X can be generated using a similar interpolation

scheme.
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FIGURE 10.4. Tlustration of the updates for position parameter 8 during incremental learning. As a new
training image is assigned to the triangle 7', new evidence on the sufficient statistics is produced which results
in updating relevant model parameters of the key-views.

A key property of this model is that different viewpoints would render very different part distribu-
tions (e.g. wheel parts are more likely to be observed from a car’s side view than from a frontal
view). Such relationship is encoded by the sets of parameters that are governing the part proportion

7 (with prior o ) and distribution of object parts K under a specific viewpoint.

Putting all the observable variables (X,Y,T,S) and latent variables (K, ) together with their cor-

responding parameters, the joint probability of the proposed model can be expressed as:
P(X,Y,T,S,K,m) = P(T)P(x|ar)P(S)
(10.2) TN {P(x4|0, Ky, T,S,A)P(yn| 1), Kn, T, S,A)P(Kyn|7) }

A major challenge is to learn the latent variables and estimate the hidden parameters of this model

including the morphing parameters such as the pre- and post-warping transformations.

2.1. Learning the model

In this section we give an overview of the training procedure for learning parameters and variables
of the view morphing object model. The goal is to enable minimal supervision and incremental

update rules as un-organized observations of an object from arbitrary viewpoints become available.

The learning method follows a weakly-supervised scheme that is based on critical ingredients such
as: 1) a suitable initialization seeds the model learning procedure with a meaningful collection
of parts and relationships across views. ii) a number of multi-view geometrical constraints that
enables the model learning process to favor those part configurations that have consistent geo-

metrical relationships across different views. As mentioned earlier, weakly-supervised learning
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methods make the assumption that category labels are provided but that pose labels are not neces-
sarily available. It is also likely that the training data are fairly unstructured. For instance, not all

of viewpoints for all object instances are necessarily available (unlike [194]).

Initialization: A promising way for initializing the dense multi-view representation of the 3D
object class is by using one or more video sequences of specific object instances. Such video
sequences may be acquired by using a hand-held camera and having the camera-person to walk
around the object and change viewing angles by raising and lowering the device. The video allows
to obtain feature-level correspondences between every consecutive frames. The Lucas-Kanade
tracker [155] is employed for estimating such correspondences, and a modified clustering algo-
rithm [235] is used to obtain candidate parts and initialize the part assignment parameter K. There
are two advantages for using such video sequence: 1) it enables a robust initial condition for param-
eterizing the viewing sphere and defining its triangulation; ii) it proposes a good initial distribution
of parts and part correspondences across views. Both information can be then incrementally up-
dated for accommodating intra-class variability as a larger set of unorganized and unlabeled images

becomes available.

Within-T constraint: This constraint enforces that part configurations are consistent across view-
point transformations within as each triangle T. Specifically, the affine transformation M7, jisused
to enforce that part centers 7. and rivy. satisfy M[, iy = iy, for viewpoint V; and V; in triangle 7,
respectively. Tracks (feature correspondences) obtained by Lucas-Kanade algorithm between key

views V; and V; are used to estimate the affine transformation M, r

i—j- This information is eventually

encoded as a penalty term C in the Variational EM algorithm introduced below. This lets the learn-
ing algorithm favor those part configurations that have consistent geometrical relationships across

different views.

Across-T constraints: As is shown in Fig. 10.2(c), each key view is shared by neighboring trian-
gles {7;,T;,...} . This constraint enforces correct correspondences between parts across adjacent
triangles and, most importantly, that same parts in different planes (defined by neighboring tri-
angles) share the same configuration in a common coordinate system. Similarly to the within-T
constraint, it is possible to take advantage of the affine transformation H;_, ; for relating part centers
in the key views belonging to adjacent triangles T;, T;. This information too is eventually encoded
as a penalty term F' in the Variational EM algorithm introduced below. In practice, this constraint

serves as a tool for rectifying (parallelize) adjacent views.

Learning the model: The goal of learning is to estimate the hidden variables K, & and part pa-
rameters 6,1, o by maximizing the log marginal probability In p(X,Y,T,S). The learning problem
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is formulated as an optimization problem and it is solved by using a modification of the varia-
tional EM algorithm [20]. In more detail, the goal is to maximize AL, (u) — (1 —A)C(u) such that
F(u) = 0; L, is the lower bound of log marginal likelihood P(X,Y,T,S); C and F are the penalty
terms as defined above; u denotes all the model and variational parameters {17, é, Y,Pn}, and A is
the weight to balance the importance of the within 7" constraints C vs the lower bound L;. An
EM-like procedure can be used for learning model parameter and variational parameter updates,

respectively.

2.2. Detection and viewpoint classification

In this section we describe how to use the view morphing object model to detect and categorize
objects in query images as well as recover their pose. The detection process follows these three
steps: (1) train robust generic object class detectors; (2) use such detectors to generate hypotheses
for the object existence and pose; (3) use the view morphing machinery to implement a model

confirmation and pose refinement module.

Step 1: Detectors are implemented for each category for each view by training a random forest
classifier [23]. Such classifiers are trained using learnt part model labels and by retaining relative
part position (attached to leaf nodes of the random forest) from the object center. Other classifiers

(or battery of classifiers) can also be used.

Step 2: Given a test image, the classifiers are used to create hypothesis for object locations, class
labels and poses. A random forest classifier is first applied for each object part to obtain candidate
locations. Then, part candidates are used to locate candidate object locations by casting votes to

the candidate object center using a generalized Hough transform voting scheme [138].

Step 3: This is the most critical step of the detection algorithm. The goal is to employ the
view morphing/view synthesis machinery for detection confirmation and for recovering the pose
{T,S,A}. Such parameters are estimated so as to best explain the object pose hypothesized in
the query image (top-down model fit for pose refinement). Notice that recovering the pose is no
longer a classification problem (i.e., find the model among K that best explains the observation),
but rather an estimation problem on the continuous variables {7,S,A}. This estimation problem
can be formulated as an optimization process where the argmax over {T,S,A} that minimizes the
discrepancy between predicted evidence and observation is computed. After estimating {7,S,A},
recovering object location, orientation and distance from observer’s viewpoint becomes an easy
task. T,A allows to compute the angular coordinates of the observer on the viewing sphere. A

allows to compute the distance and in-plane orientation of the object with respect to the observer.
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FIGURE 10.5. Object detection results using the 3DObjects dataset [194] for 8 object
classes. The ROC curves measure accuracy vs false alarm rate. The area under the curve
(AUC) is used to numerically quantify the overall recognition accuracy. Results for the
view morphing model are indicated in red and results for Savarese et al. [194] are indicated

m green.
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FIGURE 10.6. Object detection results using the PASCAL VOCO06 dataset [S7]. Left Ob-
ject detection using the PASCAL VOCO06 car dataset. Right Object detection using the
PASCAL VOCO06 bicycle dataset. Precision-recall curves are used to show the results of the
view morphing model (red line) compared with [147] and the detection result of the 2006
challenges [57]-INRIA Douze , [S7]-INRIA Laptev, [57]-TKK, [57]-Cambridge, and [57]-
ENSMP. Average precision (AP) scores are shown in the legends.

Note that, in general, the distance cannot be recovered from a single image. However, using prior

information about the actual scale of the object category, such distance can be obtained in practice.
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FIGURE 10.7. Left: Object detection with or without using the object parts. A car de-
tection task (3DObjects dataset [194]) is used to show the performance difference between
an object detector using the object parts learned by the 3D model (red line) and an object
detector built without the object parts (blue line). Center: Effect of view synthesis for
recognition via learning with the morphing parameter S and number of viewpoints. This ef-
fect is demonstrated by showing a binary detection task result (measured by the area under
the curve, the AUC) versus the number of key views used by the model. View morphing
model (red solid line) is compared with a nearest neighbor model (blue dashed line). Right:
Effect of incremental learning.

2.3. Results

The view morphing object model and the associated detection and pose estimation algorithms have
been evaluated experimentally in [218] using two datasets: the 3D Object dataset [194] extended
with 7 household object classes collected from the Internet by the authors, and the car and bicycle
classes in PASCAL VOC 2006 dataset [57].

Fig. 10.5 compares the ROC detection results of the view morphing object model with other state-
of-the-art algorithms on 3DObjects dataset [194]. The view morphing model significantly outper-
forms [194] and its probabilistic extension [223, 218] on the 3DObjects dataset. Fig. 10.6 compares
the precision-recall detection results of our view morphing model with other state-of-the-art algo-
rithms on PASCAL VOCO06 dataset [S7]. View morphing model shows comparable results to most
of the state-of-the-art methods on the PASCAL VOCO06 dataset. Some example detection results

are shown in Fig. 10.9.

Further experimental results demonstrate the ability of the model to learn object parts automati-
cally and in turn use them for building an object class detector. Fig. 10.7-Left shows that the object
detector built by using these proposed object parts significantly outperforms an object detector
that does not use the parts. The authors also shows the significance of the dense viewpoint repre-
sentation and view morphing framework for building 3D object models. Fig. 10.7-Center shows

a detection experiment on the same car dataset measured by AUC. View morphing model (red
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FIGURE 10.8. Viewpoint classification results: Left. 8-view classification of the 3DOb-
jects car dataset. The view morphing model (red bar) is compared with [195] (green bar).
Right. 4-view classification of the PASCAL VOCO06 car dataset. The view morphing model
(red bar) is compared with [223] (blue bar).

curve) is compared with a nearest neighbor model (blue curve). We observe two trends. For both
of these models, as the number of viewpoints increases during training, the detection performance
increases. The view morphing model, however, performs consistently better than nearest neighbor
model even given the same number of viewpoints. This is due to the effect of the morphing pa-
rameter S in view morphing model. Such model is capable of synthesizing intermediate views to

mitigate the unavoidable discrepancies existing in a discretized representation.

The view morphing model can be used to predict the viewpoint of a query object by estimating
{T,S,A}. Examples of the viewpoint classification results are shown in Fig.10.9. Similar to the
object detection experiment, the view morphing model is evaluated against three datasets: the
3DObjects dataset [194], PASCAL VOCO06 dataset [57] and the seven classes of Household Objects
dataset. The results are shown in Fig. 10.8. Note that the numbers of views are provided by the
datasets. The 3DObjects includes 8 viewing angles, 3 scales and 2 heights; the PASCAL VOC06
includes 4 viewpoints. Notice that the view morphing model significantly outperforms [195] on
the 3DObjects dataset [194], largely due to its richer representation and view morphing ability’s to

refine pose estimations.

3. Conclusions

In this chapter, we introduced a general scheme for learning multi-view part-based models of ob-
ject categories using a generative models and a suitable parametrization of the viewing sphere.
These models benefit from the ability to synthesize (generate) the object appearance from novel

viewpoints during the recognition stage. Experimental evaluation demonstrated that this is critical
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(g) Teapot (h) Flashlight (1) Calculator

FIGURE 10.9. Examples of viewpoint estimation for bicycle [194, 57], swivel chair, micro-
scope, car [194, 57], watch, iron, teapot, flashlight, and calculator. Blue arrows indicate the
viewpoint T for the detected object (in red bounding box). Green bounding box indicates
correct detections of the objects, but in a different viewpoint.

for improving the detection accuracy (i.e., the confidence in identifying an object in a certain loca-
tion can increase once the best object geometrical configuration is determined) and for obtaining a
continuous estimation of the object pose. Several important extensions are worth discussing. For
instance, similarly to some of the early 3D object representations (e.g., Jacobs and Barsi [116])
or, more recently, to Chiu et al. [30], it is desirable to include into the model the capability to
reason about self-occlusions. The goal would be to generate those parts that are observable from
the target viewpoint and flag those parts that are no longer visible. Moreover, similarly to [106], an
additional desirable property is to integrate into the generative view synthesis process the ability

107



CHAPTER 10. EXAMPLES OF 2D 1/2 LAYOUT MODELS

to segment and accurately identify the object boundaries for an arbitrary target viewpoint. Both
properties may further help increase the confidence of the true positives and decrease that of the

false alarms during the detection stage.
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PART III

Integrated 3D Scene Interpretation

Scene understanding requires the coordination of many different tasks — occlusion reasoning,
surface orientation estimation, object recognition, and scene categorization, among others. In this
part of the book, we provide examples from two main strategies for uniting detection of scene
geometry and objects into a coherent scene interpretation. The first strategy is to explicitly model
and reason about the relationships between the objects and scene geometry. In Chapter 11, we
discuss in detail the relations between scene perspective and object size, appearance, 3D pose,
and parts layout. We also include a more limited discussion of how to model constraints in the
scene layout and the need for ideas to incorporate occlusion reasoning into object recognition. In
Chapter 12, we describe a framework for representing scene properties as image-registered maps

and using them to compute features that feed back into the individual estimation algorithms.
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CHAPTER 11

Reasoning about Objects and Scenes

In this chapter, we discuss how the interaction of objects and scene space can be modeled explicitly
through symbolic reasoning or modeling of perspective. Typically, objects, scene categories, and
other properties are modeled as variables, and probabilistic relations are defined among these vari-
ables. For example, Murphy et al. [162] model the co-occurrence relationships between objects
and scene categories. Sudderth et al. [220] infer the depth of points in the image using detected
objects. Leibe et al. [136] and Ess et al. [S3] model the relationship between objects and scene
geometry. Several others (e.g. [84, 186, 142, 267]) model object-object spatial interactions. In the
following text, we discuss how perspective, layout, and occlusion relations between objects and

scenes can be modeled.

1. Objects in Perspective

We can better model the size, appearance, and parts layout of an object by considering the perspec-

tive of the camera.

1.1. Object Size

If we know the camera’s perspective and the object’s position, we can predict what size the object
should be in the image. Likewise, if we can identify objects in the image, we can use knowledge of
their likely physical size to estimate the parameters of the camera and a supporting plane. Typically,
when first provided an input image, we don’t know anything about the camera, the ground plane,
or the objects, but we do know how they all relate. In such cases, a probabilistic framework is

appropriate.
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FIGURE 11.1. An object’s height in the image can be determined from its height in the
world and the viewpoint. Figure from [101].
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1.1.1. Perspective Projection. Here, we examine the relationship between the camera and
object size, which was first introduced in Chapter 3. We assume that all objects of interest rest on
the ground plane. This assumption may seem restrictive (cannot find people on the rooftops), but
humans often seem to make the same assumption (we fail to notice the security standing on the

rooftops at political rallies unless we specifically look for them).

Under this assumption, knowing only the camera height and horizon line, we can estimate a
grounded object’s height in the scene from its top and bottom position in the image (see Fig-
ure 11.1). We will now derive this relationship using the following notation: pixel coordinates
(u, v) ranging from (0,0) at the bottom-left to (1,1) at the top-right; world coordinates (X, Y, Z)
with Y being height and Z being depth; camera tilt 6;; focal length f; camera optical center (uo,
vo); and camera height Y. (camera translation 7,=-Y,.). By convention, the world coordinates are
defined by ¢, =0, t, = 0, and the ground plane at ¥ = 0. We assume zero roll (or that the image
has been rotated to account for roll) and define the horizon position v, as the vanishing line of

the ground plane in image coordinates. In these coordinates, camera tilt (in radians) is given by

0, = 2arctan Voz_fv". We use a perspective projection model with zero skew and unit aspect ratio.

Using homogeneous coordinates, the transformation from image coordinates to scene coordinates

is given by
ew F0ouwll1 o 0 0 );
(11.1) veow | =10 f v 0 cosB, —sinf, -—Y. 7
w 0 0 1 0 sin6, cosO, 0 1

From this, we can see that

Z (f'si — — Y,
(11.2) y— (f sin 6, (\fo v)cos6y) + f ¢
(vo—v)sin 6y + fcos O
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Now suppose that we are given the top and bottom position of an upright object (v; and v, respec-
tively). Letting Y}, be the height at the bottom of the object, ¥}, = 0 because we assume the object
to be on the ground plane. We can solve for object depth Z;:

_fYc

11.3 = .
(11.3) b7 Fsin6, — (vo —vp) cos By

From Equations 11.2 and 11.3, we can solve for object height ¥;:

~ —fYe(fsin6, — (vo—v;)cos Bx) / (fsin Oy — (vo —vp) cos Oy) + fY.
N (vo— ;) sin 6, + f cos Oy ’

(11.4) Y;

If the camera tilt is small (e.g., if the horizon position is within the image), we can greatly simplify

this equation with the following approximations: cos 6, ~ 1, sin 8, ~ 6y, and 0, ~ @ yielding:

Ve —Vp
Vh—Vp

(11.5) Y~ Y,

/(1+(vo—vi) (vo—vi) /f?).

In experiments, Hoiem et al. approximate further: (vo —vy,) (vo —v;) /f% ~ 0, giving us

(11.6) Y~y

Vh_Vb.

How valid are these approximations? Equation 11.6 is exact when the camera is parallel to the
ground plane (such that 8, = 0 and v, = vp). Even when the camera is tilted, the approximation is
very good for the following reasons: tilt tends to be small (vo — vy, = 0; 6, = 0); the tops of detected
objects (e.g., pedestrians and cars) tend to be near the horizon position since the photograph is often
taken by a person standing on the ground; and camera focal length f is usually greater than 1 for
the defined coordinates (f = 1.4 times image height is typical). However, the approximation may
be poor under the following conditions, listed roughly in order of descending importance: object
is not resting on the ground; camera tilt is very large (e.g., overhead view); or image taken with a
wide-angle lens (f is small). In practice, the approximation is sufficient to improve object detection
and to accurately estimate object size in street scenes.

To simplify the notation in the remainder of this section, we will refer to the world height, image
height, and bottom position in the image of object i as Y;, h;, and v;, respectively. As before, we
denote horizon position v, and camera height Y.. Using this notation (illustrated in Figure 11.2),

we have the following relationship:

(11.7) Y, ~Y,
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(0,0)

FIGURE 11.2. Illustration of horizon position v, object bottom position v;, and object
image height ;. With these and camera height Y,, we can estimate object world height Y;
using ¥; ~ % Figure from [104].

1.1.2. Modeling the Scene. We want to determine the camera viewpoint and object iden-
tities from the image. Consider the case of car detection. An image patch is likely to be a car
if it looks like a car and if it is the right size for a car. We can model the appearance through
object detectors. Assuming that each object is on the ground, we can compute its physical height
Y; from its image height /; and the camera parameters 0 =€ {v;,,Y.}. That means if we have a
distribution over ¥;, we can compute the likelihood of A; given 6. So using both object detectors
and perspective, we can evaluate the likelihood of a hypothesized object given its appearance and

size.

Formally, we are provided a bounding box b; € {u;,v;,w;, h;} in the image, specified by the bottom-
center position (u;, v;) and the width w; and height /;. We use y; to denote the label of the bounding
box; y; = 1 means that the object exists. The size of each object in the image h; depends on its
size in the world Y; and on the camera parameters 0 =< {vj,Y,}. The appearance of an object is
scored by a pre-trained detector (e.g., Dalal and Triggs [41]). We consider the detector score d;
as evidence, yielding a likelihood of appearance P(y;|d;). We assume that the appearance and size
of different objects are mutually independent, when provided the camera parameters. Under this

conditional independence assumption, the likelihood of the scene decomposes as:

(11.8) P(6,y,b,d) = P(6) [ [P(bs,yi|0)P(di]yy).

What we really want to know is the likelihood of the camera parameters and the object candidates
given hypothesized objects and detector scores, P(6|b,d) and P(y;|b,d). To get there, we need
to do some probabilistic rearrangement. For simplicity, let’s make 0 discrete. We assume that,

without knowing the label y;, the bounding box b; is independent of 8; likewise, without knowing
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0, y; is independent of b;. Also, the object bounding box coordinates (u;, w;, h;, v;) are a priori

uniformly likely and independent. Then, P(b;,yi|0) = P(h;yi, vi, 0)P(yi)P(u;i)P(vi)P(w;). Using
P(yi|d;)

Bayes’ rule, P(di|y;) = Pl . Using all of this, we can derive:
(11.9) P(6|b,d) < P(8 HZP yildi)P(hily;, vi, 6)
and
P(h; ’}Ilvvh
(11.10) P(yi[b,d) o< P(yi|d) ) P(8) =< [ P(y;ld;)P(hyly;, v}, )
0 1 j#l

where the proportionality comes from excluded likelihood terms of the given b and d. If the object
candidate is false, then its image height does not depend on the camera: P(h;|y; = 0,v;, 6) = P(h;).
P(h;) is uniformly distributed in the range O to 1.

Now, the last step is to get P(h;|y; = 1,v;,0) from P(Y;). Let’s assume that Y¥;, the height of
an object in a particular category, is normally distributed with parameters mean u; and standard

Vh Vi

deviation o;. Then, since h; = Y,-V”g Y P(hyly; = 1,vj, ) is normal with mean y;“2~ and standard

deviation o;-4-.
g

Now, we can put all of this together to improve object detection and recover the horizon and camera

height, following the procedure below:

1. Provide priors for the horizon position v, the camera height Y., and the object physical
size Y;. These priors can be manually specified, or estimated from training data that
contains ground truth object bounding boxes [104, 130].

2. Use an object detector to get P(y;|d;) for each bounding box. If the detector outputs a
score rather than a probability, the score can be converted to a probabilistic confidence by
fitting a logistic function using a validation set [183].

3. Compute the likelihood of the objects and camera parameters using equations 11.9 and 11.10.

In this discussion, we have omitted just one annoying detail. The scores of strongly overlapping
bounding boxes are not independent. A typical solution is to perform non-maxima suppression,
removing all but the highest scoring candidate among boxes with substantial overlap. However,
this solution is not ideal because it would remove candidates before considering the perspective
evidence. Instead, Hoiem et al. [104] cluster the bounding boxes and encode candidates with high
overlap as mutually exclusive alternatives, so that, e.g., P(yi|d;) is replaced with ) ; P(y;, ki = j|dj;),
where k; is an indicator variable that specifies which bounding box within the cluster of candidates
applies.
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(g) Local Detection (g) Full Model Detection (h) Local Detection (h) Full Model Detection

FIGURE 11.3. We show local object detections (left) of Dalal-Triggs (green=true car,
cyan=false car, red=true ped, yellow=false ped) and the final detections (right) and hori-
zon estimates (blue line) after considering surface geometry and camera viewpoint. The
integrated approach yields large improvement (+7%/11% for peds/cars at 1 FP/image) over
a very good local detector. Many of the remaining recorded “false positives” are due to
objects that are heavily occluded (a,e) or very difficult to see (e) (i.e., missed by the ground
truth labeler). In (h), a missed person on the right exemplifies the need for more robust as-
sumptions (e.g., a person usually rests on the ground plane) or explanation-based reasoning
(e.g., the person only looks so tall because he is standing on a step). Figure from [101].

1.1.3. Results. To get a sense of the improvement that can result from modeling the size
of objects, we show results from Hoiem et al. [104] in Figure 11.3. To get these results, Hoiem
et al. used a data-driven method to estimate the horizon position, which they show led to some
improvement. They also used the confidences of geometric context labels around the bounding
boxes to refine the appearance scores. Most of the improvement is due to modeling perspective. In
Figure 11.4, we show an automatically produced overhead view of the scene, as a proof-of-concept
that modeling perspective will lead to better ways to reason about object relations.
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56
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FIGURE 11.4. We project the estimated ground surface into an overhead view, using the
estimated camera viewpoint, and plot scaled icons of objects (red dots for pedestrians) at
their detected (using Dalal-Triggs [41]) ground positions. Car orientation is estimated by a
robust line fit, assuming that cars mostly face down the same line. To plot in metric scale,
we assume a typical focal length. Figure from [104].

1.2. Appearance Features

Typically, object detectors make an implicit weak perspective assumption: depth affects only size,
not appearance. Such an assumption serves well for scene-scale images with distant cars and
pedestrians, but it can lead to poor detection when objects are nearby and elongated. For example,
when detecting tables or chairs in indoor scenes, small movements of the camera can cause large
variations in appearance due to foreshortening and change in gradient orientations. If we know the

perspective of the camera, we can be robust to such variations.

Hedau et al. [95] provide a good example of how to make better appearance models using per-
spective, illustrated in Figure 11.5. Their goal is to detect beds in rooms. They first detect three
orthogonal vanishing points to determine the orientation of the room and the vanishing line of the
ground plane. Then, they search for beds as axis-aligned 3D boxes, sliding the boxes along the
floor, in a 3D analogue to sliding windows. As the box moves in the scene, the sides undergo per-
spective distortion to capture foreshortening. Also, rather than computing histograms of gradients
in the image space, the image features are rectified along the room orientations. For example, a
rectangle on the floor will have vertical and horizontal edges in the rectified features. In practice,
the gradient features are rectified by weighting the magnitude based on the similarity of the gra-
dient orientation and the angle to each vanishing point. Hedau et al. show that by combining the
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FIGURE 11.5. Overview of the “Thinking Inside the Box™ algorithm [95]. From the input
image (A), estimates of three orthogonal vanishing points are computed (B), providing the
room’s orientation. Object candidates (beds in this case; shown in C) are proposed by slid-
ing a 3D cuboid of various sizes across the floor, in alignment with the room’s walls. Object
candidates are scored based on axis-aligned gradient features (D), computed by weighting
gradient magnitudes by their alignment to each vanishing point. Each side of the object is
scored separately; (E) shows high scoring samples for the front (yellow), top (green), and
side (red) of the bed. Finally, using a probabilistic formulation, the object detections are
refined by considering size and layout constraints with the room (borders of walls shown in
red). The wireframe for the highest scoring bed detection is shown in yellow.
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FIGURE 11.6. Results by the 3D layout estimator in Bao et al. [8]. (a) Example of baseline
detections (marked by red bounding boxes) with false alarms (red dashed box). These
are obtained using a baseline detector such as [222]. (b) Detections (marked by green
bounding boxes) after the joint estimation process by the 3D layout estimator. The estimated
supporting planes are superimposed in yellow. (c) The estimated 3D layout of the scene.
The figure shows the side view of the 3D reconstructed scene (the camera is located at
(0, 0) pointing toward right). The estimated supporting plane is in green. Green dots are
the objects detected and recovered in the 3D camera reference system by the 3D layout
estimator; red squares are objects detected by the baseline detector.

sliding cuboids and rectified features with more traditional 2D sliding window detectors, it is pos-
sible to improve accuracy and also to recover a better sense of the object position within the scene.
Note that the Hedau et al. approach assumes that objects are aligned with the room. It would be
straightforward to relax this by searching over a variety of 3D orientations, but a more relaxed
model would also have more opportunity for false positives. Another interesting alternative would
be to have a parts-based model in the spirit of Felzenszwalb et al. [67] or Bourdev and Malik [21],
except that parts could be defined in the image plane or rectified to scene orientations.

1.3. Interaction Between Objects and Scene via Object Scale and Pose

So far the interaction between objects and scene has been modeled by focusing on the relation-
ship between the camera and object size (scale) through a perspective transformation. A more
generic interaction model can be formulated if one considers the explicit relationship among all of
the object geometrical attributes (e.g., not just location and scale but also the pose of the object),
the spatial properties of the scene (e.g., location and orientation of the planes where objects are
grounded - the supporting planes), and the observer. These constraints enable the design of meth-
ods for 3D scene layout determination that require fewer assumptions on the camera model and
the ability to use extended “ground plane models” (Chapter 4) wherein multiple supporting planes
are allowed. Specifically, given a single uncalibrated image portraying the scene, the goal is to
estimate the 3D scene layout and the camera parameters that best explains the observations. The

observations are the object detection hypotheses and the estimation of their geometrical attributes
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(e.g., location, scale and pose). These observations can be returned by 3D object detectors (e.g.,
those based on the 2-1/2D layout or 3D layout models introduced in Part II). The 3D scene layout
parameters are: 1) 3D location and pose, within the camera reference system, for each object; 2)
orientation and distance from the camera of one or more planes that support the objects. The per-
spective camera parameters (Chapter 3) include the camera focal length and pose angles (e.g. tilt
and roll). The scene and camera parameters are initially unknown and must be jointly inferred to

select the most likely object hypotheses and compatible 3D layout.

Bao et al. [8] propose to formulate the joint inference process above as the following optimization

problem:

(11.11) argmax Inp(o,E,S) = arg maxp )+

ln /’L is —Hn ilhi,a;
S.{hi} 5. {hi} p(hilai,S)+n pleilh, ai)

N
=1

i
where S collects unknown camera parameters and scene physical properties, E = {e;} describes
the image evidence (i.e. image features used by the detectors to cast detection hypotheses) and
O = {o;} = {ai, h;} collects the observations (list of detections hypotheses). A; is a index associ-
ated to the semantic label of hypothesis i (car, person, bike, ..., none of above) and a; describes
its 3D geometrical attributes (position, scale and pose). Solving Eq. 11.11 is very challenging as
the configuration space is large and exact inference is intractable. In order to simplify the solution
of Eq. 11.11, Bao et al. [8] propose to incorporate geometrical constraints as penalty terms during
the inference process and enforce priors on the distribution p(S) (scene priors). Such geometrical
constraints capture the relationship among objects’ zenith poses ¢, orientation and location of the
supporting planes and the camera focal length f. It can shown that by measuring the zenith pose
¢ of at least three non-collinear objects, the focal length f and the normal of the supporting n can
be estimated from a single image. Moreover, scene priors capture the (reasonable) assumption that
supporting planes are mutually parallel and that objects are grounded up-right. This formulation
has the advantage of enabling configurations where multiple supporting planes coexist and generic
perspective camera models are used. Anecdotal results are reported in Fig. 11.6. Note that un-
like [101], the method proposed here leverages an additional critical piece of information - that
is, measurements of the object zenith or azimuth pose angles. This concept is extended in Sun
et al. [221] and further generalized in [7] where the case of multiple views of the same scene is
studied.

2. Scene Layout

As Biederman notes [16], objects have a structured arrangement in well-formed scenes. Beds

cannot stick through walls. People usually do not hang chairs from the ceiling. Chairs are placed
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on the floor, often near tables. Many approaches have been developed to model spatial relations
in the image plane [125, 162, 93, 126, 243, 219, 186]. But objects are arranged according to
physical laws and for convenience in physical interaction. We can best take advantage of their
organization with some knowledge of the physical scene space. Hedau et al. [95] and Lee et
al. [132] provide two examples of how to incorporate some simple layout principles, such as that
objects cannot stick through walls and that beds are likely to have one side near a wall. Another
good example comes from Cornelis et al. [36], where cars and people are detected by searching
within the corridor formed by building walls. These detections, in turn, are used to refine estimates
of the ground plane. Modeling priors and constraints of spatial layout to improve recognition or
scene interpretation is an interesting topic of future work, particularly if combined with appearance
models of contact, support, and occlusion.

3. Occlusion

Occlusion is one of the major challenges of object recognition. Most approaches to recognition
ignore occlusion, hoping that classifiers will learn not to rely on features in parts of the object that
are often occluded (e.g., the legs of people). With knowledge of the scene, we may be able to im-
prove robustness to occlusion, but little work has been done in this area. Yang et al. [266] estimate
depth order of segmented objects using shape priors but report no improvement in recognition.
Hoiem et al. [104] reject object candidates that are not supported by occlusion boundaries, with
mixed results. Endres and Hoiem [52] use estimated occlusion boundaries to effectively localize

objects but do not consider categorization.

It’s obvious that reasoning about occlusion should improve recognition, but we don’t yet know
how. Recovering occlusion boundaries and using them to improve recognition is an important

research direction.

4. Summary

In this chapter, we have discussed several ways to integrate object recognition and estimates of
spatial layout. The size, position, viewpoint, and even appearance of an object depends on the
scene layout and camera perspective. Thus, if we can recognize an object and its properties,
we can predict aspects of the scene layout and vice versa. In Section 1.1, we discussed how to
use perspective models to jointly improve confidences of 2D object detectors and to estimate the
horizon position of the ground plane. In Section 1.2, we showed how estimated vanishing points

can be used to guide appearance models for objects that are box-like and likely to be aligned with
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the walls, such as beds and other furniture. In Section 1.3, we discussed an approach to jointly infer
object position, object pose, and the position and orientation of one or more supporting surfaces,
integrating estimates of 3D object models and scene geometry. Beyond the works discussed in this
chapter, we point the interested reader to works by Cornelis, Leibe, and others (e.g., [36, 136]).
The problem of jointly reasoning about scene space and objects continues to be a highly active

research topic.
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CHAPTER 12

Cascades of Classifiers

In 1978, Marr proposed to organize the visual system as a sequential process, producing increas-
ingly high-level descriptions of the scene: from a low-level primal sketch to a Z%D sketch of
surfaces to a full 3D model of the scene [156]. Unfortunately, with this model, a flaw in early
processing can ruin the entire interpretation. Barrow and Tenenbaum [12] extended Marr’s idea
of geometric sketches to a general representation of the scene in terms of intrinsic images, each a
registered map describing one characteristic of the scene. For example, the maps could indicate
surface orientations, object boundaries, depth, or shading. But in contrast to Marr’s feed-forward
philosophy, Barrow and Tenenbaum proposed that the entire system should be organized around
the recovery of these intrinsic images, so that they serve, not as a pre-process, but as an interface
between the interdependent visual tasks. Their key idea is that the ambiguities of the scene can be

resolved only when the many visual processes are working together.

In this chapter, we explore two algorithms that extend Barrow and Tenenbaum’s intrinsic image
framework. This framework has several advantages. First, it is synergistic, allowing all processes
to benefit from their combined interaction. Second, the framework is modular, allowing a new
process to be inserted without redesigning the entire system. Systems that define contextual re-
lationships symbolically and perform inference over graphical models (e.g., [101, 126]) usually
cannot easily accommodate new types of information. Third, by allowing one process to influ-
ence another through cues, rather than hard constraints (as in the original Barrow and Tenenbaum

paper), the framework is robust and less sensitive to researcher-designed assumptions.
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Scene Analysis Processes
Surface Orientation
Object/Viewpoint
Occlusion/Depth

Input Image ] Intrinsic Images

FIGURE 12.1. A simple framework for integrating disparate scene understanding processes
using maps of scene characteristics as an interface. Figure from [103].

(a) Input Image (b) Surfaces (c) Occlusion (d) Depth (e) Objects

FIGURE 12.2. Examples of intrinsic images estimated from the image (a) in the first iter-
ation. In (b), we show four of the surface confidence maps (brighter is higher confidence);

LR N3 LR N3 ” <

clockwise, from upper-left: “support”, “vertical planar”, “vertical porous”, “vertical solid”.
In (c), we show the confidence map for occlusion boundaries (bright indicates occlusion
likely). In (d), we show upper and lower estimates of depth (log scale, brighter is closer).
In (e), we show four of the object intrinsic images. Each is a confidence map indicating the
likelihood of each pixel belonging to an individual object (cars or pedestrians in this case).
Figure from [103].

1. Intrinsic Images Revisited

In this section, we describe an approach by Hoiem et al. [103] to integrate several scene analysis
algorithms that describe surfaces [102] (“surface layout™), detect objects and infer viewpoint [101]
(“objects in perspective’), and recover object occlusion boundaries and estimate depth [107] (“oc-
clusion”).! Each algorithm is treated as a component that takes as input the raw image and the
intrinsic images from the other algorithms and outputs its own set of intrinsic images. The goal is
to provide a more accurate and coherent scene interpretation by closing the feedback loop among

them.

1.1. Intrinsic Image Representation

The intrinsic images, displayed in Figure 12.2, serve as an interface between the various scene

understanding processes. As proposed by Barrow and Tenenbaum [12], each intrinsic image is

'Much of the text and figures for this section originally appeared in [103].
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1 INTRINSIC IMAGES REVISITED

an image-registered map of one scene characteristic. These intrinsic images differ from those of
Barrow and Tenenbaum in that they reflect the confidences of the estimates, either by representing

the confidences directly, as with the surfaces, or by including several estimates, as with the depth.

Surfaces: The surface images consist of seven confidence maps for “support” (e.g., the ground),
vertical planar facing “left”, “center”, or “right” (e.g., building walls), vertical non-planar “porous”
(e.g., tree leaves), vertical non-planar “solid” (e.g., people), and “sky”. Each image is a confidence
map for one surface type indicating the likelihood that each pixel is of that type. The surface
intrinsic images are computed using the algorithm described in Chapter 6, Section 1. The original
algorithm, however, is modified by storing the multiple segmentations and augmenting the cue set

with the contextual cues from the other processes.

Occlusions and Depth: Using the occlusion boundaries algorithm of Hoiem et al. [107], a bound-
ary map that indicates likelihood of an occlusion boundary at each pixel and a set of depth maps

are produced.

Objects and Camera Viewpoint: Each hypothesized object is represented by a confidence map,
indicating the likelihood that a pixel is part of the object times the likelihood that the object exists.
The objects in perspective algorithm [101] (Chapter 11, Section 1.1) outputs a set of hypothesized
objects, along with a probability distribution over potential bounding boxes. This distribution
(using the Dalal-Triggs local detector [41]), along with an expected mask of the object class, is used
to compute the likelihood that each pixel is part of an object instance. The expected mask of an
object can be computed by averaging the masks of manually segmented objects in LabelMe [192].
The result is an “object map” for each object that is detected with confidence greater than some
threshold. Objects at lower image positions are assumed to be closer to the viewer, so if two objects
overlap, the confidences of the further object pixels are multiplied by one minus the confidences
of the closer object pixels (loosely modeling object occlusion). The sum of the object maps over a
pixel yields the likelihood that the pixel is generated by any detectable object. Intrinsic images are
included for each hypothesis that passes a confidence threshold (5% in experiments). The camera
viewpoint is represented with the camera height and the horizon position.

1.2. Contextual Interactions

Here, we describe how the processes can interact using the intrinsic images as an interface between

them. See Figure 12.3 for an illustration.

Surfaces and Objects: An object tends to correspond to a certain type of surface. For instance,

the road is a supporting surface, and a pedestrian is a vertical, non-planar solid surface. In addition,
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Viewpoint and Objects

FIGURE 12.3. Contextual symbiosis. We show the final estimates for surfaces, occlu-
sion boundaries, viewpoint, and objects and illustrate the interplay among them. The dot-
ted arrows contain contextual relationships modeled by the previous work of Hoiem et
al. [101, 107], while the solid arrows denote new cues proposed in this paper. For surfaces:
green=support, red=vertical, blue=sky; arrows=planar orientation, X=solid, O=porous. Oc-
clusion boundaries are denoted with blue/white lines. Objects are shown as overlaid indi-
vidually colored confidence maps of object extent, with the blue line denoting the estimated
horizon. Figure from [103].

many objects, such as cars and pedestrians tend to rest on the ground, so a visible supporting
surface lends evidence to a hypothesized object. The values of the surface maps near a detection
can strengthen or weaken the confidence in the detection (e.g., if the area below the detection is a
supporting surface, confidence should increase). Likewise, because detected objects have a known
geometry (e.g., “vertical non-planar solid”), the pixel labels of the objects can provide valuable
cues for geometry estimation. Likewise, viewpoint estimates recovered from detected objects can

improve surface estimates.

Surfaces and Occlusions: Occlusion boundaries often occur at the boundary between neigh-
boring surface regions of different types. Further, the surface types are often a good indicator of
the figure/ground label (e.g., the sky is always occluded). For this reason, cues based on surface
estimates can greatly aid occlusion estimation. Additionally, the surface images, together with oc-
clusion boundaries and camera viewpoint, are used to estimate depth, as in the original occlusion
algorithm [107].

We can also use boundary and depth estimates to improve surface estimation. The boundary es-
timates help to provide better spatial support. In each segment produced by the multiple segmen-
tation algorithm, the confidence of the most likely internal boundary provides a cue to whether

a segment is likely to correspond to a single label. Also, the average depth and a measure of the
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Objects (2nd) Occlusion (2nd) Objects (Final)

FIGURE 12.4. Example of the influence of occlusion on object estimates. Before consider-
ing occlusion information in the second iteration, pieces of the crosswalk are mistaken for
cars (left). During the occlusion reasoning, however, it is determined that the cross-walk is
a single structure, and the false detections are discarded. Figure from [103].

slope in depth from left to right is computed each segment (for all three depth estimates). The aver-
age depth may help determine the label of the segment since appearance characteristics vary with
distance (e.g., the texture in foliage is lost at a distance). The slope in depth may help determine
whether a planar segment faces the left, center, or right of the viewer.

Objects and Occlusions: Object detections can aid occlusion reasoning by helping to determine
whether neighboring regions are part of the same individual object. Thus, similarities and differ-
ences in the object pixel maps provide good occlusion features. Likewise, occlusion reasoning can
help remove false object detections by showing them to be part of a larger structure. For exam-
ple, pieces of the crosswalk in Figure 12.4 individually appear to be cars (and are consistent in

viewpoint) but are discarded when found to be part of the larger cement structure.

1.3. Training and Inference

Training and inference are performed in a simple iterative manner, cycling through the surface
estimation, object detection and viewpoint recovery, and occlusion reasoning. We outline the

training and inference algorithm in Figure 12.5. See [103] for implementation details.

1.4. Experiments

Each algorithm is evaluated using the Geometric Context dataset. The first fifty images are used
for training the surface segmentation and occlusion reasoning. The remaining 250 are used to test
the surface, object, viewpoint, and occlusion estimators. The surface classifiers are trained and
tested using five-fold cross-validation. We show examples of final results in Figure 12.6. In the
object results here and elsewhere, only objects that pass a preset confidence threshold are shown

(threshold corresponds to 0.5 false positives per image).
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TRAINING for INTRINSIC IMAGES REVISITED

Initialize:
e Get multiple segmentations for each training image
e Estimate horizon
e Perform local object detection
For iteration ¢ = 1..V;:
1. Train and apply surface estimation
(a) Compute features for each segment (using results of (2),(3) from iterations 1
ot —1)
(b) Train surface classifiers and compute surface confidences with cross-
validation
2. Apply object/viewpoint/surface inference (using result of (1) from iteration ¢ and
3) fromr—1)
3. Train and apply occlusion reasoning algorithm (using results of (1), (2) from iter-
ation ?)
(a) Train on hold-out set
(b) Perform occlusion reasoning on cross-validation images

FIGURE 12.5. Iterative training algorithm for combining surface, occlusion, viewpoint,
and object information. Training and testing is performed on the Geometric Context dataset.
The holdout set of 50 images used to train the surface segmentation algorithm is used to train
the occlusion reasoning, and the remaining 250 images are used for testing (using five-fold
cross-validation for the surface estimation). N;=3 in Hoiem et al.’s experiments [103].

In this subsection, we discuss the improvement in each type of estimation. Our analysis includes
qualitative assessment, inspection of the decision tree classifiers learned in the surface and occlu-
sion estimation, and quantitative performance comparison. In the decision tree learning, early and
frequent selection of a cue indicates that the cue is valuable but does not necessarily imply great

value beyond the other cues, as there may be redundant information.

Surfaces: The decision tree learning indicates that the boundary likelihood from occlusion rea-
soning is the most powerful cue for the segmentation classifier, as it is the first and most frequently
selected. For the “solid” classifier, the pedestrian confidence value from the object detection is the
first feature selected. The learning algorithm determines that regions with high pedestrian confi-
dence are very likely to be solid, but regions without pedestrian confidence are not much less likely
(i.e., all pedestrians are solid, but not all solids are pedestrians). The measure of depth slope from

the occlusion reasoning is used frequently by the planar “left” and “right” classifiers.

Also, the position cues relative to the estimated horizon position are used overall twice as fre-
quently as the absolute position cues. In a separate experiment, in which surface classification

was trained and tested with manually assigned (ground truth) horizon estimates, the main (support,
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FIGURE 12.6. In each row, we show the results of the three original algorithms and the
results when they are integrated with Hoiem et al.’s framework [103]. Each process achieves
higher performance when they work together. Rows 1 and 2: the occlusion estimates help
improve mistakes in the surface labels. Row 3: the detected car allows the surface labels and
occlusion estimate to improve. Row 4: the soldiers need better camouflage as the algorithm
is able to identify and segment them away from the background. Row 5: false detections
on the coat rack are eliminated due to the occlusion information. Row 6: The contextual
inference results in more pedestrians being detected (with a false positive car). Rows 7-9:
A reasonably good job is done in complicated scenes. Figure from [103].
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vertical, sky) classification and subclassification of vertical (left, center, right, porous, solid) each
improve by 2% (from 87% to 89% and 61% to 63%, respectively). Thus, knowledge of the horizon
is an important cue, but the potential improvement in surface estimation by improving the horizon

estimate is limited.

Inclusion of object and occlusion information yields a modest quantitative improvement in surface
classification. Using the surface layout algorithm [99] by itself, the main classification accuracy is
86.8% and subclassification accuracy is 60.9%. The accuracy improves by roughly 1% to 87.6%
and 61.8% once the contextual information from the objects, occlusions, and depth is considered.
For the main classification (“support” vs. “vertical” vs. “sky”), this difference is statistically
significant (p < 0.05), but for the subclassification (subclasses within “vertical”) it is not (p >
0.05). With closer inspection on an image-by-image basis, of the 18% of images that change in
main class pixel error by more than 5%, 74% improve. Thus, while large changes are rare, changes
made after considering the new object and occlusion information are much more likely to improve

results than not.

Objects: The Dalal-Triggs [41] object detector is used to supply object hypotheses and confi-
dences based on local image information. When viewpoint and surfaces are considered (result of
the first iteration, equivalent to the objects in perspective algorithm [101]), pedestrian detection
improves considerably. When occlusion information is considered (later iterations) car detection
improves but pedestrian detection drops slightly, likely due to the difficulty of maintaining occlu-
sion boundaries for distant pedestrians (see Figure 12.7). Along with many false positives, 11%
of true pedestrian and 8% of true car detections are discarded by the occlusion-based filtering.
Overall, the car detection improves by 10% and the pedestrian detection by 7% when considering

surface, viewpoint, and occlusions.

Viewpoint: Viewpoint estimation is evaluated based on the horizon position, since it is difficult
to obtain ground truth for camera height. Using the mean horizon position as a constant estimate
yields an error of 12.8% (percentage of image height difference between the manually labeled
horizon and the estimated horizon). This error drops to 10.4% when using a data-driven horizon
estimate with the LabelMe training set. During the first iteration, which is equivalent to the objects
in perspective algorithm [101], this drops further to 8.5%. Further iterations do not produce a
statistically significant change (p > 0.05).

Occlusion: A subjective comparison reveals that individual cars and people are correctly delin-

eated much more frequently when object information is considered. Figure 12.6 contains many
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FIGURE 12.7. ROC curves for initial Dalal-Triggs classification, after one iteration (equiv-
alent to the “Putting Objects in Perspective” algorithm [101]), and the final result. Figure
from [103].

Image Occ Ground Truth Objects/View Occ Result

FIGURE 12.8. By reasoning together about objects and occlusions, the computer is some-
times able to find the occlusion boundaries of tightly crowded individuals. In this case, the
occlusion estimates are more precise than the ground truth, which leads to an artificially
low quantitative measure of improvement. Figure from [103].

such examples. However, Hoiem et al. are not able to measure an overall quantitative improve-
ment, due to ground truth labeling of a crowd of people or row of cars as a single object, as shown

in Figure 12.8.

2. Feedback-Enabled Cascaded Classification Models

Here, we describe an elegant framework proposed by Li et al. [141] for creating a feedback loop
between scene understanding processes, which builds on the earlier work of Heitz et al. [97]. As
in the last section, each algorithm produces features that feed into the others. However, in this
approach, called Feedback-Enabled Cascaded Classification Models or FE-CCM, the algorithms
are trained jointly, so that the final outputs are as good as possible. The FE-CCM approach does
not depend on the details of the individual algorithms, their features, or their datasets, making it
easy to integrate multiple tasks (Figure 12.9). Each algorithm can be trained and tested on a sep-

arate dataset, while still benefitting from the other trained algorithms. In experiments, the authors
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FIGURE 12.9. Li et al. [141] aim to learn to recognize a variety of scene properties while
taking advantage of their correlations. Detectable properties include scene category, event
category, depth maps (Black = close, white = far), object bounding boxes (red = horse, blue
= person), surface layout maps (green = vertical-porous, red = horizontal, blue = vertical)
and salience (cyan = salient).

synergistically combine the tasks of event categorization, depth estimation, scene categorization,
salience detection, geometric labeling, and object detection. Impressively, they demonstrate im-
proved performance (substantially, in most cases) in each task.

2.1. Algorithm

The goal is to jointly estimate several scene properties, including scene categories, surface labels,
depth, and object locations. See Figure 12.10 for an illustration of the algorithm. The CCM-FE

approach is to break down the estimation into a two-stage cascade:

e Stage 1: For each element, a classifier makes predictions based on features computed
from the image. There are no constraints on the form of the classifier or the features
(though a linear classifier is easier to train).

e Stage 2: For each element, a classifier makes predictions using both the image features
and features computed from the stage 1 classifiers.

There are three phases to training:
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FIGURE 12.10. Hlustration of the FE-CCM algorithm. For each scene prediction task
(e.g., categorize scene, estimate depth, label objects), two classifiers are trained. The first
classifier uses image features to try to predict some target value (not necessarily ground
truth). The second uses both image features and the output from all first stage classifiers to
predict the ground truth labels. In training, the parameters of each classifier and the target
predictions for the first stage are learned together.

e Initialization: The “target” confidences for each label of the stage 1 classifiers is set
according to the ground truth. For example, if the scene is “forest”, then the scene cate-

gorizer will ideally predict “forest” with likelihood of 1.

e Feed-forward Training: The stage 1 classifiers are trained to try to predict their tar-
get confidences from image features. Stage 2 classifiers are trained to predict ground
truth labels from image features and features computed from the output of the stage 1

classifiers.

e Feedback Training: Keeping the classifier parameters fixed, new targets are set for
the stage 1 classifiers that are close to the current stage 1 predictions but lead to more

accurate predictions from the stage 2 classifiers (see [141] for technical details).

The training iterates between the feed-forward and feedback phases. To make predictions for a

new image, the stage 1 classifiers are applied, followed by the stage 2 classifiers.

133



CHAPTER 12. CASCADES OF CLASSIFIERS

Depth Estimation
p— — °

Ground-Truth CCM result FE-CCM result

CCM result FE-CCM result

Ground-Truth

Source

Ground-Truth CCM result FE-CCM result

=Y

FE-CCM result

FIGURE 12.11. Results from the CCM method of Heitz et al. [97] and the FE-CCM
method of Li et al. [141]. First row: depth maps in the first row are at the same scale
(black is near, white is far). Second row: salient regions are indicated in cyan. Third row:
bounding boxes are drawn around detected horses. Fourth row: green = “support”, blue =
“sky”, and red = “vertical”. Figure from an extended version of [141].

2.2. Experiments

Li et al. [141] report experiments using the following scene elements: scene categories, depth
estimates, event categories, salience, object locations, and geometric classes. The categories are
represented as vectors of log-odds scores (the log likelihood of each class minus the log likelihood
of not that class) or classifier scores. The depth estimates are continuous estimates for each pixel.
Salience, a measure of an image region’s likelihood to attract attention, is predicted as a thresholded
score. For objects, a set of bounding boxes are scored and thresholded to determine whether
they are true detections. For the geometric classes, only the main classes (“support”, “vertical”,
“sky”’) were considered. Experiments were performed by training on the original datasets that were
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3 SUMMARY

proposed with the individual tasks. Typically, Li et al. use the original or state-of-the-art algorithm
for the first stage of each task and a logistic regression classifier for the second stage (which makes
the training easier). The outputs from the first stage classifiers were used directly as features for the
second stage classifiers (there may have been some modification to align features with the object
windows, but it is not reported).

Examples of results are shown in Figure 12.11. Li et al. show that performance increases for each
of the tasks from the first stage to the second stage: event category accuracy (71.8% to 74.3%);
depth RMSE in meters (16.7 to 15.5); scene category accuracy (83.8% to 85.9%); salience de-
tection accuracy (85.2% to 86.2%); geometric labeling accuracy (86.2% to 88.6%); and object
detection average precision (0.444 to 0.454). One particularly noteworthy result is that the al-
gorithm achieves higher accuracy than the surface layout and Make3D algorithms (Chapter 6) in
estimating geometric labels and depth, respectively, even though this algorithm did not use mul-
tiple segmentations or MRFs. The long-range spatial support and interactions provided by the
multiple segmentations and MRFs seems to be sufficiently provided by the outputs of the stage 1
classifiers.

3. Summary

We have discussed two approaches to represent scene properties with pixel maps, as first proposed
by Barrow and Tenenbaum [12]. Hoiem et al. [103] jointly label surface geometry, occlusion
boundaries, objects, and camera viewpoint, iteratively passing features computed from each prop-
erties map to the classifiers that update estimates of the other properties. Li et al. [141] provide
an elegant framework that reduces the inter-task feature design and facilitates use of a variety of

datasets with incomplete annotations.
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CHAPTER 13

Conclusion and Future Directions

Our aim in this book is to help the reader to build a foundational understanding of 3D scene
interpretation and object recognition in images: the mathematical underpinnings, its early roots,
and its revival and incorporation of statistical machine learning. We hope that the reader will be
inspired to continue on to make progress in this area. Currently, research on 3D scene and object
models is in a brainstorming phase, with many proposed models but no consensus on a “correct”

approach. As such, open problems abound. We conclude by discussing a few important directions:

e [ntegrating single-view and multi-view approaches: Efforts to model geometry from two
or more images [92] rely on matching points across the images and tend to produce un-
structured 3D point clouds. Single-view methods tend to make strong assumptions about
the scene geometry and use color, texture, and perspective cues with learned appearance
models. We would like to recover both the detailed geometry and abstractions into major
surfaces and objects from a limited number of images, which will likely require building
on efforts of both the single-view and multi-view communities. See [7] for one recent
effort in this direction.

e Taking advantage of structure without relying on it: We currently have different models
for cluttered indoor scenes, hallways, streets, and natural outdoor environments. We
would like a single system to be able to represent a wide variety of scenes, making use of
structured priors where appropriate but also capable of handling more general geometries.
Such a system may switch between several different representations (sometimes called
schemas) or perhaps use a flexible grammar.

e [nterpreting the physical components of scenes: Despite some recent work on detecting
shadows [129, 271, 83] in consumer photographs, estimating illumination [128], and
labeling surface geometries [102], these problems are still far from solved. We would like
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to be able to represent large-scale shapes (3D rectangles, curved surfaces, etc.) and small-

scale geometries (divots, bumps, bends, corners, etc.) and albedo, requiring integrated
reasoning about surface orientation and boundaries, illumination, and materials.

Integrating Different Sensing Modalities As different types of sensors are becoming widely
accessible to consumers at large (e.g., sensors such as those by PrimeSense (www.primsense.com)
provide RGB-valued images along with a registered depth map of the scene), we would

like to coherently combine various types of sensing modalities (e.g., imagery, depth maps,

etc.) into a coherent inference engine that allows to obtain robust estimations of the scene

layout. The works by [25, 217] are recent examples of such frameworks.
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