
CHAPTER 5

Categorizing Images and Regions

Once we have decided on how to represent the scene, we must recover that representation from
images. As discussed in the background (Chapter 2), early attempts at scene understanding in-
volved many hand-tuned rules and heuristics, limiting generalization. We advocate a data-driven
approach in which supervised examples are used to learn how image features relate to the scene
model parameters.

In this chapter, we start with an overview of the process of categorizing or scoring regions, which is
almost always a key step in recovering the 3D scene space. Then, we present some basic guidelines
for segmentation, choice of features, classification, and dataset design. Finally, we survey a broad
set of useful image features.

1. Overview of Image Labeling

Although there are many different scene models, most approaches follow the same basic process
for estimating them from images. First, the image is divided into smaller regions. The regions
could be a grid of uniformly shaped patches, or they could fit the boundaries in the image. Then,
features are computed over each region. Next, a classifier or predictor is applied to the features
of each region, yielding scores for the possible labels or predicted depth values. For example,
the regions might be categorized into geometric classes or assigned a depth value. Often, a post-
processing step is then applied to incorporate global priors, such as that the scene should be made
up of a small number of planes.



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS

Many approaches that seem unrelated at first glance are formulated as region classification:

• Automatic Photo Pop-up [51]:

1. Create many overlapping regions.
2. Compute color, texture, position, and perspective features for each region.
3. Based on the features, use a classifier to assign a confidence that the region is good

(corresponds to one label) and a confidence that the region is part of the ground, a
vertical surface, or the sky.

4. Average over regions to get the confidence for each label at each pixel. Choose
largest confidence to assign each pixel to “ground”, “vertical”, or “sky”.

5. Fit a set of planar billboards are fit to the vertical regions, compute world coordinates
and texture map onto the model.

• Make3D [105]:

1. Divide the image into small regions.
2. Compute texture features for each region.
3. Predict 3D plane parameters for each region using a linear regressor.
4. Refine estimates using a Markov Random Field model [76], applying pairwise priors

such as that neighboring regions are likely to be connected and co-planar.

• Box Layout [47]:

1. Estimate three orthogonal vanishing points.
2. Create regions for the walls, floor, and ceiling by sampling pairs of rays from two of

the vanishing points.
3. Compute edge and geometric context features within each region.
4. Score each candidate (a set of wall, floor, and ceiling regions) using a linear classifier.

Choose the highest scoring candidate.

In the above descriptions, critical details of features, models, and classification method were omit-
ted. The point is that many approaches for inferring scene space follow the same pattern: divide
into regions, score or categorize them, and assemble into a 3D model.

Classifiers and predictors are typically learned in a training stage on one set of images and applied
in a testing stage on another set of image (Figure 5.1). For region classification, the sets of fea-
ture values computed within each image are examples. In training, both labels and examples are
provided to the learning algorithm, with the goal of learning a classifier that will correctly predict
the label for a new test example. The efficacy of the classifier depends on the how informative the
features are, the form and regularization of the classifier, and the number of training examples.

34



2 GUIDING PRINCIPLES

Training 
Labels

Training 
Images

Classifier 
Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Trained 
Classifier

Trained 
Classifier Outdoor

Prediction

FIGURE 5.1. Overview of the training and testing process for an image categorizer. For
categorizing regions, the same process is used, except that the regions act as the individual
examples with features computed over each.

2. Guiding Principles

The following are loose principles based on extensive experience in designing features and in
application of machine learning to vision.

2.1. Creating Regions

When labeling pixels or regions, it is important to consider the spatial support used to compute the
features. Many features, such as color and texture histograms must be computed over some region,
the spatial support. Even the simplest features, such as average intensity tend to provide more
reliable classification when computed over regions, rather than pixels. The region could be created
by dividing the image into a grid, by oversegmenting into hundreds of regions, or by attempting to
segment the image into a few meaningful regions. Typically, based on much personal experience,
oversegmentation works better than dividing the image into arbitrary blocks. Useful oversegmen-
tation methods include the graph-based method of Felzenszwalb and Huttenlocher [31, 52], the
mean-shift algorithm [18, 129], recursive normalized cuts [111, 82], and watershed-based meth-
ods [4]. Code for all of these is easily found online. Methods based on normalized cuts and
watershed tend to be more regular but also may require more regions to avoid merging thin ob-
jects. With a single, more aggressive segmentation, the benefit of improved spatial support may be
negated by errors in the segmentation. A successful alternative is to create multiple segmentations,
either by varying segmentation parameters or by randomly seeding a clustering of smaller regions.

35



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS

Then, pixel labels are assigned by averaging the classifier confidences for the regions that contain
the pixel.

Depending on the application, specialized methods for proposing regions may be appropriate. For
example, Hedau et al. [47] generates wall regions by sampling rays from orthogonal vanishing
points, and Lee et al. [71] propose wall regions using line segments that correspond to the principle
directions. Gupta et al. [39] propose whole blocks based on generated regions and geometric
context label predictions.

2.2. Choosing Features

The designer of a feature should carefully consider the desired sensitivity to various aspects of
the shape, albedo, shading, and viewpoint. For example, the gradient of intensity is sensitive to
changes in shading due to surface orientation but insensitive to average brightness or material
albedo. The SIFT descriptor [79] is robust to in-plane orientation, but that discarded information
about the dominant orientation may be valuable for object categorization. Section 3 discusses
many types of features in more detail.

In choosing a set of features, there are three basic principles:

• Coverage: Ensure that all relevant information is captured. For example, if trying to
categorize materials in natural scenes, color, texture, object category, scene category,
position within the scene, and surface orientation can all be helpful. Coverage is the most
important principle because no amount of data or fancy machine learning technique can
prevent failure if the appearance model is too poor.

• Concision: Minimize the number of features without sacrificing coverage. With fewer
features, it becomes feasible to use more powerful classifiers, such as kernelized SVM
or boosted decision trees, which may improve accuracy on both training and test sets.
Additionally, for a given classifier, reducing the number of irrelevant or marginally rele-
vant features will improve generalization, reducing the margin between training and test
performance.

• Directness: Design features that are independently predictive, which will lead to a simpler
decision boundary, improving generalization.

36



2 GUIDING PRINCIPLES

Many training 
examples

Few training 
examples

Classifier Complexity Low Bias
High Variance

High Bias
Low Variance

Te
st

 E
rr

or

Testing

Training
Number of Training Examples

Er
ro

r

Generalization Error

For Fixed Classifier

FIGURE 5.2. Left: As the complexity of the classifier increases, it becomes harder to cor-
rectly estimate the parameters. With few training examples, a lower complexity classifier
(e.g., a linear classifier) may outperform. If more training examples are added, it may im-
prove performance to increase the classifier complexity. Right: As more training examples
are added, it becomes harder to fit them all, so training error tends to go up. But the training
examples provide a better expectation of what will be seen during testing, so test error goes
down.

2.3. Classifiers

Features and classifiers should be chosen jointly. The main considerations are the hypothesis
space of the classifier, the type of regularization, the amount of training data, and computational
efficiency. See Figure 5.2 for an illustration of two important principles relating to complexity,
training size, and generalization error.

The hypothesis space is determined by the form of the decision boundary and indicates the set of
possible decision functions that can be learned by the classifier. A classifier with a linear decision
boundary has a much smaller hypothesis space than a nearest neighbor classifier, which could
arbitrarily assign labels to examples, depending on the training labels.

Regularization can be used to penalize complex decision functions. For example, SVMs and L2
logistic regression include a term of summed square weights in the minimization function, which
encodes a preference that no particular feature should have too much weight.

If few training examples are available, then a classifier with a simple decision boundary (small
hypothesis space) or strong regularization should be used to avoid overfitting. Overfitting is when
the margin between training and test error increases faster than the training error decreases. If
many training examples are available, a more powerful classifier may be appropriate. Similarly,
if the number of features is very large, a simpler classifier is likely to perform best. For example,
if classifying a region using color and texture histograms with thousands of individually weak

37



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS

features, a linear SVM is a good choice. If a small number of carefully designed features are used,
then a more flexible boosted decision tree classifier may outperform.

Though out of scope for this document, it is worthwhile to study the generalization bounds of the
various classifiers. The generalization bounds are usually not useful for predicting performance,
but they do provide insight into expected behavior of the classifier with irrelevant features or small
amounts of data.

As a basic toolkit, we suggest developing familiarity with the following classifiers: SVM [108]
(linear and kernelized), Adaboost [35] (particularly with decision tree weak learners), logistic re-
gression [86], and nearest neighbor [25] (a strawman that is often embarrassingly hard to beat).

2.4. Datasets

See Berg et al. [12] for a lengthy discussion on datasets and annotation. The main considerations
in designing a dataset (assuming that a representation has already been decided) is the level of
annotation, the number of training and test images, and the difficulty and diversity of scenes. More
detailed annotation is generally better, as parts of the annotation can always be ignored, but cost
of collection must be considered. More data makes it easier to use larger feature sets and more
powerful classifiers to achieve higher performance.

The issue of bias in datasets must be treated carefully. Bias could be due to the acquisition or
sampling procedure, to conventions in photography, or social norms. Every dataset is biased. For
example, a random selection of photos from Flickr would have many more pictures of people
and many more scenes from mountain tops than if you took pictures from random locations and
orientations around the world. Bias is not always bad. If we care about making algorithms that
work well in consumer photographs, we may want to take advantage of the bias, avoiding the need
to achieve good results in photographs that are pointed directly at the ground or into the corner of
a wall. The structure of our visual world comes from both physical laws and convention, and we
would be silly not to take advantage of it.

But we should be careful to distinguish between making improvements by better fitting the foibles
of a particular dataset or evaluation measure and improvements that are likely to apply to many
datasets. As a simple example, the position of a pixel is a good predictor of its object category in the
MSRC dataset [112], so that including it as a feature will greatly improve performance. However,
that classifier will not perform well on other datasets, such as LabelMe [101], because the biases in
photography are different. Likewise, it may be possible to greatly improve results in the PASCAL

38



3 IMAGE FEATURES

R (G=0,B=0) G (R=0,B=0) B (R=0,G=0) H (S=1,V=1) S (H=1,V=1) V (H=1,S=0)

Y (Cb=0.5,Cr=0.5) Cb (Y=0.5,Cr=0.5) Cr (Y=0.5,Cb=05) L (a=0,b=0) a (L=65,b=0) b (L=65,a=0)

Image Gradient-X Gradient-Y Canny Edges Straight Edges

FIGURE 5.3. Gradients, edges, and examples of color spaces for the input image.

challenge [28] by improving the localization of bounding boxes, but that improvement may not
apply to other evaluation criteria.

Although it may seem that big datasets avoid bias, they don’t. Whether you sample one hundred or
one hundred million examples from Flickr, a large number of them will be framed around people
looking at the camera, which is different than what would be observed on an autonomous vehicle.
In fact, big datasets make it easier to exploit the foibles of the dataset by making large feature sets
more effective, so that care with dataset bias is more important than ever.

In summary, we cannot avoid bias, but we should consider the biases that are encoded by a particu-
lar dataset and consider whether measured improvements indicate a better fit to a dataset or a more
general phenomenon. Towards this, we encourage experimentation in which training and test sets
are drawn from different sources.

3. Image Features

Although there are many possible prediction tasks, the same basic features apply to all of them:
color, gradients, histograms of gradients, edges, histograms of edges, position, and region shape.
See Figure 5.3 for examples of several color spaces, gradient features, and edges.

39



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS

3.1. Color

Color is predictive of material and lighting and is helpful for segmenting regions into separate
objects and materials. By far, the greatest variation in color is due to changes in the luminance
or brightness. For this reason, color spaces that decouple luminance, such as YCbCr, HSV, and
CIELAB, may be preferable to RGB. YCbCr is quickly computed and commonly used in display
electronics, such as televisions. HSV, which decomposes into hue, saturation, and value, is the
most intuitive, though the angular measurement of hue (e.g., the maximum and minimum values
are both red) can be a nuisance. CIELAB is designed to be perceptually uniform, meaning that
small changes in color with equal Euclidean distance will be perceived by humans as having similar
degrees of change.

Luminance encodes most of the useful information for scene understanding. People can understand
grayscale images and movies without difficulty. From luminance alone, most changes in albedo
are perceivable. Additionally, luminance encodes the shading information that is predictive of
physical texture and overall shape. To better analyze shape, intensity values are typically not used
directly. Instead, gradients and zero-sum filters, which better encode changes in shading, are used.

For categorization, color is often represented using averages or histograms. For example, the
mean values of YCbCr indicate the overall brightness, the blueness, and the redness of a region.
Histograms are estimates of the probability that a randomly selected pixel will have a particular
color value. Histograms are computed by counting the number of times that each value is observed
and dividing by the total value. It is possible to compute separate histograms for each channel or
for all channels jointly. Commonly, the three color channels are quantized into a smaller number
of values before counting them. One method is to divide the color space into bins (or cubes for
three channels). For instance, the values with R<0.25, G<0.25, B<0.25 could be assigned the
a value of 1, with all other possible RGB values assigned to one of 64 (4x4x4) discrete values.
Then, these discrete values are counted. Another quantization method is clustering. Typically, a
sampling of color values is clustered with K-means [25] to learn a set of cluster centers. Then, new
values are assigned a number corresponding to the closest center. The K-means clustering aims to
provide a quantization that minimizes the mean squared error of the reconstruction of the original
values. The clustering approach is more computationally expensive but usually provides a better
representation than simple binning for a fixed number of quantized values.

For segmentation, the difference of mean values or histograms is often used to measure region
similarity. To compute the difference of histograms, the measures histogram intersection (HIN) and
chi-squared (χ2) are often used. HIN is faster to compute. χ2 has attractive theoretical justification

40



3 IMAGE FEATURES

FIGURE 5.4. Leung-Malik filter bank for representing texture.

and sometimes leads to better performance. HIN or χ2 are also often used as kernels for SVM
classifiers with histogram features.

The gain a better intuition for color, we encourage students to play around with sample images,
visualizing them using separate color channels in various color spaces. To compare effectiveness
of quantization approaches, it may also be helpful to visualize reconstructions of the images after
quantizing the colors.

3.2. Texture

Texture is predictive of material and material properties and is helpful for separating regions into
different objects and materials. Texture is typically represented by computing statistics of re-
sponses to zero-mean filters, such as oriented edge filters, bar filters, or blob filters. Commonly
used filter banks include those by Leung and Malik [75] (LM filter bank; see Figure 5.4) and Varma
and Zisserman [124] (MR filter banks). Like color, the texture of a region is typically represented
by computing the average magnitude of filter responses within the region or by computing his-
tograms of quantized values of the filter responses. Histograms of quantized filter responses are
often called “textons” [75].

3.3. Gradient-based

Local differences in intensity or gradients are predictive of shape, due to shading, and boundaries
of objects and materials. Gradients may computed simply, with filters such as [−1 1] or [−1 0 1]
for a horizontal gradient. Often, particularly for detecting important boundaries, the image is first
filtered with a Gaussian filter. Gradients can be computed at multiple scales and orientations by

41



CHAPTER 5. CATEGORIZING IMAGES AND REGIONS

changing the bandwidth of the Gaussian pre-filter and by taking weighted averages of the vertical
and horizontal filter responses (see the classic work on steerable filters by Freeman and Adel-
son [34] for details). The magnitude of the gradient between two regions is a strong indicator for
the likelihood of an object or material boundary, a depth discontinuity, or a surface orientation
discontinuity.

Gradients are also the basis of the most powerful features in object recognition. Oriented gradi-
ent values are used to compute many frequently used patch descriptors, such as SIFT [79] and
HOG [22] (histogram of gradient). Most descriptors are computed by dividing a patch into differ-
ent spatial bins (called cells), computing histograms within each spatial bin, and normalizing the
values of the histograms. In SIFT, the descriptor is first registered to the dominant orientation so
that an in-plane rotation has little effect, and normalization is achieved within each cell by division
of total magnitude and thresholding. The HOG descriptor is sensitive to rotation (which is often
beneficial for object categorization), and the values in each HOG cell are normalized several times
based on the values in the surrounding cells.

HOG features were originally proposed for pedestrian detection [22] and have since been shown
effective other object categories [32] and for a variety of other tasks, such as categorizing scenes
and predicting the 3D orientation of materials. HOG features are insensitive to changes in bright-
ness of the light source (due to use of the gradient) and small shifts in position, due to computation
of histograms within spatial bins. They are also insensitive to overall changes in contrast, due to
the normalization. HOG features are sensitive to shading patterns caused by surface shape and to
changes in albedo, and they are sensitive to oriented textures which can predict surface orientation.
Object parts, such as eyes, vertical legs, and wheels, often have distinctive HOG feature values.
For object categorization, HOG features are often used directly at several fixed positions within
a proposed object window. For other tasks, such as scene categorization, histograms of SIFT or
HOG features are often computed, in the same way as with color and texture.

3.4. Interest Points and Bag of Words

The idea of detecting distinctive points was first developed for tracking [44, 119] and then for
more general image matching [107] and object instance recognition [78]. Now, interest points
and their descriptors, such as SIFT, are used as a general purpose region and image descriptor.
After detecting interest points, or placing them at dense intervals along a grid [89], descriptors
are computed and quantized. Then, histograms are computed for regions of interest or the image
as a whole, depending on the task. Many, many papers have been written proposing variants
on the descriptor, how many visual words to use, what points to sample [89], faster clustering

42



3 IMAGE FEATURES

techniques [87], discriminative quantization techniques, and more. In most cases, simple k-means
clustering of densely sampled SIFT or HOG descriptors will work well.

3.5. Image Position

Due to conventions of photography and the structure of our natural world, image position is often
strongly predictive of surface orientation [52], material [112], and object category. Position can
be defined within the image coordinates, or relative to an estimated horizon. Especially if defined
in image coordinates, position may increase accuracy on the dataset used for training but lead to
poorer generalization on other image collections. The position of a region can be encoded by a
centroid, a bounding box, or percentiles of sorted positions (e.g., the 5th and 95th percentile of
sorted vertical positions for a more robust top and bottom estimate).

3.6. Region Shape

Defying intuition and many efforts to devise good representations of shape, region shape tends
to provide only a weak cue for categorization in natural images. In part, this is because it is
difficult to obtain precise segmentations of objects and surfaces. Also, the 2D silhouette of an
object often looks like an indistinct blob. Consider the silhouette of a duck or of a car. These
shapes have iconic profiles, but if seen from the front or a three-quarters view, the silhouette will
be indistinctive. One simple approach to shape-based categorization is to feed a binary mask into a
classifier [98]. Another possibility is to characterize the shape with orientation, eccentricity, major
axis length, minor axis length, and so on (see Matlab documentation for regionprops for a nice
list of simple shape measures).

3.7. Perspective

Useful perspective cues include statistics of intersecting lines and detected vanishing points, his-
tograms of edges that are oriented consistently with the vanishing points, and more general his-
tograms of oriented straight edges [54, 47, 71]. Such features can provide powerful cues for surface
orientation, although histograms of oriented gradient filters can often work nearly as well.

43


