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Today’s class: Role of Language in Vision

• Part I: 
– Moving from Classification to Embedding Models 

for recognition

• Part II: 
– Language representation

• Part III: Hot topics in Vision-Language Research
– Phrase Localization 

– Visual Question Answering 

– Image Captioning



MOVING FROM CLASSIFICATION TO 
EMBEDDING MODELS

PART I



Recognition as Image Classification

• Many visual recognition tasks posed as k-way 
classification with exclusive categorical labels
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Recognition as Image Classification

• Many visual recognition tasks posed as k-way 
classification with exclusive categorical labels

Pug

Dog

…

Husky

Human

Modified Dog Breed Classification

Output of FC7 Layer = Image Representation, 𝜙(𝑥)

FC8 Weights, 𝑊 act as linear classifiers 𝑠 𝑥, 𝑦 = 𝑤𝑦 ⋅ 𝜙(𝑥)

𝑥



Recognition as Image Classification

• Many visual recognition tasks posed as k-way 
classification with exclusive categorical labels

Pug

Dog

…

Husky

Human

𝑠 𝑥, 𝑦 = 𝑤𝑦𝜙(𝑥)

𝑥

𝑃 𝑦𝑖 𝑥 =
𝑒𝑠(𝑥,𝑦𝑖)

 𝑦 𝑒𝑠(𝑥,𝑦)

Modified Dog Breed Classification



Limitations of the classification approach

• Hard to scale to large number of classes

• Ignores structure in label space

– Hypernyms (Dog-Husky)

– Co-Hyponyms (Pug-Husky)

• Ignores additional information about classes 
available in the form of text

𝑃 𝑦𝑖 𝑥 =
𝑒𝑠(𝑥,𝑦𝑖)

 𝑦 𝑒
𝑠(𝑥,𝑦) O(#classes)

Animal

Dog Human

Pug Husky Poodle



𝑠 𝑥, 𝑦 = 𝑤𝑦𝜙(𝑥) 𝑃 𝑦𝑖 𝑥 =
𝑒𝑠(𝑥,𝑦𝑖)

 𝑦 𝑒𝑠(𝑥,𝑦)

Compatibility / Scoring Function

• Score is enough to make a prediction

– Eliminate probability computation during training

– Consider only relative ranking of subset of classes 

• Design compatibility functions that encode structure 
in the label space 

Scalability Structure in label space External Knowledge



Compatibility Functions

• 𝑠 𝑥, 𝑦 = 𝜙 𝑥 ⋅ Θ(𝑦)

Pros:

– The representations are learned

– Structure in label space can be discovered

– Inference can use fast (approx.) nearest neighbor lookup

Cons:

– The representations of images and labels need to lie in the 
same inner product space 

– Features need to correspond or align

Solution:

– Learn to align representations



Compatibility Functions

• 𝑠 𝑥, 𝑦 = 𝜙𝑇 𝑥 𝑊 Θ 𝑦



Compatibility Functions

• 𝑠 𝑥, 𝑦 = 𝜙𝑇 𝑥 𝑊 Θ 𝑦

= vec 𝑊 ⋅ vec(𝜙 𝑥 ⨂Θ(𝑦))

Pros:

– Can learn to align representations

Cons:

– Relatively expensive to compute if m and n are large

– More parameters to learn (𝑚 ×𝑛 parameters)

Solution:

– Assume a low rank decomposition of 𝑊

– 𝑊 = 𝑈𝑇𝑉 where 𝑈 ∈ 𝑘 ×𝑚 and 𝑉 ∈ 𝑘 × 𝑛

– 𝑠 𝑥, 𝑦 = 𝜙𝑇 𝑥 𝑈𝑇𝑉 Θ 𝑦
= 𝑈𝜙 𝑥 ⋅ 𝑉Θ 𝑦 = 𝜙′ 𝑥 ⋅ Θ′(𝑦)

⨂ Outer product
vec(.) Converts mxn

matrices to
mn dim. vector 

𝑘 × 𝑚 + 𝑛
parameters



Embeddings

Space of Images Space of Labels

Embedding Space

𝑥

𝑦

𝜙(𝑥)

Θ(𝑦)



Embedding Network

𝜙(𝑥) Θ(𝑦)

Wang, Liwei, Yin Li, and Svetlana Lazebnik. "Learning Two-Branch Neural Networks for 
Image-Text Matching Tasks." arXiv preprint arXiv:1704.03470 (2017).



Embedding/Metric Learning

• Minimize distance between GT pairs

– Ignores relative ranking

• Max-Margin Loss

– Preserves ranking but O(#classes)

• Triplet Loss

– Preserves ranking but O(constant)

• Bi-directional Ranking Loss 

– Good for bi-directional retrieval



Minimize distance between GT pairs

• Ground truth image-label pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝐿 𝜙,Θ = − 

𝑖

𝑠(𝑥, 𝑦; 𝜙, Θ)

Φ( )

Θ(husky)
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Minimize distance between GT pairs

• Ground truth image-label pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝐿 𝜙,Θ = − 

𝑖

𝑠(𝑥, 𝑦; 𝜙, Θ)

• Trivial Solution

– Map all 𝑥 and 𝑦 to the same point at infinity for 𝜙 𝑥 ⋅ Θ(𝑦)

– Ignores the relative score of labels for the same image!

• What we really want is for the correct label to have a 
high score while producing a lower score for incorrect 
labels



Max-Margin Loss

• Ground truth image-label pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝐿 𝜙, Θ = 

𝑖

 

𝑙≠𝑦𝑖

max 0, 1 + 𝑠 𝑥𝑖, 𝑙 − 𝑠 𝑥𝑖, 𝑦𝑖

Φ( )𝑇Θ(husky) Φ( )𝑇Θ(pug) + 1>

Φ( )𝑇Θ(poodle) + 1>

⋮

Φ( )𝑇Θ(husky)



Max-Margin Loss

• Ground truth image-label pairs 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝐿 𝜙, Θ = 

𝑖

 

𝑙≠𝑦𝑖

max 0, 1 + 𝑠 𝑥𝑖, 𝑙 − 𝑠 𝑥𝑖, 𝑦𝑖

• Need to compute scores for all labels

– Not scalable to large number of classes

– Not suitable when multiple labels apply. 
• Eg. Dog and Husky



Triplet Loss

• Ground truth image-label triplets 𝑥𝑖 , 𝑦𝑖
+, 𝑦𝑖
−
𝑖=1
𝑁

𝐿 𝜙, Θ = 

𝑖

max{0,1 + 𝑠 𝑥𝑖, 𝑦𝑖
− − 𝑠 𝑥𝑖, 𝑦𝑖

+ }

𝑦𝑖
+ = husky𝑥𝑖 = 𝑦𝑖

− = human



Triplet Loss

• Ground truth image-label triplets 𝑥𝑖 , 𝑦𝑖
+, 𝑦𝑖
−
𝑖=1
𝑁

𝐿 𝜙, Θ = 

𝑖

max{0,1 + 𝑠 𝑥𝑖, 𝑦𝑖
− − 𝑠 𝑥𝑖, 𝑦𝑖

+ }

• Scalable and preserves label order 

• Common to provide more than one but small 
≪ #labels number of negative example



Bi-direction Ranking Loss

• Ground truth image-label pairs 𝑥𝑖
+, 𝑥𝑖
−, 𝑦𝑖
+, 𝑦𝑖
−
𝑖=1
𝑁

𝐿 𝜙, Θ =  𝑖max{0,1 + 𝑠 𝑥𝑖
+, 𝑦𝑖
− − 𝑠 𝑥𝑖

+, 𝑦𝑖
+ }

+ 𝑖max{0, 1 + 𝑠 𝑥𝑖
−, 𝑦𝑖
+ − 𝑠 𝑥𝑖

+, 𝑦𝑖
+ }

𝑦𝑖
+ = husky𝑥𝑖

+ = 𝑦𝑖
− = human

𝑥𝑖
− =



Bi-direction Ranking Loss

• Ground truth image-label pairs 𝑥𝑖
+, 𝑥𝑖
−, 𝑦𝑖
+, 𝑦𝑖
−
𝑖=1
𝑁

𝐿 𝜙, Θ =  𝑖max{0,1 + 𝑠 𝑥𝑖
+, 𝑦𝑖
− − 𝑠 𝑥𝑖

+, 𝑦𝑖
+ }

+ 𝑖max{0, 1 + 𝑠 𝑥𝑖
−, 𝑦𝑖
+ − 𝑠 𝑥𝑖

+, 𝑦𝑖
+ }

• Useful when the goal is bi-direction retrieval

– Image-Caption Retrieval 



Canonical Correlation Analysis (CCA)

• A non deep-learning alternative

• Often provides a strong baseline for embedding 
approaches for image-caption retrieval

• For random vectors 𝑋 and 𝑌, finds projection 
matrices 𝑊 and 𝑉 which maximize the correlation
between 𝑊𝑋 and 𝑉𝑌.

Gong, Yunchao, et al. "Improving image-sentence embeddings using large weakly annotated photo 
collections." European Conference on Computer Vision. Springer International Publishing, 2014.



LANGUAGE REPRESENTATION

PART II



Representations

• Image

– Outputs of CNNs, Spatial Pyramid, HOG …

• Language Labels

– Word: 

Object/Attribute recognition, scene classification

– Phrase: 

Human-Object-Interaction, Visual Relationship Detection

– Sentence:

Image Captioning, Visual Question Answering



Word Representations

• One-Hot Encoding 𝒆𝒘
– Identity vector of the size of word vocabulary

0 0 0 0 1 0 0 0

Size of vocabulary

Index of 𝑤 in 

vocabulary

𝑒𝑤 =



Word Representations

• One-Hot Encoding 𝒆𝒘
– Identity vector of the size of word vocabulary

• Linear/Non-Linear Transformation of 𝒆𝒘
– More compact representation than one-hot (300 vs 3M dim.)

– Trained using large text corpuses (300B words, 3M vocab)

– Capture semantics from training data 

– Eg. Word2vec, GloVe …

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

Θ(𝑤)

Textual data can be thought of as external 
knowledge in many vision tasks. Hence, 
common to learn Θ as a transformation of 
word2vec representation.



Word2Vec

• Words that occur in similar contexts are   
semantically similar

Predict word from context

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).



Word2Vec

• Words that occur in similar contexts are   
semantically similar

Predict word from context Predict context from word

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).



Word2Vec Arithmetics

Japan – Sushi + Germany = ?



Word2Vec Arithmetics

Japan – Sushi + Germany = Bratwurst 

bigger – big + small = ?



Word2Vec Arithmetics

Japan – Sushi + Germany = Bratwurst 

bigger – big + small = smaller

Paris – France + Italy = ?



Word2Vec Arithmetics

Japan – Sushi + Germany = Bratwurst 

bigger – big + small = smaller

Paris – France + Italy = Rome

similarity(tremendous, enormous) = 0.74

similarity(tremendous, negligible) = 0.37

most_similar(psyched) = geeked
excited 
jazzed
bummed

https://quomodocumque.wordpress.com/2016/01/15/messing-around-with-word2vec/



Representing Phrases/Sentences

• Average or concatenate word representations

– Simple

– Works well for short and simple phrases “the brown cat”

• For complex sentences combine word 
representations guided by a parse tree

• Recurrent Neural Language Models

Dependency Parse Tree

Iyyer, Mohit, et al. "A Neural Network for Factoid Question Answering over Paragraphs." EMNLP. 2014.



HOT TOPICS IN VISION-LANGUAGE 
RESEARCH

PART III



#TrendingInVisionLanguage

Phrase Localization

Caption: Man in black shirt playing a guitar.

Image Captioning

Question: What is the yellow object in the street?

Answer: Hydrant

Visual Question Answering (VQA)
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Phrase Localization

Plummer, Bryan A., et al. "Phrase Localization and Visual Relationship Detection with 
Comprehensive Linguistic Cues." arXiv preprint arXiv:1611.06641 (2016).



𝐵𝑚𝑎𝑛

Region Proposal Boxes {𝑏1,⋯ , 𝑏𝑛}
Find the most likely assignment of boxes to 
(𝐵𝑢𝑚𝑏𝑟 , 𝐵𝑚𝑎𝑛 , 𝐵𝑏𝑎𝑏𝑦 , 𝐵𝑤𝑜𝑚𝑎𝑛 , 𝐵𝑗𝑎𝑐𝑘𝑒𝑡)

𝐵𝑏𝑎𝑏𝑦

𝐵𝑢𝑚𝑏𝑟

𝐵𝑤𝑜𝑚𝑎𝑛

𝐵𝑗𝑎𝑐𝑘𝑒𝑡

Appearance Position & Shape Adjective Verb Preposition

red & blue

red

carries

under

next to

in



Phrase Loc. As Energy Minimization

• Even 10 region proposals and 5 noun phrases lead to 
large search space (105)

• Fast inference methods

– Graph Cuts with 𝛼-expansion

– Belief Propagation (max-product)

– Integer Quadratic Program Solvers 

Plummer, Bryan A., et al. "Phrase Localization and Visual Relationship Detection with 
Comprehensive Linguistic Cues." arXiv preprint arXiv:1611.06641 (2016).



Learning factors for Phrase Loc. 

• Factors

– Given the ground truth bounding boxes 

– Each factor is trained separately

– A mix of CCA based (appearance), SVM based (position) 
and hand coded factors (size)

• Weights

– The relative weighting of the factors needs to be learned 

– Directly search for weights that maximize recall at IOU 0.5
(fminsearch in MATLAB)

Plummer, Bryan A., et al. "Phrase Localization and Visual Relationship Detection with 
Comprehensive Linguistic Cues." arXiv preprint arXiv:1611.06641 (2016).



Effect of different cues on performance

Results on Flickr 30k Entities



Similar problems

• Human-Object Interaction

Chao, Yu-Wei, et al. "Learning to Detect Human-Object Interactions." arXiv preprint arXiv:1702.05448 (2017).



Similar problems

• Visual relationship detection

– Object-Object Interaction as well

Lu, Cewu, et al. "Visual relationship detection with language priors." European Conference on 
Computer Vision. Springer International Publishing, 2016.



Similar problems

• Referring Expression Comprehension

– Multiple confusable objects

Mao, Junhua, et al. "Generation and comprehension of unambiguous object descriptions." Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. 2016.



Similar problems

• Visual Semantic Role Labelling / Situation Recognition

– Appearance changes with actions (clipping vs jumping)

– Different situation with same action can look different  

Yatskar, Mark, Luke Zettlemoyer, and Ali Farhadi. "Situation recognition: Visual semantic role labeling for image 
understanding." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016



Open questions

• How are these tasks related?

– What is common among them?

– What is different?

• Is there a single computational model for them?

• Good and extensible representations?

• Connections to weakly supervised learning?



#TrendingInVisionLanguage

Phrase Localization

Caption: Man in black shirt playing a guitar.

Image Captioning

Question: What is the yellow object in the street?

Answer: Hydrant

Visual Question Answering (VQA)



Visual Question Answering

Question: 
Are these people family?

Answer: 
Yes

- What do “people” look like?
- What makes a group of people “family”?
- Understand the question
- Verify answer

- Is the answer valid for the given question (language prior)
- Does the answer apply to the image (visual verification)



Simple Baseline for VQA

• Construct a vocabulary of 5000 most frequent answers

• Extract all the information from the image, 𝐼
– Construct an image representation using a CNN

• Represent the question, 𝑄 with BoW

• Compute distribution of answers, 𝑃(𝐴|𝑄, 𝐼)

Zhou, Bolei, et al. "Simple baseline for visual question answering." arXiv preprint arXiv:1512.02167 (2015).



Qualitative Results



Qualitative Results

• Language prior prunes the answer space significantly



Quantitative Evaluation 

Evaluated on the VQA dataset



Does the model learn to localize?

• Class Activation Mapping

– Technique to generate localization heat maps from 
classification networks

Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.



Does the model learn to localize?

• Class Activation Mapping applied to VQA Baseline



VQA models with explicit localization

Neural models with attention

Treat the relevance of each location (pixels/region 
proposals) as latent variables

• Encodes our intuition
– Need to look at the right region to answer the question

– Need to look at the hat to answer "What color is the 
person’s hat?”

• Possibly reduces model complexity
– Bias-Variance Tradeoff

• Improves interpretability



VQA Model that knows “Where To Look”

Shih, Kevin J., Saurabh Singh, and Derek Hoiem. "Where to look: Focus regions for visual question 
answering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.



VQA Model that knows “Where To Look”

Shih, Kevin J., Saurabh Singh, and Derek Hoiem. "Where to look: Focus regions for visual question 
answering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.



A shift towards compositional models

• Answering a question can be divided into subtasks

• Design components/modules for each subtask

• Given a question

– Decide which modules to use and the arrangement of 
modules on the fly based on the question parse tree

– Execute the constructed compositional model on the image



Neural Module Networks

Q: What color is the bird? Andreas, Jacob, et al. "Learning to compose neural networks for 
question answering." arXiv preprint arXiv:1601.01705 (2016).



#TrendingInVisionLanguage
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Caption: Man in black shirt playing a guitar.

Image Captioning

Question: What is the yellow object in the street?

Answer: Hydrant

Visual Question Answering (VQA)



Representing Phrases/Sentences

• Using recurrent neural language models

Word-level Language Model

Given the sequence of words 𝑤1, ⋯ , 𝑤𝑛 that form a 
sentence, produces likelihood of the sentence

𝑃 𝑤1, ⋯ , 𝑤𝑛 = 

𝑖

𝑃(𝑤𝑖|𝑤1:𝑖−1)

𝑤1 𝑤2 𝑤3 𝑤4



Representing Phrases/Sentences

• Using recurrent neural language models

Recurrent Models

𝑃 𝑤1, ⋯ , 𝑤𝑛 = 

𝑖

𝑃(𝑤𝑖|𝑤1:𝑖−1)

Recurrent Unit
RNN/LSTM/GRU

𝑤𝑡−1

ℎ𝑡−1

𝑜𝑡 = 𝑃(𝑤𝑡|𝑤1:𝑡−1)

ℎ𝑡

-1

Delay

ℎ𝑛 could serves 
as full sentence 
representation



Representing Phrases/Sentences

• Recurrent neural language model unfolded in time

Representation 
of phrase
“What is the”



Training Recurrent Language Models

• Trained on domain specific text data

– News articles, image captions, Linux code base …

• Parameters learned through maximization of likelihood 
of ground truth text using Back-Propagation Through 
Time (BPTT)

• Gating mechanism used to overcome 
vanishing/exploding gradients due to chain rule 



Image Captioning

• Generate caption given image

• Training involves learning 
𝑃 𝑆 𝐼; 𝜃 = 𝑃(𝑠1,⋯ , 𝑠𝑛|𝐼; 𝜃)

• Generation involves sampling from 𝑃 𝑆 𝐼 or 
performing MAP inference

𝑆∗ = argmax 𝑃(𝑆|𝐼)



Image Captioning Model

𝑃 𝑆 𝐼; 𝜃 = 𝑃(𝑠1,⋯ , 𝑠𝑛|𝐼; 𝜃)

• Recall we modelled 𝑃(𝑠1,⋯ , 𝑠𝑛) for language models



Image Captioning Model

𝑃 𝑆 𝐼; 𝜃 = 𝑃(𝑠1,⋯ , 𝑠𝑛|𝐼; 𝜃)

• Recall we modelled 𝑃(𝑠1,⋯ , 𝑠𝑛) for language models

Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 2015.



Image Caption Generation

• How to sample from 𝑃(𝑆|𝐼)

𝑠1 𝑠2 𝑠3 𝑠4

𝑠1~𝑃(𝑠1|𝑠𝑜, 𝐼)

𝑠2~𝑃(𝑠2|𝑠𝑜:1, 𝐼)

𝑠3~𝑃(𝑠3|𝑠𝑜:2, 𝐼)

𝑠4~𝑃(𝑠4|𝑠𝑜:3, 𝐼)



Image Caption Generation

• MAP inference on 𝑃(𝑆|𝐼)

• Beam Search for approximate inference

𝑠1 𝑠2 𝑠3 𝑠4

5 × 𝑠1~𝑃(𝑠1|𝑠𝑜, 𝐼)
25 × (𝑠1, 𝑠2)~𝑃(𝑠2|𝑠𝑜:1, 𝐼) (keep top 5)

25 × (𝑠1, 𝑠2, 𝑠3)~𝑃(𝑠3|𝑠𝑜:2, 𝐼) (keep top 5)

25 × (𝑠1, 𝑠2, 𝑠3, 𝑠4)~𝑃 𝑠4 𝑠𝑜:3, 𝐼 (keep top 1)



Qualitative Results



Evaluation

• Bleu Score 

– Given a candidate (machine generated) caption

– Compare to reference (human annotated) captions 

– Modified n-grams word precision

– Prefers shorter captions

Eg. “the cat” has BLEU-2 = 2/2

Uni-gram Precision = 7/7 BLEU-1 = 2/7 BLEU-2 = 0/6



Key Takeaways

• Advantages of embedding based recognition

– Scalability

– Structure in label space

– Use external knowledge

• Ways of representing words/phrases/sentences

– Use context : Word2vec

– Use language model : RNN/LSTM

• Vision-Language Applications:

– Using multiple cues improves localization

– Attention mechanisms make models more interpretable

– Image Captioning models combine classification 
networks with language models but tricky to evaluate


