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Influential Works in Detection

Sung-Poggio (1994, 1998) : ~2412 citations

Basic idea of statisticaltemplate detection, bootstrapping to get “face-like” negative
examples, multiple whole-face prototypes (in 1994)

Rowley-Baluja-Kanade (1996-1998) : ~4953

“Parts” at fixed position, neural network based detector, non-maxima suppression,
simple cascade, rotation, pretty good accuracy, fast

Viola-Jones (2001, 2004) : ~27,000

Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to
implement

Dalal-Triggs (2005) : ~18000

Careful feature engineering, excellent results, HOG feature, online code

Felzenszwalb-Huttenlocher (2000): ~2100

Efficient way to solve part-based detectors

Felzenszwalb-McAllester-Ramanan DPM (2008,2010): ~7200

Excellent template/parts-based blend

Girshick-Donahue-Darrell-Malik R-CNN (2014- ): ~4700

Region proposals + fine-tuned CNN features (marks significant advance in accuracy over
hog-based methods)
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— ADAM / momentum
— Data augmentation

— Set parameters appropriately (weight
initialization, learning rate schedule, wor el
momentum, weight decay)
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Fig: Deep Residual Learning for Image Recognition —rT—
He et al. CVPR 2006




CNN for Detection

Classifier network
produces a set of
feature maps

Each cell proposes
bounding boxes
that might be
objects

Features are
pooled into bbox
regions and
classified into
object categories
or background

classifier

propo y
Region Proposal Networ
feature maps

conv layers /

L 7T

—_—

Faster R-CNN (Ren et al. 2016)



Object bounding box detections

Faster RCNN detections



Today’s class

* Object part models

* Pixel labeling



Part/keypoint Prediction

http://mscoco.org/dataset/#keypoints-challenge2016



http://mscoco.org/dataset/#keypoints-challenge2016

Semantic Segmentation




Semantic Segmentation
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http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html



Deformable objects

Images from Caltech-256

Slide Credit: Duan Tran



Deformable objects

Images from D. Ramanan’s dataset

Slide Credit: Duan Tran



Compositional objects




Parts-based Models

Define object by collection of parts modeled by

1. Appearance
2. Spatial configuration

Slide credit: Rob Fergus



How to model spatial relations?

* One extreme: fixed template



How to model spatial relations?

* Another extreme: bag of words



How to model spatial relations?

* CNNs have flexible models through spatial
pooling

O




How to model spatial relations?

e Articulated parts model
— Object is configuration of parts

— Each part is detectable

Images from Felzenszwalb



How to model spatial relations?

* Tree-shaped model
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Pictorial Structures Model

Part = oriented rectangle

q

D

Spatial model = relative size/orientation

1

FelZenszwalb and Huttenlocher 2005



Pictorial Structures Model
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Modeling the Appearance

* Any appearance model could be used

— HOG Templates, etc.
— Here: rectangles fit to background subtracted binary map

e Can train appearance models independently (easy,
not as good) or jointly (more complicated but better)

(L|1,60) (Hp Il;, ;) H j)(/;.fj(‘fj))
cE

(v3,v5)€

Appearance likelihood Geometry likelihood



Part representation

e Background subtraction




Pictorial structures model

Optimization is tricky but can be efficient

L* = arg 11%11 (Z m;(l;) + Z ;i (1, fj}) N
i=1 =)

* Foreach |, find best |,:

Bestx(/;) = m]in [mz(lz) + dzz(lz,lz)]

* Removev,, and repeat with smaller tree, until
only a single part
* For k parts, n locations per part, this has complexity

of O(kn?), but can be solved in ~O(kn) using
generalized distance transform



Distance Transform

* For each pixel p, how far away is the nearest
pixel g of set G

— f(p) = mingeg d(p,q)
— G is often the set of edge pixels

G: black pixels

g




Distance Transform - Applications

e Set distances — e.g. Hausdorff Distance
* |mage processing — e.g. Blurring
* Robotics — Motion Planning
e Alignment
— Edge images
— Motion tracks
— Audio warping

e Deformable Part Models



Generalized Distance Transform

* Original form: f(p) = mingeq d(p,q)
* General form: f(p) = mingcn n; m(q) + d(p, q)

* For many deformation costs, O(N?) — O(N)
Quadratic d(p, q) = a(p — ¢)” + B(p — q)
aps Dift - d(p, q) = alp — ¢
Min Composition d(p, q) = min(d1 (p, q), dQ (p, q))

d(p, p—q|l <T
Bounded dT(p,Q):{ o<(3p Q) :Ig_g;>7.



Results for person matching

27



Results for person matching

28



Enhanced pictorial structures

Learn spatial
prior

Color models
from soft
segmentation
(initialized by
location priors
of each part)

EICHNER, FERRARI: BETTER APPEARANCE MODELS FOR PICTORIAL STRUCTURES 9

BMVC 2009



Parts can be hard to find on their own

Which patch corresponds to a body part?




Which patch corresponds to a body part?

Example from Ramakrishna



Sequential structured prediction

* Can consider pose estimation as predicting a set
of related variables (called structured prediction)

— Some parts easy to find (head), some are hard (wrists)

* One solution: jointly solve for most likely
variables (DPM, pictorial structures)

* Another solution: iteratively predict each variable
based in part on previous predictions



Pose machines

Image

Image Location = Features

L-Shoulder

Local image evidence is weak
Certain parts are easier to detect than others

Input Image

Head Neck L-Shoulder L-Elbow L-Wrist

Ramakrishna et al. ECCV 2014



Example results




General principle

e “Auto-context” (Tu CVPR 2008): instead of
fancy graphical models, create feature from
past predictions and repredict

e Can view this as an “unrolled belief
propagation” (Ross et al. 2011)

Tu Bai 2010: Auto-context
Ross Munoz Hebert Bagnell 2011: Message-Passing Inference Machines



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3323&rep=rep1&type=pdf
http://www.cs.cmu.edu/~sross1/publications/Ross-CVPR11.pdf

One more approach: parallel structured
prediction

e Back to CNNs

— CNN model is a sequence of iterative feature
processing

— Last feature layer stores features that encode key
information for all predictions

— In parallel, predict bounding boxes, category,
parts, and keypoints from last feature layer



Mask R-CNN — He Gxioxari Dollar Girshick

Faster R-CNN
/ w/ FPN [27]
® - —> class
Same network as Faster R . Z&%-—*wmzﬁ—’lmzﬁ_, N
CNN, except
— Bilinearly interpolate when 17
extracting 7x7 cells of ROI T 28x28
features for better alignment /

of features to image

— Instance segmentation:
produce a 28x28 mask for
each object category

— Keypoint prediction: produce FEEE==SS
a 56x56 mask for each Example ROI and predicted mask
keypoint (aim is to label
single pixel as correct
keypoint)

Example ROI and
predicted mask and
keypoints



https://arxiv.org/pdf/1703.06870.pdf

Top performing object detector, keypoint
segmenter, instance segmenter

backbone APP® APRD APRY | APRP  APRY AP
Faster R-CNN+++ [ 19] ResNet-101-C4 349 557 374 | 156 387 509
Faster R-CNN w FPN [27] | ResNet-101-FPN 362 591 390 | 182  39.0 482

Faster R-CNN by G-RMI [21] | Inception-ResNet-v2 [37] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [306] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1

Faster R-CNN, RolAlign ResNet-101-FPN 37.3 59.6 40.3 19.8 40.2 48.8
Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 221 43.2 51.2

Table 3. Object detection single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN usir

backbone AP AP5D AP75 APS APIM APL
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 259 43.6
ECIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 524
Mask R-CNN ResNeX(t-101-FPN 371 60.0 394 16.9 39.9 53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016

APk AP AP | APY APYP
CMU-Pose-+++ [6] 61.8 849 675 | 57.1 682
G-RMI [31]f 624 840 685 | 59.1 68.1
Mask R-CNN, keypoint-only | 62.7 870 684 | 574 71.1
Mask R-CNN, keypoint & mask| 63.1 87.3 687 | 57.8 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours



Example detections and instance
segmentations
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Example detections and instance
segmentations
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Example keypoint detections
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“Stuff” can be hard to capture with bounding boxes

https://www.cityscapes-dataset.com/examples/#fine-annotations



Fully convolutional networks for semantic
segmentation — Long Shelhamer Darrel 2015

“tabby cat”
600 O
156 3%& ,5%0« 166&00" bDQ' ,\QQ
00

1

convolutionalization

 Use network trained
for classification as _
pre-trained network 224x224
for pixel labeling

tabby cat heatmap

* Convert fully
connected layers
into convolutions

forward /inference

e Add features from
earlier conv layers to
improve resolution

backward /learning

* Fine-tune for pixel
labeling task



https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

|II

“Fully convolutional” results

e Takes advantage of
p re't rainin g frO m FCN-8s SDS [17]  Ground Truth Im

classification A -
* Applied to objects a1

and scenes (NYUd
v2)

* But feature pooling
reduces spatial
sensitivity and S—
resolution



Dilated Convolutions — Yu Kolton 2016

* Replacing last two

pooling layers with

“dilated

convolution” that

filters a sparse 3x3
grid of pixels

* Enables large
receptive field with
few parameters

* Improves resolution



https://arxiv.org/pdf/1511.07122.pdf
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DeepLab++ 89.1(38.3(88.1(63.3|169.7|87.1|83.1| 85 [29.3|76.5(56.5|79.8|77.9[85.8|82.4|57.4(84.3|54.9(80.5|64.1||72.7
DeepLab-MSc++ 80.2146.7|88.5|63.568.4|87.0{81.2|86.3(32.6(80.7|62.4|81.0|81.3[84.3|82.1|56.2|84.6|58.3|76.2|67.2[|73.9
CRF-RNN 90.4[55.3|88.7|68.4|69.8 | 88.3(82.4|85.1({32.6/78.5|64.4|79.6|81.9|86.4|81.8|58.6(82.4(53.5|77.4|70.1{|74.7
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Context 89.1139.1|86.8/62.6|68.9|88.2|82.6|/87.7|33.8|81.2(59.2|81.8|87.2(83.3|83.6|53.6(84.9|53.7|80.5|62.9||73.5
Context + CRF 91.3{39.0|88.9|64.3|169.8 |88.9(82.6/89.7|34.7|82.7(59.5| 83 |88.4|84.2| 85 |55.3|86.7|54.4|81.9(63.6||74.7
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Graphical models vs. sequential/parallel
prediction

* Advantages of BP/graphcut/etc
— Elegant
— Relations are explicitly modeled
— Exact inference in some cases

* Advantages of sequential/parallel prediction
— Simple procedures for training and inference
— Learns how much to rely on each prediction
— Can model very complex relations



Things to remember

e Models can be broken down
into part appearance and
spatial configuration

— Wide variety of models

AN
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e Efficient optimization can be
tricky but usually possible

— Generalized distance transform
is a useful trick

e Rather than explicitly modeling
contextual relations, can
encode through
features/classifiers




Next classes

* Tues: Object tracking with Kalman Filters

* Thurs: Action Recognition



