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Today’s class: Object Category Detection

* Overview of object category detection

* Detection methods
— Dalal-Triggs pedestrian detector (basic concept)
— Viola-Jones detector (cascades, integral images)
— R-CNN line of detectors (CNN)
— YOLO (refinement/simplification of R-CNN)



Object Category Detection

* Focus on object search: “Where is it?”

* Build templates that quickly differentiate object
patch from background patch

Dog Model

Object or
Non-Object?



Challenges in modeling the object class

Occlusions Intra-class \/iewpoint |
appearance

Slide from K. Grauman, B. Leibe



Challenges in modeling the non-object
class

True
Detections

Bgd | Confused with
Localization Similar Object

Confused with
Dissimilar Objects

PPN



General Process of Object Recognition

What are the object
parameters?

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections



Specifying an object model

1. Statistical Template in Bounding Box
— Object is some (x,y,w,h) in image
— Features defined wrt bounding box coordinates

Template Visualization

Images from Felzenszwalb



Specifying an object model

2. Articulated parts model
— Object is configuration of parts

— Each part is detectable

Images from Felzenszwalb



Specifying an object model

3. Hybrid template/parts c!)_dej_

Detections rlﬂ
APk

Template Visualization

root filters part filters deformation

coarse resolution finer resolution models Felzenszwalb et al. 2008



Specifying an object model

4. 3D-ish model

 Objectis collection of 3D planar patches
under affine transformation

~ key-view V1
SR nart
g P




General Process of Object Recognition

Specify Object Model

Propose an alignment of the

Generate Hypotheses model to the image

Score Hypotheses

Resolve Detections



Generating hypotheses

1. Sliding window
— Test patch at each location and scale




Generating hypotheses

1. Sliding window
— Test patch at each location and scale




Generating hypotheses

2. Voting from patches/keypoints

Matched Codebook Probabilistic

Interest Points Entries Voting

[

3D Voting Spac
(continuous)

ISM model by Leibe et al.



Generating hypotheses

3. Region-based proposal

Endres Hoiem 2010



General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Currently CNN features and
Score Hypotheses classifiers

Resolve Detections




General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Optionally, rescore each proposed

Resolve Detections object based on whole set




Resolving detection scores

1. Non-max suppression

Score = 0.8

Score =0.1

Score = 0.8




Resolving detection scores

2. Context/reasoning

56

(g) Car Detections: Local (h) Ped Detections: Local

meters

9.3
Hoiem et al. 2006 0 B =0



Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image




Basic Steps of Category Detection

1. Align

E.g., choose position,
scale orientation

How to make this
tractable?

2. Compare

Compute similarity to an
example object or to a
summary representation

Which differences in
appearance are
important?

Aligned
Possible Objects

Exemplar Summary



Sliding window: a simple alighment solution
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Statistical Template

* Object model = sum of scores of features at
fixed positions

?
+3+2 -2-1 -25=-0.5>7.5

Non-object

?
+4+1 +3+0.5=10.5> 7.5

Object




Design challenges

How to efficiently search for likely objects

— Sliding windows require searching hundreds of thousands of
positions and scales

Feature design and scoring

— How should appearance be modeled? What features
correspond to the object?

How to deal with different viewpoints?
— Often train different models for a few different viewpoints

Implementation details
— Window size

— Aspect ratio

— Translation/scale step size
— Non-maxima suppression



Example: Dalal-Triggs pedestrian detector

- , ' . L . j
[

1. Extract fixed-sized (64x128 pixel) window at
each position and scale

2. Compute HOG (histogram of gradient)
features within each window

3. Score the window with a linear SVM classifier

4. Perform non-maxima suppression to remove
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize - Weighted vote Contrast normalize Collect HOG's . Person /
jlll:,l:,“:_. > gamma & —p ;f;:;ﬂ:ﬂi —| into spatial &  |—| over overlapping  |—| over detection IS_':,E[‘:[M L non-person
& colour orientation cells spatial blocks window : classification

1

* Tested with
~RGB
—LAB
— Grayscale

— Slightly better performance vs. grayscale

e Gamma Normalization and Compression

— Square root } Very slightly better performance vs. no adjustment
— Log
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Normalize
—»| camma &

colonr

Input
image
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Compute
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Weighted vote
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orientation cells
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Contrast normalize
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spatial blocks
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over detection
window
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= 01— Person
classification
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* Histogram of gradient

orientations

Orientation: 9 hins
(for unsigned angles)

90
135 45
180 0
225 315
270

— Votes weighted by magnitude

Histograms in

8x8 pixel cells

— Bilinear interpolation between

cells

Slides by Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Input
image

Normalize with respect to
surrounding cells
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Slides by Pete Barnum
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
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# features =15 x 7x 9 x4 =3780
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Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
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Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Detection examples




Viola-Jones sliding window detector

Fast detection through two mechanisms
e Quickly eliminate unlikely windows
* Use features that are fast to compute

Viola and Jones. Rapid Object Detection using a Boosted Cascade of Simple Features (2001).



http://www.cs.ubc.ca/~lowe/425/violaJones01.pdf

Cascade for Fast Detection

Yes

|$ Stage 1 Stage 2
H,(x) >t,? |:> H,(x) > t,?

No No
Examples

Reject Reject

Yes

Stage N
)5 t,7 [ Pass

ﬂm

Reject

* Choose threshold for low false negative rate

* Fast classifiers early in cascade

* Slow classifiers later, but most examples don’t get there



Features that are fast to compute

* “Haar-like features”
— Differences of sums of intensity

— Thousands, computed at various positions and
141

scales within detection window

Two-rectangle features Three-rectangle features Etc.




Integral Images

* 11 = cumsum(cumsum (im, 1), 2)

XY

li(X,y) = Sum of the values in the grey region

! 2 How to compute B-A?

How to compute A+D-B-C?




Feature selection with Adaboost

* Create a large pool of features (180K)

e Select features that are discriminative and
work well together

— “Weak learner” = feature + threshold + parity

TR ifpifilz) < pid;
UM 00 otherwise

— Choose weak learner that minimizes error on the
weighted training set

— Reweight



Adaboost

e Given example images (x1,y1),..., (Zn,yn) Where
y; = 0,1 for negative and positive examples respec-
tively.

o Initialize weights w; ; = ﬁ, sz for y; = 0,1 respec-

tively, where m and [ are the number of negatives and
positives respectively.

e Fort=1,...,T:
1. Normalize the weights,

Wt 4

Z;?’:l Wy 7j

so that wy 1s a probability distribution.

Wt

2. For each feature, j, tramn a classifier h; which
1s restricted to using a single feature. The
error 1s evaluated with respect to wy, €; =
> wi |hj(zi) — wil.

3. Choose the classifier, ht, with the lowest error €;.

4. Update the weights:
_ 1—e;
Wi41,5 — 'wt,iﬁt

where e; = 0 1f example x; 1s classified cor-
rectly, e; = 1 otherwise, and 3; =

€t
l1—es

e The final strong classifier is:

h(z) = { : ZL athi(z) > éz;‘;l Qi

0 otherwise

where a; = log %




Top 2 selected features




Viola Jones Results

Speed = 15 FPS (in 2001)

False detections

Detector 10 31 50 65 78 95 167
Viola-Jones 76.1% | 88.4% 01.4% | 92.0% | 92.1% 92.9% 93 9%
Viola-Jones (voting) 81.1% | 89.7% | 92.1% | 93.1% | 93.1% 932% | 93.7%
Rowlev-Balwya-Kanade 832% | B6.0% - - 89.2% | 90.1%
Schneiderman-Kanade - 94 4% | -

Roth-Yang-Ahuja - - - - (94 8%) | - -

MIT + CMU face dataset




Object Detection Evaluation

* Datasets
— PASCAL VOC (2005-2012): 20 classes, ~20,000 images
— MS COCO (2014-?): 60 classes, ~300,000 images

 Evaluation

— Output: for each class, predict bounding boxes (x1, y1, x2, y2) with
confidences

— Metric:

* True detection: >= 0.5 Intersection over Union (loU), not a duplicate

. . # true detections # true detections
* Precision: , Recall: —
# detections # positive examples

* AP:area under the interpolated curve

loU =0.45

7

) S Inferpolated--------1

Intersecting 5 0.4t



http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/

Improvements in Object Detection
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Mean Average Precision (VOC 2007)

HOG Template

2005 2007 2008 2009 2010 2012 2013 2014

Statistical Template
Matching

HOG: Dalal-Triggs 2005



Improvements in Object Detection
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HOG Template
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—

Better Models of
Complex Categories

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012



Improvements in Object Detection

o
N

R-CNN
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—>

Key Advance: Learn effective features from Better Features
massive amounts of labeled data and
adapt to new tasks with less data

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013  R-CNN: Girshick et al. 2014



R-CNN (Girshick et al. CVPR 2014)

] warped region

\ e -‘;:‘ | .7 L
NN A e

By ! .' / / \-. i\ o 1
¢ % A

1. Input 2. Extract region 3. Compute
1mage proposals (~2k) CNN features

aeroplane? no.

person? yes.

tvmonitor? no.

4. Classify

regions

* Replace sliding windows with “selective search” region

proposals (Uijilings et al. IJCV 2013)

e Extract rectangles around regions and resize to 227x227

e Extract features with fine-tuned CNN (that was initialized
with network trained on ImageNet before training)

* C(lassify last layer of network features with SVM

http://arxiv.orq/pdf/1311.2524.pdf



http://arxiv.org/pdf/1311.2524.pdf

Fine-tuning example: ImageNet->VOC

1. Train full network on ImageNet 1000-class classification

2. Replace classification layer with output layer for VOC
(e.g. confidences for 20 classes)

3. Train on VOC pos/neg examples with low initial learning
rate (1/10% what is used for new network)

Notes
* This usually works well if the “big data” task and target
task are similar (object classification vs detection)

— 0.45 AP without fine-tuning = 0.54 AP with fine tuning; training
only on VOC does much worse

* Not necessary if target task is also very big



Mistakes are often reasonable

Bicycle: AP =0.73
100

Confident Mistakes
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R-CNN results



Mistakes are often reasonable

Horse: AP = 0.69 Confident Mistakes
100 | 2. tR

[
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total detections (x 348)

R-CNN results



Misses are often predictable

Bicycle

Sides Visibke E E E E P-EI"IE-"'-"-EIbl-E'

".435,&@-; -;E‘L %ﬂ}

54:-595

..................................................................................................

0 L oL
ottm  fromt  rear 1|:||:| ‘sl body hndibreseat whes
r'-l L M H r'-.l T .'H'.EE MLXL XTT MWW o1 o o1 01 o i o o oA

Small objects, distinctive parts absent
or occluded, unusual views

R-CNN results



Fast R-CNN — Girshick 2015

_I Outputs: beX
I .?Eeep[\] t~ \ SOﬂmaX FEEIEessor
: onviNe :

Rol 9 EC E FC
pooling
S Wrol || ([
projection\ ‘
Conv X Rol feature
feature map vector For each Rol

e Compute CNN features for image once

* Poolinto 7x7 spatial bins for each region proposal,
output class scores and regressed bboxes

e 100x speed up of R-CNN (0.02 — 0.1 FPS - 0.5-20
FPS) with similar accuracy


https://arxiv.org/abs/1504.08083

Faster R-CNN — Ren et al. 2016

classifier

5 pooling
[ 2k scores ] l 4l coordinates | <mm  Fanchor boxes
propo y / cls layer ‘ ' reg layer
| 256-d | .
Region Proposal Networ intermediate layer
Weamre maps t .

sliding window

conv layers , conv feature map

* Convolutional features used for generating proposals and scoring

— Generate proposals with “objectness” scores and refined bboxes for
each of k “anchors”

— Score proposals in same way as Fast R-CNN
e Similar accuracy to Fast R-CNN with 10x speedup


https://arxiv.org/pdf/1506.01497.pdf

* Faster R-CNN slightly better accuracy than Fast
R-CNN

* More data improves results considerably

Table 6: Results on PASCAL VOC 2007 test set with Fast R-CNN detectors and VGG-16. For RPN, the train-time
proposals for Fast R-CNN are 2000. RPN* denotes the unsharing feature version.

method | # box ‘ data ‘mAP areo  bike bird boat bottle bus  car cat chair cow table dog horse mbike person plant sheep sofa train @ tv
SS 2000 07 669 | 745 783 69.2 532 366 773 782 820 40.7 727 679 79.6 79.2 73.0 69.0 301 654 70.2 758 658
SS 2000 07+12 700 |77.0 781 69.3 594 383 8l6 786 867 428 788 689 847 820 76.6 699 318 701 748 804 704
RPN~* 300 07 685 |741 772 67.7 539 510 751 79.2 789 50.7 780 61.1 79.1 819 722 759 372 714 625 774 664
RPN | 300 07 699 | 70.0 80.6 70.1 573 499 782 804 820 522 753 67.2 803 79.8 750 763 39.1 683 673 811 67.6
RPN | 300 07+12 732|765 79.0 709 655 521 83.1 847 86.4 520 819 657 848 846 775 767 388 736 739 830 726
RPN | 300 | COCO+07+12 | 788 |843 820 77.7 68.9 657 88.1 884 88.9 63.6 863 70.8 859 87.6 801 823 53.6 80.4 758 86.6 78.9




YOLO — Redmon et al. 2016

1. CNN produces 4096
features for 7x7 grid
on image (fully conv.)

2. Each cell produces a
score for each object
and 2 bboxes w/ conf

3.  Non-max suppression

e 7xspeedup over Faster
RCNN (45-155 FPS vs. 7-
18 FPS)

* Some loss of accuracy
due to lower recall,
poor localization

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Final detections

Class probability map

z
Fyp o

| U] S
7 7 7
1024 1024 6 30

Conv. Layers Conv. Layers Conv. Layers  Conn. Layer  Conn. Layer
e R
3x3x512 3x3x1024 3x3x1024
1x1

x1x512 3x3x1024
3x3x1024 3x3x1024-52
Maxpool Layer  Maxpool Layer
2x2-52 2x252


https://pjreddie.com/media/files/papers/yolo_1.pdf

Yolo v2 — Redmon et al. 2017

e Batch

I . . YOLO YOLOvV2
batch norm? v v v v v v
norma Izatlon hi-res classifier? v v v v v v v
. . convolutional? e e v v
* Pre-train on higher anchor boxes? v oV
. new network? e v v v v
dimension priors? v v v v
reSOI Utlo n location prediction? v e v v
passthrough? v v v
I Ma4d ge N et multi-scale? v v
hi-res detector? v
1 VOC2007 mAP| 634 |65.8 695 69.2 69.6 744 754 76.8 78.6
 Use and improve mAP[ 634 T65:5 095 470
anchor box idea
Detection Frameworks Train mAP FPS
fro m Fa Ste r RC N N Fast R-CNN [7] 200742012 70.0 0.5
Faster R-CNN VGG-16[15]  2007+2012  73.2 7
- - Faster R-CNN ResNet[0] 2007+2012 76.4 5
° Tra INn at mMu |t|p|e YOLO [ 14] 200742012 634 45
SSD300 [ 1] 200742012 74.3 46
M SSD500 [ 1 1] 2007+2012  76.8 19
re S O I U t I O n S YOLOvV2 288 x 288 2007+2012 ();.O 91
YOLOvV2 352 x 352 200742012 73.7 81
YOLOV2 416 x 416 200742012  76.8 67
i Ve ry gOOd YOLOV2 480 % 480 2007+2012  77.8 59
YOLOV2 544 x 544 2007+2012  78.6 40

accuracy, very fast

https://youtu.be/VOC3hugHrss



https://pjreddie.com/darknet/yolo/
https://youtu.be/VOC3huqHrss

Influential Works in Detection

Sung-Poggio (1994, 1998) : ~2412 citations

— Basic idea of statistical template detection (I think), bootstrapping to get “face-like”
negative examples, multiple whole-face prototypes (in 1994)

Rowley-Baluja-Kanade (1996-1998) : ~4953

— “Parts” at fixed position, non-maxima suppression, simple cascade, rotation, pretty
good accuracy, fast

Schneiderman-Kanade (1998-2000,2004) : ~2600
— Careful feature/classifier engineering, excellent results, cascade
Viola-Jones (2001, 2004) : ~27,000

— Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to
implement

Dalal-Triggs (2005) : ~18000

— Careful feature engineering, excellent results, HOG feature, online code
Felzenszwalb-Huttenlocher (2000): ~2100

— Efficient way to solve part-based detectors
Felzenszwalb-McAllester-Ramanan (2008,2010): ~7200

— Excellent template/parts-based blend
Girshick-Donahue-Darrell-Malik (2014 ): ~4700

— Region proposals + fine-tuned CNN features (marks significant advance in accuracy
over hog-based methods)

Redmon, Divvala, Girshick, Farhadi (2016): ~210
— Refine and simplify RCNN++ approach to predict directly from last conv layer



Summary: statistical templates

Propose ' Extract ' Classify » Post-
Window Features orocess

Sl SVM Non-max
A suppression

Boosted stubs

Segment or
Neural network refine

localization

Sliding window: scan T
image pyramid

i
e

Region proposals:
edge/region-based,
resize to fixed window CNN features




Next class

* Pixel/part labeling



