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Convolutional Neural Networks

Computer Vision
CS 543 / ECE 549
University of lllinois

Derek Hoiem

Many slides from Lana Lazebnik, and some from Jia-bin Huang



History of deep convolutional nets

1950’s: neural nets (perceptron) invented by Rosenblatt

e 1980’s/1990’s: Neural nets are popularized and then abandoned as being
interesting idea but impossible to optimize or “unprincipled”

 1990’s: LeCun achieves state-of-art performance on character recognition
with convolutional network (main ideas of today’s networks)

 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff
with deep networks but without much traction/acclaim in vision

e 2010-2011: Substantial progress in some areas, but vision community still
unconvinced

— Some neural net researchers get ANGRY at being ignored/rejected

e 2012: shock at ECCV 2012 with ImageNet challenge



2012 ImageNet 1K

(Fall 2012)
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2012 ImageNet 1K

(Fall 2012)
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R-CNN demonstrates major detection improvement by pre-
training on ImageNet and fine-tuning on PASCAL

Improvements in Object Detection
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Key Advance: Learn effective features from
massive amounts of labeled data and
adapt to new tasks with less data

Better Features

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013  R-CNN: Girshick et al. 2014



“CNN Features off-the-shelf: an Astounding
Baseline for Recognition”

_ CNN
Representation
Leam Extract Features
Stron ‘
An ngtaarttu e DPMg Normalized RGB, gradient, B SVM
Pose LBP
|UD Best state of the art 00 CNN off-the-shelf 18 CNN off-the-shelf + augmentation 00 Specialized CNN |
100} . -
80t a0 B
60+
40+
S,
C@_))
Z u,.
&y S
4. " Lg
‘e &
| 22
c?j

Razavian et al. CVPR 2014



How it felt to be an object recognition
researcher

https://youtu.be/XCtuZ-fDL2E?t=140



https://youtu.be/XCtuZ-fDL2E?t=140

Slide: Lazebnik

Rewind...

| The Perceptron
nput

Weights

Output: sgn(w-x + b)
>

Xp

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386—408.



NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
ablea to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls
- The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying

its surroundings without -any
human training or control.” |

The “brain” is designed to
remember images and informa-,
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . \

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

line and which would be con-'
scious of their existence, ‘

Slide: Lazebnik

1958 New York
Times...

In today's demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and ‘“O” for the right

squares. A
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.




Two-layer neural network

InpLt Hidden Layer Output
Layer Layear
Input #1 —
INput #2 —=
Input #3 —=
Input #4 —

Can learn nonlinear functions provided each perceptron has a differentiable

nonlinearity
Sigmoid: g(¢) =
| o1d.
g 1 _t

Slide: Lazebnik




Multi-layer neural network

] hidden layer 1  hidden layer 2 hidden layer 3
input laver
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Training of multi-layer networks

Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

Ew)=a(y - £,(x)

i=1

Update weights by gradient descent: W<—W-—-o %

Slide: Lazebnik



Training of multi-layer networks

Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

Ew)=a(y - £,(x)

i=1

Update weights by gradient descent: W<—W-—-o %

Back-propagation: gradients are computed in the direction from
output to input layers and combined using chain rule

Stochastic gradient descent: compute the weight update w.r.t. a
small batch of examples at a time, cycle through training examples
in random order in multiple epochs

Slide: Lazebnik



Multi-Layer Network Demo

INPUT + — 1 HIDDEN LAYER OUTPUT

Which properties do Test loss 0.020

you want to feed in? + - Training loss 0.013
4 neurons

XX " This is the output
' from one newron. |
Hover fo see it o
. larger.
sinix, )
Colors shows
s data, neuron and F I _l
sini*a) weight values. ’ g !

[ Showtestdata [] Discretize output

http://playground.tensorflow.orqg/

Slide: Lazebnik


http://playground.tensorflow.org/

From fully connected to convolutional networks

hidden layer 1 hidden layer 2 hidden layer 3

input layer

image Fully connected layer

Slide: Lazebnik



From fully connected to convolutional networks

image Convolutional layer

Slide: Lazebnik



From fully connected to convolutional networks

feature map

learned
weights
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image Convolutional layer

Slide: Lazebnik



From fully connected to convolutional networks

feature map
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image Convolutional layer
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Convolution as feature extraction

Feature Map

Slide: Lazebnik



From fully connected to convolutional networks

feature map
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image Convolutional layer
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From fully connected to convolutional networks

_ next layer
image Convolutional layer

Slide: Lazebnik



Key operations in a CNN

{}

Feature maps

{}

[ Spatial pooling ]

o

)
—

[ Input Image ]

Feature Map

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key operations

{}

[ Feature maps J

{}

[ Spatial pooling J

Rectified Linear Unit (ReLU)

Convolution
(Learned)

{}

F B BN R R S e
Input Image x

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key operations

{}

Feature maps

Spatial pooling

)
—

Input Image

|

—

Source: R. Fergus, Y. LeCun

Slide: Lazebnik



Comparison to Pyramids with SIFT

Lowe [IJCV 2004]

(Sum)

Spatial pool ({;/\ %K %
aEEQTS K-

Feature
Vector

Normalize to unit
length

slide credit: R. Fergus



Comparison to Pyramids with SIFT

Lazebnik,
Schmid,
SIFT 2> | Filter with ~ Ponce
Features Visual Words [CVPR 2006]

Multi-scale | = T I

spatial pool | [{] LA | ] 19 [> Classifier

(Sum) i_u“J_lu!_ﬂ_uJ'u Lot L Sl LJ._ _“

slide credit: R. Fergus



Key idea: learn features and classifier that work
well together (“end-to-end training”)

Label

Convolution/pool
Convolution/pool
Convolution/pool
Convolution/pool

Convolution/pool

it




LeNet-5

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5
INEUIT 6@28x28
32x32 S2: f. maps

6@14x14

I
I | Fullconrlection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Average pooling

Sigmoid or tanh nonlinearity

Fully connected layers at the end

Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.



http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Fast forward to the arrival of big visual data...

~14 million labeled images, 20k classes
* Images gathered from Internet

* Human labels via Amazon MTurk

* ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik


http://www.image-net.org/challenges/LSVRC/

AlexNet: ILSVRC 2012 winner
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e Similar framework to LeNet but:

Max pooling, ReLU nonlinearity
More data and bigger model (7 hidden layers, 650K units, 60M params)
GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

VGGNet

* Sequence of deeper networks trained progressively

* Large receptive fields replaced by successive layers of
3x3 convolutions (with ReLU in between)

/] ™
/‘/ \\

— One 7x7 conv layer with C feature maps needs 49C? weights,
three 3x3 conv layers need only 27C? weights

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, ICLR 2015



https://arxiv.org/abs/1409.1556
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(b) Mlpconv layer

(a) Linear convolution layer

M. Lin, Q. Chen, and S. Yan, Network in network, ICLR 2014

Slide: Lazebnik


https://arxiv.org/abs/1312.4400

1x1 convolutions

conv layer

Slide: Lazebnik



1x1 convolutions

1x1 conv layer

Slide: Lazebnik



1x1 convolutions

1x1 conv layer

Slide: Lazebnik



GoogleNet: Inception module

* Parallel paths with different receptive field sizes and
operations to capture sparse patterns of correlations

 1x1 convolutions for dimensionality reduction before
expensive convolutions

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [} i &

Qtions 1x1 convolutions 3x3 max pooling

Previous layer

C. Szegedy et al., Going deeper with convolutions, CVPR 2015



https://arxiv.org/abs/1409.4842

GoogleNet

Conv
1x1+1(S)

DepthConcat

Conv Conv Conv
3x3+1(S) 5x5+1(S) 1x14+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

MaxPool
3x3+2(S)

Inception module

C. Szegedy et al., Going deeper with convolutions, CVPR 2015


https://arxiv.org/abs/1409.4842

GoogleNet

(A)E+GXG

|oodabeiany
(S)IT+1IXT
uoneAIpPyxewyos
OXewyos

Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015



https://arxiv.org/abs/1409.4842

ResNet: the residual module

Introduce skip or shortcut connections (existing before in
various forms in literature)

Make it easy for network layers to represent the identity
mapping
For some reason, need to skip at least two layers

X
weight layer
]—'(x) l relu N
weight layer identity

F(x) + x

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper)



http://arxiv.org/abs/1512.03385

ResNet

Deeper residual module (bottleneck)

* Directly performing 3x3
convolutions with 256 feature
maps at input and output:

| 256-d 256 x 256 x 3 x 3 ~ 600K
l operations
1x1, 64 * Using 1x1 convolutions to
| relu reduce 256 to 64 feature maps,

followed by 3x3 convolutions,

3x3i ?:u followed by 1x1 convolutions
to expand back to 256 maps:
1x1, 256 256 x 64 x 1 x 1~ 16K
619% 64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1~ 16K
relu Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper) Slide: Lazebnik



http://arxiv.org/abs/1512.03385

ResNet: going real deep

Revolution of Depth

i

AlexNet, 8 layers VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

]

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016



http://arxiv.org/abs/1512.03385

Bigger not better: innovations typically
reduce parameters, despite deeper nets

Inception-v4
80 -
Inception-v3 ResNet-152
ResNet-50 VGG-16 VGG-19
LER ResMet-101
. ResNet-34
E 70 4 ResMNet-18
. "'D
® GDDgLeNet
= ENEt
E 65 A
i
5 o BN-NIN
~ 60 A 5M 35M 65M 95M 125M  155M
BN-AlexNet
SER AlexNet
50 . ' ' ' : " . '
0 5 10 15 20 25 30 35 40

Operations [G-Ops]



Key ideas of CNN Architectures

e Convolutional layers

— Same local functions evaluated everywhere - much fewer
parameters

* Pooling
— Larger receptive field and translational invariance
 RelU: maintain a gradient signal over large portion of
domain

* Limit parameters

— Sequence of 3x3 filters instead of large filters (also encodes that
local pixels are more relevant)

— 1x1 convs to reduce feature dimensions

e Skip network
— Prevents having to maintain early layers (just add residual)
— Acts as ensemble



Optimization

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2 indicates the elementwise
square g¢ @ g¢. Good default settings for the tested machine learning problems are a« = 0.001,
31 = 0.9, 35 = 0.999 and ¢ = 1078, All operations on vectors are element-wise. With ji and 35
we denote 37 and 35 to the power t.

Require: «: Stepsize
Require: 3,32 € [0, 1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters ¢
Require: #y: Initial parameter vector
mq < 0 (Initialize ' moment vector)
vo < 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6; not converged do
t«—t+1
gt < Vg fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep ?)
myg <— 1 -me—1 + (1L — 31) - g« (Update biased first moment estimate)
v 4— P2 - v—1 + (1 — B2) - g? (Update biased second raw moment estimate)
myg < my /(1 — ) (Compute bias-corrected first moment estimate)
Uy < v¢ /(1 — L) (Compute bias-corrected second raw moment estimate)
O < 01 — - ¢ /(v/Tr + €) (Update parameters)
end while
return ¢, (Resulting parameters)




Batch Normalization

Input: Values of = over a mini-batch: B = {z1._ . };
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}
1 Tre .
pUB — — Y // mini-batch mean
m
] Tri
2 2 N - .
— — T — // mini-batch variance
o — ;(I 1B) ini vari
7 ——tE // normalize
\HUHZ + €
yi — 7T + 8 = BN, g(x;) // scale and shift
1
/‘:’, —————— 2 2 W
0.9 ,’
0B ,’ - = = Without BN . ¢
With BN M
070K 20k 30K 40K 50K 2 -2
(a) (b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [loffe and Szegedy 2015]



http://arxiv.org/pdf/1502.03167v3.pdf

Key ideas of optimization

e Stochastic gradient descent (SGD) in batches
— Batch size 128 or 256 recommended
— Use ADAM for gradient/momentum

* Normalize inputs/features (similar idea to whitening)

— Batchnorm normalizes inputs to each layer by estimate
(e.g. moving average) of mean/std

* Crazy optimization problem (so many local minima),
but

— Model capacity is larger than needed to help ensure that
important patterns are discovered

— Many solutions are similarly good (e.g. can permute layers
without effect)

Good discussion post on local minima



http://stats.stackexchange.com/questions/203288/understanding-almost-all-local-minimum-have-very-similar-function-value-to-the

Slide: Jiabin Huang

Data Augmentation (Jittering)

* Create virtual training
samples
— Horizontal flip
— Random crop
— Color casting
— Geometric distortion

<

%

RGD all chamged

* |dea goes back to
Pomerleau 1995 at
east (neural net for
car driving)

O\

lHeorzonial sereech

Deep Image [Wu et al. 2015]



http://arxiv.org/pdf/1501.02876v2.pdf

What does the CNN learn?



Individual Neuron Activation
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RCNN [Girshick et al. CVPR 2014]



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
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http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Individual Neuron Activation
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RCNN [Girshick et al. CVPR 2014]



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Map activation back to the input pixel space

 What input pattern originally caused a given
activation in the feature maps?

Layer Abov:

Reconstructlon Pooled Maps
Switches
T f Max Poolin
Max Unpooling @ H g
Unpooled Maps Rectified Feature Maps
Rectified Linear 4% Rectified Linear
Function S Function
Rectified Unpooled Maps Feature Maps
Convolutional 2 Convolutional
Filtering {F'} R Filtering {F}
Reconstruction Layer Below Pooled Maps

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understandmg Convolutlonal Networks Zeller and Ferus 3 2014 ]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Invert CNN features

* Reconstruct an image from CNN features

Understanding deep image representations by inverting them

[Mahendran and Vedaldi CVPR 2015]



http://arxiv.org/pdf/1412.0035.pdf

CNN Reconstruction

Reconstruction from different layers

Multiple reconstructions



http://arxiv.org/pdf/1412.0035.pdf

Slide: Jiabin Huang

Transfer Learning

* Improvement of learning in a new task through the
transfer of knowledge from a related task that has
already been learned.

* Weight initialization for CNN

Training images Source task Source task labels
Convolutional layers Fully-connected layers Alcan Spha
1: Feature . Wall clock
learning C1-C2-C3-CA4-C5 P+ rco6 ™ FC7 FC8 4
4096 or
6144-dim Green snake
) wector
Y [ : .
| Sl Yorkshire terrier
2: Feature 7 Transfer :
transfer parameters
. Chair
‘ | e
; = ackgroun
3 : Chassifier C1-C2-C3-C4-CS [+ Fce o Fc7 Fea FCb 1
learning 4096 or
6144.dim w Person
9216-dim 4096 or vector
o 6:,::"2:" g TV/monitor
Traini = Slidi h New adaptation {
raining images  Sliding patches layers trained
Target task o tarbet taak Target task labels

Learning and Transferring Mid-Level Image Representations using
Convolutional Neural Networks [Oquab et al. CVPR 2014]



http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf

Tools

e Caffe
e cuda-convnet?2

 Torch
* MatConvNet
* Pylearn?2

e TensorFlow



http://caffe.berkeleyvision.org/
https://code.google.com/p/cuda-convnet2/
http://torch.ch/
http://www.vlfeat.org/matconvnet/
http://deeplearning.net/software/pylearn2/
https://www.tensorflow.org/

Reading list

https://culurciello.github.io/tech/2016/06/04/nets.html

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11):
2278-2324, 1998.

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR 2015

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,
ECCV 2014 (best paper award)

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, ICLR 2015

M. Lin, Q. Chen, and S. Yan, Network in network, ICLR 2014
C. Szegedy et al., Going deeper with convolutions, CVPR 2015

C. Szegedy et al., Rethinking the inception architecture for computer vision,

CVPR 2016

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, CVPR
2016 (best paper award)



https://culurciello.github.io/tech/2016/06/04/nets.html
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://arxiv.org/pdf/1311.2901v3.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.03385

Next week

* Object detection and pixel labeling



