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Today’s Class

 Examples of Missing Data Problems

— Detecting outliers (HW 4, problem 2)
— Latent topic models
— Segmentation (HW 4, problem 3)

* Background
— Maximum Likelihood Estimation
— Probabilistic Inference

* Dealing with “Hidden” Variables

— EM algorithm, Mixture of Gaussians
— Hard EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a
photograph is attractive. You collect annotations from
Mechanical Turk. Some annotators try to give accurate
ratings, but others answer randomly.

Challenge: Determine which people to trust and the
average rating by accurate annotators.

Annotator
Ratings

1

o

0N O 0

Photo: Jam343 (Flickr)



Missing Data Problems: Object Discovery

You have a collection of images and have extracted
regions from them. Each is represented by a histogram
of “visual words”.

Challenge: Discover frequently occurring object
categories, without pre-trained appearance models.

| 1‘."
[ R
v

-
L]
u

FhE
EUf
HHE
1

http://www.robots.ox.ac.uk/~vgag/publications/papers/russell06.pdf



http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf

Missing Data Problems: Segmentation

You are given an image and want to assign
foreground/background pixels.

Challenge: Segment the image into figure and

ground without knowing what the foreground
looks like in advance.

Foreground

Background




Missing Data Problems: Segmentation

Challenge: Segment the image into figure and ground
without knowing what the foreground looks like in advance.

Three steps:

1. If we had labels, how could we model the appearance of
foreground and background?

2. Once we have modeled the fg/bg appearance, how do we
compute the likelihood that a pixel is foreground?

3. How can we get both labels and appearance models at
once?
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Maximum Likelihood Estimation

1. If we had labels, how could we model the appearance
of foreground and background?
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Maximum Likelihood Estimation
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Example: MLE

Parameters used to Generate

fg: mu=0.6, sigma=0.1
bg: mu=0.4, sigma=0.1

labels

>> mu_ fg = mean (im(labels))
mu fg = 0.6012

>> sigma fg = sqgrt (mean((im(labels)-mu fg) ."2))
sigma fg = 0.1007

>> mu _bg = mean (im(~labels))
mu bg = 0.4007

>> sigma bg = sqgrt (mean((im(~labels)-mu bg) ."2))
sigma bg = 0.1007

>> pfg = mean(labels(:));



Probabilistic Inference

2. Once we have modeled the fg/bg appearance, how
do we computethe likelihood that a pixel is
foreground?
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Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\
p(z, =m|Xx,,0)



Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular
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Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\ _
p(zn =m, Xn |9m)
Z. =Mm|X, ,0)=
Pl =M =750 o)

p(z, =m,x, |6,

:Zp(zn :k’xn |9k)
k

p(X, 12, =m, &, )p(z, =

)

:Zp(xn 1z, =k,0,)p(z, =
k

;)



Example: Inference

Learned Parameters
fg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

>>
>>
>>
>>

pfg =
px_fg
px_bg
pfg_ x

.5;

normpdf (im, mu fg, sigma fg);
normpdf (im, mu bg, sigma bg);

px fg*pfg ./ (px fg*pfg + px bg*(l-pfg));




Dealing with Hidden Variables

3. How can we get both labels and appearance
parameters at once?
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Mixture of Gaussians

mixture component

component model component prior
parameters

N
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Mixture of Gaussians

With enough components, can represent any
probability density function

— Widely used as general purpose pdf estimator



Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian
components

— We don’t know which pixels come from which
components

— We don’t know the parameters for the
components




Simple solution

1.

Initialize parameters

. Compute the probability of each hidden

variable given the current parameters

. Compute new parameters for each model,

weighted by likelihood of hidden variables

. Repeat 2-3 until convergence



Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for
current parameters

= p(z, =m| Xn,u(t),cz(t),n(t))

3. Estimate new parameters for each model,
weighted by likelihood
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Expectation Maximization (EM) Algorithm

Goal: = argmaxlog( > p(x,z] 6’))
0 VA
\

Log of sums is intractable

Jensen’s Inequality

f(E[X ])= E[f (X)]

for concave functions f(x)

(so we maximize the lower bound!)



Expectation Maximization (EM) Algorithm
Goal: 0= argmaxlog(z p(X,z| 6’))
0 VA

1. E-step: compute
z| g(t)[log XZ|@] Zlog Xz|9 (Z|X,6’(t))

2. M-step: solve
G _argmaxz Iog X 7 | g)) (le’g(t))



Expectation Maximization (EM) Algorithm

log of expectation of P(x|z)

\

Goal: 0= arggmxlog(zzl p(x,z | 6’)) f(E[X])=E[f(X)]

expectatlon of log of P(x|z)

1. E-step: compute
z|xg(t) [Iog X Zle ] Zlog X Zle (Z|X,9(t))

2. M-step: solve
o+ _argmaxZIog x,z|0))plz|x,60)



EM for Mixture of Gaussians (by hand)
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EM for Mixture of Gaussians (by hand)
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EM Algorithm

e Maximizes a lower bound on the data
likelihood at each iteration

e Each step increases the data likelihood
— Converges to local maximum

e Common tricks to derivation
— Find terms that sum or integrate to 1
— Lagrange multiplier to deal with constraints



EM Demos

e Mixture of Gaussian demo

* Simple segmentation demo



“Hard EM”

Same as EM except compute z* as most likely
values for hidden variables

K-means is an example

Advantages
— Simpler: can be applied when cannot derive EM

— Sometimes works better if you want to make hard
predictions at the end

But
— Generally, pdf parameters are not as accurate as EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a
photograph is attractive. You collect annotations from
Mechanical Turk. Some annotators try to give accurate
ratings, but others answer randomly.

Challenge: Determine which people to trust and the
average rating by accurate annotators.

Annotator
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HW 4, problem 2

2 EM Algorithm: Dealing with Bad Annota-
tions (35 pts)

Dealing with noisy annotations is a common problem in computer vision, espe-
cially when using crowdsourcing tools, like Amazon’s Mechanical Turk. For this
problem, you've collected photo aesthetic ratings for 150 images. Each image 1s
labeled 5 times by a total of 25 annotators (each annotator provided 30 labels).
Each label consists of a continuous score from 0 (unattractive) to 10 (attractive).
The problem is that some users do not understand instructions or are trying
to get paid without attending to the image. These “bad” annotators assign a
label uniformly at random from 0 to 10. Other “good” annotators assign a label
to the i'" image with mean p; and standard deviation o (o is the same for all
images). Your goal is to solve for the most likely image scores and to figure out
which annotators are trying to cheat you. In your write-up, use the following
notation:

e z;; € [0,10]: the score for i'" image from the j** annotator

e m; € {0,1}: whether each j'* annotator is “good” (m; = 1) or “bad”

(m; =0)

e P(zi;lm; =0) = 15: uniform distribution for bad annotators

i \IJ
o P(xi|lm; = 13p:,0) = 5= exp(—3~—5"~): normal distribution for
good annotators
e P(m; =1;3) = j: prior probability for being a good annotator

2.1 Derivation of EM Algorithm (20 pts)

Derive the EM algorithm to solve for each p;, each m;, o, and 3. Show the
major steps of the derivation and make it clear how to compute each variable
in the update step.

2.2 Application to Data (15 pts)

The false scores come
from a uniform distribution

The true scores for each
image have a Gaussian
distribution

Annotators are always
“bad” or always “good”

The “good/bad” label of
each annotator is the
missing data



Missing Data Problems: Object Discovery

You have a collection of images and have extracted
regions from them. Each is represented by a histogram
of “visual words”.

Challenge: Discover frequently occurring object
categories, without pre-trained appearance models.
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Next class

* MRFs and Graph-cut Segmentation

* Think about your final projects (if not done
already)



