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Today’s Class

• Examples of Missing Data Problems
– Detecting outliers (HW 4, problem 2)
– Latent topic models 
– Segmentation (HW 4, problem 3)

• Background
– Maximum Likelihood Estimation
– Probabilistic Inference

• Dealing with “Hidden” Variables
– EM algorithm, Mixture of Gaussians
– Hard EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a 
photograph is attractive.  You collect annotations from 
Mechanical Turk.  Some annotators try to give accurate 
ratings, but others answer randomly.

Challenge: Determine which people to trust and the 
average rating by accurate annotators.

Photo: Jam343 (Flickr)
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Missing Data Problems: Object Discovery

You have a collection of images and have extracted 
regions from them.  Each is represented by a histogram 
of “visual words”.

Challenge: Discover frequently occurring object 
categories, without pre-trained appearance models.

http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf

http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf


Missing Data Problems: Segmentation

You are given an image and want to assign 
foreground/background pixels.

Challenge: Segment the image into figure and 
ground without knowing what the foreground 
looks like in advance.

Foreground

Background



Missing Data Problems: Segmentation
Challenge: Segment the image into figure and ground 
without knowing what the foreground looks like in advance.

Three steps:
1. If we had labels, how could we model the appearance of 

foreground and background?
2. Once we have modeled the fg/bg appearance, how do we 

compute the likelihood that a pixel is foreground?
3. How can we get both labels and appearance models at 

once?

Foreground

Background



Maximum Likelihood Estimation

1. If we had labels, how could we model the appearance 
of foreground and background?

Foreground

Background



Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Example: MLE

>> mu_fg = mean(im(labels))

mu_fg = 0.6012

>> sigma_fg = sqrt(mean((im(labels)-mu_fg).^2))

sigma_fg = 0.1007

>> mu_bg = mean(im(~labels))

mu_bg = 0.4007

>> sigma_bg = sqrt(mean((im(~labels)-mu_bg).^2))

sigma_bg = 0.1007

>> pfg = mean(labels(:));

labelsim

fg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

Parameters used to Generate



Probabilistic Inference

2. Once we have modeled the fg/bg appearance, how 
do we compute the likelihood that a pixel is 
foreground?

Foreground

Background



Probabilistic Inference

Compute the likelihood that a particular 
model generated a sample

component or label

),|( nn xmzp 



Probabilistic Inference

Compute the likelihood that a particular 
model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular 
model generated a sample

component or label
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Probabilistic Inference

Compute the likelihood that a particular 
model generated a sample

component or label
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Example: Inference

>> pfg = 0.5;

>> px_fg = normpdf(im, mu_fg, sigma_fg);

>> px_bg = normpdf(im, mu_bg, sigma_bg);

>> pfg_x = px_fg*pfg ./ (px_fg*pfg + px_bg*(1-pfg));

imfg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

Learned Parameters

p(fg | im)



Dealing with Hidden Variables

3. How can we get both labels and appearance 
parameters at once?

Foreground

Background



Mixture of Gaussians
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Mixture of Gaussians

With enough components, can represent any 
probability density function

– Widely used as general purpose pdf estimator



Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian 
components

– We don’t know which pixels come from which 
components

– We don’t know the parameters for the 
components



Simple solution

1. Initialize parameters

2. Compute the probability of each hidden 
variable given the current parameters

3. Compute new parameters for each model, 
weighted by likelihood of hidden variables

4. Repeat 2-3 until convergence



Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for 
current parameters

3. Estimate new parameters for each model, 
weighted by likelihood 
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Expectation Maximization (EM) Algorithm
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Jensen’s Inequality

Log of sums is intractable

for concave functions f(x)

(so we maximize the lower bound!)



Expectation Maximization (EM) Algorithm

1. E-step: compute 

2. M-step: solve
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Expectation Maximization (EM) Algorithm

1. E-step: compute 

2. M-step: solve
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log of expectation of P(x|z)

expectation of log of P(x|z)



EM for Mixture of Gaussians (by hand)
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1. E-step:

2. M-step: 
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EM for Mixture of Gaussians (by hand)
 

 











 


m

m

m

mn

m

x







2

2

2
exp

2

1
    

m

mmmnnn mzxpxp  ,,|,,,|
22

πσμ

1. E-step:

2. M-step: 

        )(

,|
,||,log|,logE )(

t

xz
pppt 


xzzxzx

z



    )()1( ,||,logargmax tt pp 


xzzx
z



),,,|( )()(2)( ttt

nnnm xmzp πσμ







n

nnm

n

nm

t

m x



1

ˆ )1(  





n

mnnm

n

nm

t

m x
2)1(2 ˆ

1
ˆ 




N

n

nm
t

m









)1(

ˆ



EM Algorithm

• Maximizes a lower bound on the data 
likelihood at each iteration

• Each step increases the data likelihood
– Converges to local maximum

• Common tricks to derivation
– Find terms that sum or integrate to 1

– Lagrange multiplier to deal with constraints



EM Demos

• Mixture of Gaussian demo

• Simple segmentation demo



“Hard EM”

• Same as EM except compute z* as most likely 
values for hidden variables

• K-means is an example

• Advantages
– Simpler: can be applied when cannot derive EM

– Sometimes works better if you want to make hard 
predictions at the end

• But
– Generally, pdf parameters are not as accurate as EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a 
photograph is attractive.  You collect annotations from 
Mechanical Turk.  Some annotators try to give accurate 
ratings, but others answer randomly.

Challenge: Determine which people to trust and the 
average rating by accurate annotators.

Photo: Jam343 (Flickr)

Annotator 

Ratings
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HW 4, problem 2

The “good/bad” label of 

each annotator is the 

missing data 

The true scores for each 

image have a Gaussian 

distribution

The false scores come 

from a uniform distribution

Annotators are always 

“bad” or always “good”



Missing Data Problems: Object Discovery

You have a collection of images and have extracted 
regions from them.  Each is represented by a histogram 
of “visual words”.

Challenge: Discover frequently occurring object 
categories, without pre-trained appearance models.

http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf

http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf


Next class

• MRFs and Graph-cut Segmentation

• Think about your final projects (if not done 
already)


