
Clustering with Application to Fast 
Object Search

Computer Vision

CS 543 / ECE 549 

University of Illinois

Derek Hoiem

03/09/17



This section

• Clustering: grouping together similar points, images, 
feature vectors, etc.

• Segmentation: dividing the image into meaningful 
regions
– Segmentation by clustering: K-means and mean-shift
– Graph approaches to segmentation: graph cuts and 

normalized cuts
– Segmentation from boundaries: watershed

• EM: soft clustering, or parameter estimation with 
hidden data



Today’s class

• Clustering algorithms

– K-means

• Application to fast object search

– Hierarchical clustering

– Spectral clustering



Clustering: group together similar points and 
represent them with a single token

Key Challenges:

1) What makes two points/images/patches similar?

2) How do we compute an overall grouping from 
pairwise similarities? 



Why do we cluster?

• Summarizing data
– Look at large amounts of data
– Patch-based compression or denoising
– Represent a large continuous vector with the cluster number

• Counting
– Histograms of texture, color, SIFT vectors

• Segmentation
– Separate the image into different regions

• Prediction
– Images in the same cluster may have the same labels



How do we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster 

center

• Agglomerative clustering
– Start with each point as its own cluster and iteratively 

merge the closest clusters

• Spectral clustering
– Split the nodes in a graph based on assigned links with 

similarity weights



Clustering for Summarization

Goal: cluster to minimize variance in data 
given clusters

– Preserve information

  
N

j

K

i

jiN ij

21

,

** argmin, xcδc
δc



Whether xj is assigned to ci

Cluster center Data



K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 

select K centers 

2. Assign each 

point to nearest 

center

3. Compute new 

center (mean) 

for each cluster

http://en.wikipedia.org/wiki/K-means_clustering


K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 

select K centers 

2. Assign each 

point to nearest 

center

3. Compute new 

center (mean) 

for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering


K-means

1. Initialize cluster centers: c0 ; t=0

2. Assign each point to the closest center

3. Update cluster centers as the mean of the points

4. Repeat 2-3 until no points are re-assigned (t=t+1)

   
N

j

K

i

j

t

iN

t

ij

211argmin xcδ
δ



  
N

j

K

i

ji

t

N

t

ij

21argmin xcc
c





K-means demos

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

(note: I can’t run this anymore because of security settings  )

http://util.io/k-means

(works mostly but not great)

http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/

(note: I can’t run this anymore because of security settings  )

General

Color clustering

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://util.io/k-means
http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/


Kmeans: Matlab code
function C = kmeans(X, K)

% Initialize cluster centers to be randomly sampled points

[N, d] = size(X);

rp = randperm(N);

C = X(rp(1:K), :);

bestAssignment = zeros(N, 1);

while true

lastAssignment = bestAssignment;

% Assign each point to nearest cluster center

mindist = Inf*ones(N, 1);

for k = 1:K

for n = 1:N

dist = sum((X(n, :)-C(k, :)).^2);

if dist < mindist(n)

mindist(n) = dist;

bestAssignment(n) = k;

end

end

end

% break if assignment is unchanged  

if all(bestAssignment==lastAssignment), break; end;

% Assign each cluster center to mean of points within it

for k = 1:K 

C(k, :) = mean(X(bestAssignment==k, :));

end

end



K-means: design choices

• Initialization

– Randomly select K points as initial cluster center

– Or greedily choose K points to minimize residual

• Distance measures

– Traditionally Euclidean, could be others

• Optimization

– Will converge to a local minimum

– May want to perform multiple restarts



How to choose the number of clusters?

• Minimum Description Length (MDL) principal for 
model comparison 

• Minimize Schwarz Criterion 

– also called Bayes Information Criteria (BIC)

sum squared error



How to choose the number of clusters?

• Validation set

– Try different numbers of clusters and look at 
performance

• When building dictionaries (discussed later), more 
clusters typically work better



How to evaluate clusters?

• Generative

– How well are points reconstructed from the 
clusters?

• Discriminative

– How well do the clusters correspond to labels?

• Purity

– Note: unsupervised clustering does not aim to be 
discriminative



Common similarity/distance measures
• P-norms

– City Block (L1)
– Euclidean (L2)
– L-infinity

• Mahalanobis
– Scaled Euclidean

• Cosine distance

Here xi is the 

distance 

between 

corresponding 

elements of 
vectors



Conclusions: K-means

Good
• Finds cluster centers that minimize conditional variance (good 

representation of data)

• Simple to implement, widespread application

Bad
• Prone to local minima

• Need to choose K

• All clusters have the same parameters (e.g., distance measure 
is non-adaptive)

• Can be slow: each iteration is O(KNd) for N d-dimensional 
points



K-medoids

• Just like K-means except

– Represent the cluster with one of its members, 
rather than the mean of its members

– Choose the member (data point) that minimizes 
cluster dissimilarity

• Applicable when a mean is not meaningful

– E.g., clustering values of hue or using L-infinity 
similarity



How to quickly find images in a large database 
that match a given image region?

Application of Clustering



Simple idea

See how many SIFT 
keypoints are close to 
SIFT keypoints in each 
other image

Lots of 

Matches

Few or No 

Matches

But this will be really, really slow!



Key idea 1: “Visual Words”

• Cluster the keypoint descriptors

• Assign each descriptor to a cluster number

– What does this buy us?

– Each descriptor was 128 dimensional floating 
point, now is 1 integer (easy to match!)

– Is there a catch?

• Need a lot of clusters (e.g., 1 million) if we want points 
in the same cluster to be very similar

• Points that really are similar might end up in different 
clusters



Key idea 1: “Visual Words”

• Cluster the keypoint descriptors

• Assign each descriptor to a cluster number

• Represent an image region with a count of these 
“visual words”



Key idea 1: “Visual Words”

• Cluster the keypoint descriptors

• Assign each descriptor to a cluster number

• Represent an image region with a count of these 
“visual words”

• An image is a good match if it has a lot of the same 
visual words as the query region 



Slide from Kevin Shih



Naïve matching is still too slow

• Imagine matching 1,000,000 images, each 
with 1,000 keypoints



Key Idea 2: Inverse document file



Key Idea 2: Inverse document file

• Rank database images based on tf-idf measure.

tf-idf: Term Frequency – Inverse Document Frequency

# words in document

# times word 

appears in document

#  documents

#  documents that 

contain the word



Fast visual search

“Scalable Recognition with a Vocabulary Tree”, Nister and Stewenius, CVPR 2006.

“Video Google”, Sivic and Zisserman, ICCV 2003



Slide

110,000,000

Images in

5.8 Seconds

This slide and following by David Nister













































Performance



More words is better Improves

Retrieval

Improves

Speed

Branch factor



Higher branch factor works better 
(but slower)



Application: Google Goggles

http://www.google.com/mobile/goggles/#text

http://www.google.com/mobile/goggles/


Can we be more accurate?

So far, we treat each image as containing a 
“bag of words”, with no spatial information

a
f

z

e

e

a
f

ee

h

h
Which 

matches 

better?



Can we be more accurate?

So far, we treat each image as containing a 
“bag of words”, with no spatial information

Real objects have consistent geometry



Final key idea: geometric verification

RANSAC for affine transform

a
f

z

e

e
z

a
f

z

e

e
z

Affine 

Transform

Randomly choose 3 

matching pairs

Estimate 

transformation

Predict remaining 

points and count 

“inliers”

Repeat N times:



Video Google System

1. Collect all words within 
query region

2. Inverted file index to find 
relevant frames

3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/research/vgoogl
e/index.html

K. Grauman, B. Leibe

Query 

region

R
e
trie

ve
d

 fra
m

e
s

http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html


Agglomerative clustering



Agglomerative clustering



Agglomerative clustering



Agglomerative clustering



Agglomerative clustering



Agglomerative clustering

How to define cluster similarity?
- Average distance between points, maximum 

distance, minimum distance

- Distance between means or medoids

How many clusters?
- Clustering creates a dendrogram (a tree)

- Threshold based on max number of clusters 
or based on distance between merges

d
is

ta
n

c
e



Conclusions: Agglomerative Clustering

Good
• Simple to implement, widespread application
• Clusters have adaptive shapes
• Provides a hierarchy of clusters

Bad
• May have imbalanced clusters
• Still have to choose number of clusters or 

threshold
• Need to use an “ultrametric” to get a meaningful 

hierarchy



Spectral clustering

Group points based on links in a graph

A
B



Spectral Clustering

Source: Shih



Cuts in a graph

A
B

Normalized Cut

• the raw cut cost encouraging splitting out just one node

• fix by normalizing for size of segments

• volume(A) = sum of costs of all edges that touch A

Source: Seitz



Normalized cuts for segmentation



Visual PageRank

• Determining importance by random walk
– What’s the probability that you will randomly walk to 

a given node?
• Create adjacency matrix based on visual similarity

• Edge weights determine probability of transition

• Rank image search results by stationary distribution

Jing Baluja 2008



Which algorithm to use?

• Quantization/Summarization: K-means

– Aims to preserve variance of original data

– Can easily assign new point to a cluster

Quantization for 

computing histograms

Summary of 20,000 photos of Rome using 

“greedy k-means”

http://grail.cs.washington.edu/projects/canonview/

http://grail.cs.washington.edu/projects/canonview/


Which algorithm to use?

• Image segmentation: agglomerative clustering

– More flexible with distance measures (e.g., can be 
based on boundary prediction)

– Adapts better to specific data

– Hierarchy can be useful

http://www.cs.berkeley.edu/~arbelaez/UCM.html

http://www.cs.berkeley.edu/~arbelaez/UCM.html


Which algorithm to use?

• Image segmentation: spectral clustering

– Can provide more regular regions

– Spectral methods also used to propagate global 
cues (e.g., Global pB)



Things to remember

• K-means useful for summarization, 
building dictionaries of patches, 
general clustering
– Fast object retrieval using visual words 

and inverse index table

• Agglomerative clustering useful for 
segmentation, general clustering

• Spectral clustering useful for 
determining relevance, 
summarization, segmentation



Next class

• Gestalt grouping

• Image segmentation

– Mean-shift segmentation

– Watershed segmentation


