
Epipolar Geometry and
Stereo Vision

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

03/02/17

Many slides adapted from Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from Hartley & Zisserman

Last class: Image Stitching

• Two images with rotation/zoom but no translation

f f'

.

x

x'

X

This class: Two-View Geometry

• Epipolar geometry

– Relates cameras from two positions

• Stereo depth estimation

– Recover depth from two images

Depth from Stereo

• Goal: recover depth by finding image coordinate x’
that corresponds to x

f

x x’

Baseline

B

z

C C’

X

f

X

x

x'

Depth from Stereo

• Goal: recover depth by finding image coordinate x’ that
corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'

Correspondence Problem

• We have two images taken from cameras with different
intrinsic and extrinsic parameters

• How do we match a point in the first image to a point in the
second? How can we constrain our search?

x ?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l’.

Potential matches for x’ have to lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’

• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes

= projections of the other camera center

• Baseline – line connecting the two camera centers

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

What would the epipolar lines look like if the
camera moves directly forward?

e

e’

Example: Forward motion

Epipole has same coordinates in both

images.

Points move along lines radiating from e:

“Focus of expansion”

X

x x’

Epipolar constraint: Calibrated case

Given the intrinsic parameters of the cameras:
1. Convert to normalized coordinates by pre-multiplying all points with the

inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

XxKx 1  ˆ XxKx 1  ˆ
Homogeneous 2d point

(3D ray towards X) 2D pixel coordinate

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates

X

x x’

Epipolar constraint: Calibrated case

Given the intrinsic parameters of the cameras:
1. Convert to normalized coordinates by pre-multiplying all points with the

inverse of the calibration matrix; set first camera’s coordinate system to
world coordinates

2. Define some R and t that relate X to X’ as below

txRx  ˆˆ
XxKx 1  ˆ XxKx 1  ˆ

for some scale factor

Epipolar constraint: Calibrated case

x x’

X

t

XxKx 1  ˆ XxKx 1  ˆ

txRx  ˆˆ 0)]ˆ([ˆ  xRtx

(because 𝑥, 𝑅 𝑥 ′, and 𝑡 are co-planar)

 𝑥 ′ 𝑥

Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ  xRtx   RtExExT

 with0ˆˆ

X

x x’

X

Properties of the Essential matrix

• E x’ is the epipolar line associated with x’ (l = E x’)
• ETx is the epipolar line associated with x (l’ = ETx)
• E e’ = 0 and ETe = 0
• E is singular (rank two)
• E has five degrees of freedom

– (3 for R, 2 for t because it’s up to a scale)

0)]ˆ([ˆ  xRtx

Drop ̂ below to simplify notation

  RtExExT

 with0ˆˆ

x x’

Skew-

symmetric

matrix

The Fundamental Matrix

Fundamental Matrix

(Faugeras and Luong, 1992)

0ˆˆ xExT

1with0   KEKFxFx TT

Without knowing K and K’, we can define a similar

relation using unknown normalized coordinates

xKx 1ˆ

xKx 1  ˆ

Properties of the Fundamental matrix

1with0   KEKFxFx TT

• F x’ is the epipolar line associated with x’ (l = F x’)

• FTx is the epipolar line associated with x (l’ = FTx)
• F e’ = 0 and FTe = 0

• F is singular (rank two): det(F)=0

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’

Estimating the Fundamental Matrix

• 8-point algorithm
– Least squares solution using SVD on equations from 8 pairs of

correspondences
– Enforce det(F)=0 constraint using SVD on F

• 7-point algorithm
– Use least squares to solve for null space (two vectors) using SVD

and 7 pairs of correspondences
– Solve for linear combination of null space vectors that satisfies

det(F)=0

• Minimize reprojection error
– Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

0xx FT

𝑢𝑢′𝑓11 + 𝑢𝑣 ′𝑓12 + 𝑢𝑓13 + 𝑣𝑢′𝑓21 + 𝑣𝑣 ′𝑓22 + 𝑣𝑓23 + 𝑢′𝑓31 + 𝑣 ′𝑓32 + 𝑓33 = 0

A𝒇 =
𝑢1𝑢1′ 𝑢1𝑣1′ 𝑢1 𝑣1𝑢1′ 𝑣1𝑣1′ 𝑣1 𝑢1′ 𝑣1′ 1

⋮
𝑢𝑛𝑢𝑣

′
⋮

𝑢𝑛𝑣𝑛′
⋮

𝑢𝑛

⋮
𝑣𝑛𝑢𝑛′

⋮
𝑣𝑛𝑣𝑛′

⋮
𝑣𝑛

⋮
𝑢𝑛′

⋮
𝑣𝑛′

⋮
1

𝑓11
𝑓12
𝑓13
𝑓21
⋮

𝑓33

=0

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Need to enforce singularity constraint

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab:
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Matlab:
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V’;

8-point algorithm

1. Solve a system of homogeneous linear equations
a. Write down the system of equations
b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:
• Use RANSAC to deal with outliers (sample 8 points)

– How to test for outliers?

• Solve in normalized coordinates
– mean=0
– standard deviation ~= (1,1,1)
– just like with estimating the homography for stitching

Comparison of homography estimation and the
8-point algorithm

Homography (No Translation) Fundamental Matrix (Translation)

Assume we have matched points x x’ with outliers

Homography (No Translation) Fundamental Matrix (Translation)

Comparison of homography estimation and the
8-point algorithm

Assume we have matched points x x’ with outliers

• Correspondence Relation

1. Normalize image
coordinates

2. RANSAC with 4 points
– Solution via SVD

3. De-normalize:

0HxxHxx  ''

Txx ~ xTx ~

THTH
~1

Comparison of homography estimation and the
8-point algorithm

Homography (No Translation) Fundamental Matrix (Translation)

• Correspondence Relation

1. Normalize image
coordinates

2. RANSAC with 8 points
– Initial solution via SVD

– Enforce by SVD

3. De-normalize:

• Correspondence Relation

1. Normalize image
coordinates

2. RANSAC with 4 points
– Solution via SVD

3. De-normalize:

Assume we have matched points x x’ with outliers

0HxxHxx  ''

Txx ~ xTx ~

THTH
~1

Txx ~ xTx ~

TFTF
~T

  0
~

det F

0 Fxx
T

7-point algorithm

Faster (need fewer points) and could be more robust (fewer

points), but also need to check for degenerate cases

“Gold standard” algorithm

• Use 8-point algorithm to get initial value of F

• Use F to solve for P and P’ (discussed later)

• Jointly solve for 3d points X and F that
minimize the squared re-projection error

X

x x'

See Algorithm 11.2 and Algorithm 11.3 in HZ (pages 284-285) for details

Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

We can get projection matrices P and P’ up
to a projective ambiguity

Code:
function P = vgg_P_from_F(F)

[U,S,V] = svd(F);

e = U(:,3);

P = [-vgg_contreps(e)*F e];

 0IP |   e|FeP   0 Fe
T

See HZ p. 255-256

K’*translationK’*rotation

If we know the intrinsic matrices (K and K’), we can resolve the ambiguity

http://www.robots.ox.ac.uk/~vgg/hzbook/code/

Let’s recap…

• Fundamental matrix song

http://danielwedge.com/fmatrix/

Moving on to stereo…

Fuse a calibrated binocular stereo pair to
produce a depth image

image 1 image 2

Dense depth map

Many of these slides adapted from

Steve Seitz and Lana Lazebnik

Basic stereo matching algorithm

• For each pixel in the first image
– Find corresponding epipolar line in the right image
– Search along epipolar line and pick the best match
– Triangulate the matches to get depth information

• Simplest case: epipolar lines are scanlines
– When does this happen?

Simplest Case: Parallel images
• Image planes of cameras are

parallel to each other and to
the baseline

• Camera centers are at same
height

• Focal lengths are the same

Simplest Case: Parallel images
• Image planes of cameras are

parallel to each other and to
the baseline

• Camera centers are at same
height

• Focal lengths are the same

• Then, epipolar lines fall along
the horizontal scan lines of the
images

Simplest Case: Parallel images

RtExExT  ,0



















00

00

000

T

TRtE

Epipolar constraint:

    vTTv

vT

Tvuv

u

T

Tvu 























































 0

0

10

100

00

000

1

R = I t = (T, 0, 0)

The y-coordinates of corresponding points are the same

t

x

x’

Depth from disparity

f

x’

Baseline

B

z

O O’

X

f

z

fB
xxdisparity




Disparity is inversely proportional to depth.

xz

f

OO

xx





Stereo image rectification

Stereo image rectification

• Reproject image planes
onto a common plane
parallel to the line
between camera centers

• Pixel motion is horizontal
after this transformation

• Two homographies (3x3
transform), one for each
input image reprojection

 C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. IEEE Conf. Computer Vision
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example

Basic stereo matching algorithm

• If necessary, rectify the two stereo images to transform
epipolar lines into scanlines

• For each pixel x in the first image
– Find corresponding epipolar scanline in the right image
– Search the scanline and pick the best match x’
– Compute disparity x-x’ and set depth(x) = fB/(x-x’)

Matching cost

disparity

Left Right

scanline

Correspondence search

• Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

• Matching cost: SSD or normalized correlation

Left Right

scanline

Correspondence search

SSD

Left Right

scanline

Correspondence search

Norm. corr

Effect of window size

W = 3 W = 20

• Smaller window
+ More detail

– More noise

• Larger window
+ Smoother disparity maps

– Less detail

– Fails near boundaries

Failures of correspondence search

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Window-based matching Ground truth

Data

How can we improve window-based
matching?

• So far, matches are independent for each
point

• What constraints or priors can we add?

Stereo constraints/priors

• Uniqueness
– For any point in one image, there should be at

most one matching point in the other image

Stereo constraints/priors
• Uniqueness

– For any point in one image, there should be at most
one matching point in the other image

• Ordering
– Corresponding points should be in the same order in

both views

Stereo constraints/priors
• Uniqueness

– For any point in one image, there should be at most
one matching point in the other image

• Ordering
– Corresponding points should be in the same order in

both views

Ordering constraint doesn’t hold

Priors and constraints
• Uniqueness

– For any point in one image, there should be at most
one matching point in the other image

• Ordering
– Corresponding points should be in the same order in

both views

• Smoothness
– We expect disparity values to usually change slowly

Stereo matching as energy minimization

I1
I2 D

• Energy functions of this form can be minimized
using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization
via Graph Cuts, PAMI 2001

W1(i) W2(i+D(i)) D(i)

)(),;(smooth21data DEIIDEE 

2

,neighbors

smooth)()( 
ji

jDiDE 
2

21data))(()( 
i

iDiWiWE

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Many of these constraints can be encoded in an energy
function and solved using graph cuts

Graph cuts Ground truth

For the latest and greatest: http://www.middlebury.edu/stereo/

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy

Minimization via Graph Cuts, PAMI 2001

Before

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Summary so far…

• Epipolar geometry
– Epipoles are intersection of baseline with image planes
– Matching point in second image is on a line passing through its

epipole
– Fundamental matrix maps from a point in one image to a line

(its epipolar line) in the other
– Can solve for F given corresponding points (e.g., interest points)
– Can recover canonical camera matrices from F (with projective

ambiguity)

• Stereo depth estimation
– Estimate disparity by finding corresponding points along

scanlines
– Depth is inverse to disparity

Incremental Structure from Motion

Goal: Solve for camera poses and 3D points in scene

Incremental SfM

1. Compute features

2. Match images

3. Reconstruct
a) Solve for pose and 3D points in two cameras

b) Solve for pose of additional camera(s) that observe
reconstructed 3D points

c) Solve for new 3D points that are viewed in at least
two cameras

d) Bundle adjust to minimize reprojection error

Incremental SFM: detect features

• Feature types: SIFT, ORB, Hessian-Laplacian, …

…

Each circle represents a set of detected features

im 1 im 2 im 3 im n

Incremental SFM: match features and images

• Match feature descriptors via approximate nearest neighbor
• Solve for F for each image pair and find inlier feature correspondences
• Create tracks graph
• Speed tricks

– Match only 100 largest features first
– Use a bag-of-words method to find candidate matches
– Perform initial filtering based on GPS coordinates, if available
– Use known matches to predict new ones

…

im 1 im 2 im 3 im n…
tracks graph

Incremental SFM: reconstruction

im 1 im 2 im 3 im n…

tracks graph

Next class: structure from motion

