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Today’s class

• Fitting/Alignment (continued)

• Object instance recognition

• Example of alignment-based category 
recognition



Methods discussed last class

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of sampled points s

– Minimum number needed to fit the model

• Number of samples N
– Choose N so that, with probability p, at least one random sample is free 

from outliers (e.g. p=0.99) (outlier ratio: e )

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys



RANSAC conclusions
Good
• Robust to outliers
• Applicable for larger number of objective function parameters than Hough 

transform
• Optimization parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and number of 

parameters 
• Sensitive to noise (with high noise might not be able to estimate 

parameters from any sample)
• Not as good for getting multiple fits (though one solution is to remove 

inliers after each fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



Line Fitting Demo (Part 2)



Alignment

• Alignment: find parameters of model that maps 
one set of points to another

• Typically want to solve for a global transformation 
that accounts for most true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 30-50%) 

– Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f + )

y’ = r sin (f + )

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices
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Basic 2D transformations

TranslateRotate

ShearScale
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Affine is any combination of 

translation, scale, rotation, 

shear



Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Projective Transformations
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• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



2D image transformations (reference table)



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or 
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values

2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers
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B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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What if you want to align but have no prior 
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain 

scans or contours

Robotics: match point clouds



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets 
of points (from {Set 1} to {Set 2})

1. Initialize transformation (e.g., compute difference in means 
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters 
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence



Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding 
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q



ICP: Good and Bad

• Good
– Very simple

– Does not require correspondences

• Bad
– May require dense points (so that there are good 

matches across sets)

– Subject to local minima from initialization, though 
there are methods to address this (see below)
http://www.cv-
foundation.org/openaccess/content_iccv_2013/paper
s/Yang_Go-ICP_Solving_3D_2013_ICCV_paper.pdf

Fig from paper linked below

http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_Go-ICP_Solving_3D_2013_ICCV_paper.pdf


Algorithm Summary
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences 



Object Instance Recognition

1. Match keypoints to 
object model

2. Solve for affine 
transformation 
parameters

3. Score by inliers and 
choose solutions with 
score above threshold

A1

A2

A3

Affine 
Parameters

Choose hypothesis with max 

score above threshold

# Inliers

Matched 

keypoints

This 

Class



Overview of Keypoint Matching

K. Grauman, B. Leibe
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Finding the objects (overview)

1. Match interest points from input image to database image

2. Matched points vote for rough position/orientation/scale of 
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least 
squares with outlier check

5. Report object if there are at least T matched points

Input 

Image Stored 

Image



Matching Keypoints

• Want to match keypoints between:

1. Query image

2. Stored image containing the object

• Given descriptor x0, find two nearest 
neighbors x1, x2 with distances d1, d2 

• x1 matches x0 if d1/d2 < 0.7

– This gets rid of 90% false matches, 5% of true 
matches in Lowe’s study



Affine Object Model

• Accounts for 3D rotation of a surface under 
orthographic projection



Affine Object Model

What is the minimum number of matched points that we need?
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Finding the objects (in detail)
1. Match interest points from input image to database image

2. Get location/scale/orientation using Hough voting

– In training, each point has known position/scale/orientation 
wrt whole object

– Matched points vote for the position, scale, and orientation 
of the entire object

– Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification

– For each bin with at least 3 keypoints

– Iterate between least squares fit and checking for inliers and 
outliers

4. Report object if > T inliers (T is typically 3, can be computed to 
match some probabilistic threshold)



Examples of recognized objects



View interpolation

• Training
– Given images of different 

viewpoints
– Cluster similar viewpoints 

using feature matches
– Link features in adjacent 

views

• Recognition
– Feature matches may be

spread over several 
training viewpoints

 Use the known links to 
“transfer votes” to other 
viewpoints

Slide credit: David Lowe

[Lowe01]



Applications

• Sony Aibo
(Evolution Robotics)

• SIFT usage
– Recognize 

docking station
– Communicate 

with visual cards

• Other uses
– Place recognition
– Loop closure in SLAM

K. Grauman, B. Leibe 46
Slide credit: David Lowe



Location Recognition

Slide credit: David Lowe

Training

[Lowe04]



Other ideas worth being aware of

• Thin-plate splines: combines global affine 
warp with smooth local deformation

• Robust non-rigid point matching: 
http://noodle.med.yale.edu/~chui/tps-rpm.html
(includes code, demo, paper)

http://profs.etsmtl.ca/hlombaert/thinplates/
http://noodle.med.yale.edu/~chui/tps-rpm.html


Key concepts

• Alignment
– Hough transform
– RANSAC
– ICP

• Object instance recognition
– Find keypoints, compute 

descriptors
– Match descriptors
– Vote for / fit affine parameters
– Return object if # inliers > T


