
Alignment and Object
Instance Recognition

Computer Vision

CS 543 / ECE 549

University of Illinois

Derek Hoiem

02/16/17

Today’s class

• Fitting/Alignment (continued)

• Object instance recognition

• Example of alignment-based category
recognition

Methods discussed last class

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of sampled points s

– Minimum number needed to fit the model

• Number of samples N
– Choose N so that, with probability p, at least one random sample is free

from outliers (e.g. p=0.99) (outlier ratio: e)

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys

RANSAC conclusions
Good
• Robust to outliers
• Applicable for larger number of objective function parameters than Hough

transform
• Optimization parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers and number of

parameters
• Sensitive to noise (with high noise might not be able to estimate

parameters from any sample)
• Not as good for getting multiple fits (though one solution is to remove

inliers after each fit and repeat)

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Line Fitting Demo (Part 2)

Alignment

• Alignment: find parameters of model that maps
one set of points to another

• Typically want to solve for a global transformation
that accounts for most true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 30-50%)

– Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– Is the same for any point p
– can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)



















y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx





'

'



























y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f + )

y’ = r sin (f + )

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

   

    














 










y

x

y

x





cossin

sincos

'

'

T
RR 1

R

Basic 2D transformations

TranslateRotate

ShearScale



























y

x

y

x

y

x

1

1

'

'



































y

x

y

x

cossin

sincos

'

'



























y

x

s

s

y

x

y

x

0

0

'

'







































1
10

01
y

x

t

t

y

x

y

x







































1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation,

shear

Affine Transformations

Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition







































1

y

x

fed

cba

y

x



















































11001

'

'

y

x

fed

cba

y

x

or

Projective Transformations












































w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)

2D image transformations (reference table)

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or

eigenvalue decomposition 




























































A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

What if you want to align but have no prior
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain

scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points (from {Set 1} to {Set 2})

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence




























y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence

Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 find corresponding
match(i) = argmin

𝑗
𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q

ICP: Good and Bad

• Good
– Very simple

– Does not require correspondences

• Bad
– May require dense points (so that there are good

matches across sets)

– Subject to local minima from initialization, though
there are methods to address this (see below)
http://www.cv-
foundation.org/openaccess/content_iccv_2013/paper
s/Yang_Go-ICP_Solving_3D_2013_ICCV_paper.pdf

Fig from paper linked below

http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_Go-ICP_Solving_3D_2013_ICCV_paper.pdf

Algorithm Summary
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences

Object Instance Recognition

1. Match keypoints to
object model

2. Solve for affine
transformation
parameters

3. Score by inliers and
choose solutions with
score above threshold

A1

A2

A3

Affine
Parameters

Choose hypothesis with max

score above threshold

Inliers

Matched

keypoints

This

Class

Overview of Keypoint Matching

K. Grauman, B. Leibe

N
p

ix
e

ls

N pixels

Af

e.g. color

Bf

e.g. color

A1

A2 A3

Tffd BA ),(

1. Find a set of

distinctive key-

points

3. Extract and

normalize the

region content

2. Define a region

around each

keypoint

4. Compute a local

descriptor from the

normalized region

5. Match local

descriptors

Finding the objects (overview)

1. Match interest points from input image to database image

2. Matched points vote for rough position/orientation/scale of
object

3. Find position/orientation/scales that have at least three votes

4. Compute affine registration and matches using iterative least
squares with outlier check

5. Report object if there are at least T matched points

Input

Image Stored

Image

Matching Keypoints

• Want to match keypoints between:

1. Query image

2. Stored image containing the object

• Given descriptor x0, find two nearest
neighbors x1, x2 with distances d1, d2

• x1 matches x0 if d1/d2 < 0.7

– This gets rid of 90% false matches, 5% of true
matches in Lowe’s study

Affine Object Model

• Accounts for 3D rotation of a surface under
orthographic projection

Affine Object Model

What is the minimum number of matched points that we need?







































1

y

x

fed

cba

y

x






































































2

1

1

22

11

11

.

0001

1000

0001

x

y

x

f

e

d

c

b

a

yx

yx

yx

Finding the objects (in detail)
1. Match interest points from input image to database image

2. Get location/scale/orientation using Hough voting

– In training, each point has known position/scale/orientation
wrt whole object

– Matched points vote for the position, scale, and orientation
of the entire object

– Bins for x, y, scale, orientation
• Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)

• Vote for two closest bin centers in each direction (16 votes total)

3. Geometric verification

– For each bin with at least 3 keypoints

– Iterate between least squares fit and checking for inliers and
outliers

4. Report object if > T inliers (T is typically 3, can be computed to
match some probabilistic threshold)

Examples of recognized objects

View interpolation

• Training
– Given images of different

viewpoints
– Cluster similar viewpoints

using feature matches
– Link features in adjacent

views

• Recognition
– Feature matches may be

spread over several
training viewpoints

 Use the known links to
“transfer votes” to other
viewpoints

Slide credit: David Lowe

[Lowe01]

Applications

• Sony Aibo
(Evolution Robotics)

• SIFT usage
– Recognize

docking station
– Communicate

with visual cards

• Other uses
– Place recognition
– Loop closure in SLAM

K. Grauman, B. Leibe 46
Slide credit: David Lowe

Location Recognition

Slide credit: David Lowe

Training

[Lowe04]

Other ideas worth being aware of

• Thin-plate splines: combines global affine
warp with smooth local deformation

• Robust non-rigid point matching:
http://noodle.med.yale.edu/~chui/tps-rpm.html
(includes code, demo, paper)

http://profs.etsmtl.ca/hlombaert/thinplates/
http://noodle.med.yale.edu/~chui/tps-rpm.html

Key concepts

• Alignment
– Hough transform
– RANSAC
– ICP

• Object instance recognition
– Find keypoints, compute

descriptors
– Match descriptors
– Vote for / fit affine parameters
– Return object if # inliers > T

