02/16/17

Alignment and Object Instance Recognition

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

Today's class

• Fitting/Alignment (continued)

• Object instance recognition

• Example of alignment-based category recognition

Methods discussed last class

- Global optimization / Search for parameters
	- **Least squares fit**
	- **Robust least squares**
	- Iterative closest point (ICP)

- Hypothesize and test
	- **Generalized Hough transform**
	- RANSAC

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Line fitting example

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

 $N_I = 6$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of sampled points *s*
	- Minimum number needed to fit the model
- Number of samples *N*
	- Choose *N* so that, with probability *p*, at least one random sample is free from outliers (e.g. *p*=0.99) (outlier ratio: *e*)
- Distance threshold δ
	- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
	- $-$ Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²

$$
N = \log(1-p)/\log(1-(1-e)^s)
$$

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Sensitive to noise (with high noise might not be able to estimate parameters from any sample)
- Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Line Fitting Demo (Part 2)

-
-
-
- -
	-
	-

Alignment

• Alignment: find parameters of model that maps one set of points to another

- Typically want to solve for a global transformation that accounts for most true correspondences
- Difficulties
	- Noise (typically 1-3 pixels)
	- Outliers (often 30-50%)
	- Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine: $p' = T(p)$

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

 $p' = Tp$

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}
$$

Common transformations

original

Transformed

translation rotation aspect

affine **perspective**

Slide credit (next few slides): A. Efros and/or S. Seitz

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

• Scaling operation:

$$
x'=ax
$$

$$
y'=by
$$

• Or, in matrix form: \rfloor $\overline{}$ \vert $\overline{\mathsf{L}}$ \mathbf{r} $\overline{}$ $\overline{}$ \vert $\overline{\mathsf{L}}$ \mathbf{r} $\Big| =$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \mathcal{L} *y x b a y x* 0 0 ''

scaling matrix S

2-D Rotation

2-D Rotation

Polar coordinates… $x = r \cos(\phi)$ $y = r \sin(\phi)$ $x' = r \cos (\phi + \theta)$ $y' = r \sin (\phi + \theta)$

Trig Identity… $x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$ $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute… $x' = x \cos(\theta) - y \sin(\theta)$
 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

Even though sin(θ) and cos(θ) are nonlinear functions of θ ,

- *x' is a linear combination of x and y*
- *y' is a linear combination of x and y*

What is the inverse transformation?

- Rotation by $-\theta$
- $-$ For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

Basic 2D transformations

 $\vert \hspace{.06cm} \vert$ $\mathbf{1}$ and $\mathbf{1}$ $\mathbf{1}$ and $\mathbf{1}$ $\lfloor y \rfloor$ $\vert x \vert$ \parallel , \parallel $\perp y$ $\lceil x \rceil$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \alpha_y & 1 \end{bmatrix}$ $\begin{bmatrix} y \end{bmatrix}$ $\begin{bmatrix} 1 & \alpha_x \end{bmatrix}$ $= \begin{vmatrix} - & & x \\ \alpha & & 1 \end{vmatrix}$ $\begin{bmatrix} \alpha_y & 1 \end{bmatrix}$ $\begin{array}{|c|c|c|} \hline \end{array}$ $\begin{array}{|c|c|c|} \hline 1 & \alpha_x \end{array}$ $\vert \cdot \vert = \vert \cdot \vert$ 1 $\begin{bmatrix} y' \end{bmatrix} \begin{bmatrix} \alpha_y & 1 \end{bmatrix}$ $\begin{array}{|c|c|c|c|c|}\hline x' & 1 & \alpha \ \hline \end{array}$ *y x*] y' | α_{y} 1 || x' | 1 α_x | *y* \perp \perp *y* $\boldsymbol{x} \parallel \boldsymbol{\lambda}$ $1 \parallel y \parallel$ 1 α_{r} $\lceil x \rceil$ '' α $\vert \vert \nu \vert$ α \parallel x |

Communication $\vert x \vert$ $\parallel y \parallel$ $\frac{1}{2}$ \parallel \parallel tran $\|\|$ Affi $\begin{array}{ccc} \n d & a & f \n\end{array}$ $\begin{bmatrix} d & e & f \end{bmatrix}$ $\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix}$ $\int d e f$ $\begin{array}{|c|c|c|c|c|} \hline \ \end{array}$ a b c $\vert v' \vert = \vert d \vert$ $\lfloor y' \rfloor$ $\lfloor d \mid e \rfloor$ x' | $a \quad b$ $\mathcal{C} \setminus \mathcal{C}$ $\int a$ *x*] *d e* $f \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 $a \quad b \quad c \parallel$ \parallel \qquad Affin y' | *d e f* x' $\begin{bmatrix} a & b & c \end{bmatrix}$ Affine

 \perp and and any \perp $\lfloor 1 \rfloor$ shee $\left| \begin{array}{ccc} 1 & \text{max} \ 1 & \text{max} \end{array} \right|$ y | \blacksquare \blacksquare \blacksquare Affine is any combination of translation, scale, rotation, shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- **Translations**

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

or

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

 $\overline{}$ $\overline{}$ $\overline{}$ \parallel $\overline{}$ \lfloor $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ l $\overline{\mathsf{L}}$ \mathbf{r} $=$ $\overline{}$ $\overline{}$ \rfloor $\overline{}$ $\overline{}$ l $\overline{\mathsf{L}}$ \mathbf{r} *w y x g h i d e f a b c w y x* '''

2D image transformations (reference table)

Given matched points in {A} and {B}, estimate the translation of the object

$$
\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}
$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
	- a) Compute derivative
	- b) Compute solution
- 3. Computational solution
	- a) Write in form Ax=b
	- b) Solve using pseudo-inverse or eigenvalue decomposition

Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

Problem: no initial guesses for correspondence

$$
\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}
$$

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points (from {Set 1} to {Set 2})

- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2. Assign** each point in {Set 1} to its nearest neighbor in {Set 2}
- **3. Estimate** transformation parameters
	- e.g., least squares or robust least squares
- **4. Transform** the points in {Set 1} using estimated parameters
- **5. Repeat** steps 2-4 until change is very small

Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

Example: aligning boundaries

- 1. Extract edge pixels p_1 .. p_n and q_1 .. q_m
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding $match(i) = argmin dist(p_i, q_j)$ j
- 4. Compute transformation *T* based on matches
- 5. Warp points *p* according to *T*
- 6. Repeat 3-5 until convergence

ICP: Good and Bad

- Good
	- Very simple
	- Does not require correspondences

Figure 5. Visual comparison of registration results. Left: initial pose. Middle: results by ICP. Right: results by our Go-ICP. Fig from paper linked below

- Bad
	- May require dense points (so that there are good matches across sets)
	- Subject to local minima from initialization, though there are methods to address this (see below) http://www.cv[foundation.org/openaccess/content_iccv_2013/paper](http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Yang_Go-ICP_Solving_3D_2013_ICCV_paper.pdf) s/Yang Go-ICP Solving 3D 2013 ICCV paper.pdf

Algorithm Summary

- Least Squares Fit
	- closed form solution
	- robust to noise
	- not robust to outliers
- Robust Least Squares
	- improves robustness to noise
	- requires iterative optimization
- Hough transform
	- robust to noise and outliers
	- can fit multiple models
	- only works for a few parameters (1-4 typically)
- RANSAC
	- robust to noise and outliers
	- works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
	- For local alignment only: does not require initial correspondences

Object Instance Recognition

- 1. Match keypoints to object model
- 2. Solve for affine transformation parameters
- 3. Score by inliers and choose solutions with score above threshold

Overview of Keypoint Matching

- **1. Find a set of distinctive keypoints**
- **2. Define a region around each keypoint**
- **3. Extract and normalize the region content**
- **4. Compute a local descriptor from the normalized region**

5. Match local descriptors

Finding the objects (overview)

1. Match interest points from input image to database image

- 2. Matched points vote for rough position/orientation/scale of object
- 3. Find position/orientation/scales that have at least three votes
- 4. Compute affine registration and matches using iterative least squares with outlier check
- 5. Report object if there are at least T matched points

Matching Keypoints

- Want to match keypoints between:
	- 1. Query image
	- 2. Stored image containing the object
- Given descriptor x_0 , find two nearest neighbors x_1 , x_2 with distances d_1 , d_2
- x_1 matches x_0 if $d_1/d_2 < 0.7$ – This gets rid of 90% false matches, 5% of true matches in Lowe's study

Affine Object Model

• Accounts for 3D rotation of a surface under orthographic projection

Affine Object Model

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
$$

$$
\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ \vdots \end{bmatrix}
$$

$$
x = [A^{T}A]^{-1}A^{T}b
$$

What is the minimum number of matched points that we need?

Finding the objects (in detail)

- 1. Match interest points from input image to database image
- 2. Get location/scale/orientation using Hough voting
	- In training, each point has known position/scale/orientation wrt whole object
	- Matched points vote for the position, scale, and orientation of the entire object
	- Bins for x, y, scale, orientation
		- Wide bins (0.25 object length in position, 2x scale, 30 degrees orientation)
		- Vote for two closest bin centers in each direction (16 votes total)
- 3. Geometric verification
	- For each bin with at least 3 keypoints
	- Iterate between least squares fit and checking for inliers and outliers
- 4. Report object if > T inliers (T is typically 3, can be computed to match some probabilistic threshold)

Examples of recognized objects

View interpolation

- **Training**
	- Given images of different viewpoints
	- Cluster similar viewpoints using feature matches
	- Link features in adjacent views

- **Recognition**
	- Feature matches may be spread over several training viewpoints
	- \Rightarrow Use the known links to "transfer votes" to other viewpoints

[Lowe01]

Slide credit: David Lowe

Applications

- Sony Aibo (Evolution Robotics)
- SIFT usage
	- Recognize docking station
	- Communicate with visual cards
- Other uses
	- Place recognition
	- Loop closure in SLAM

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

Location Recognition

Slide credit: David Lowe [Lowe04]

Other ideas worth being aware of

• [Thin-plate splines:](http://profs.etsmtl.ca/hlombaert/thinplates/) combines global affine warp with smooth local deformation

• Robust non-rigid point matching: <http://noodle.med.yale.edu/~chui/tps-rpm.html> (includes code, demo, paper)

Key concepts

- Alignment
	- Hough transform
	- RANSAC
	- ICP

- Object instance recognition
	- Find keypoints, compute descriptors
	- Match descriptors
	- Vote for / fit affine parameters
	- Return object if # inliers > T

