## Edge Detection



Magritte, "Decalcomania"

Computer Vision (CS 543 / ECE 549)
University of Illinois
Derek Hoiem

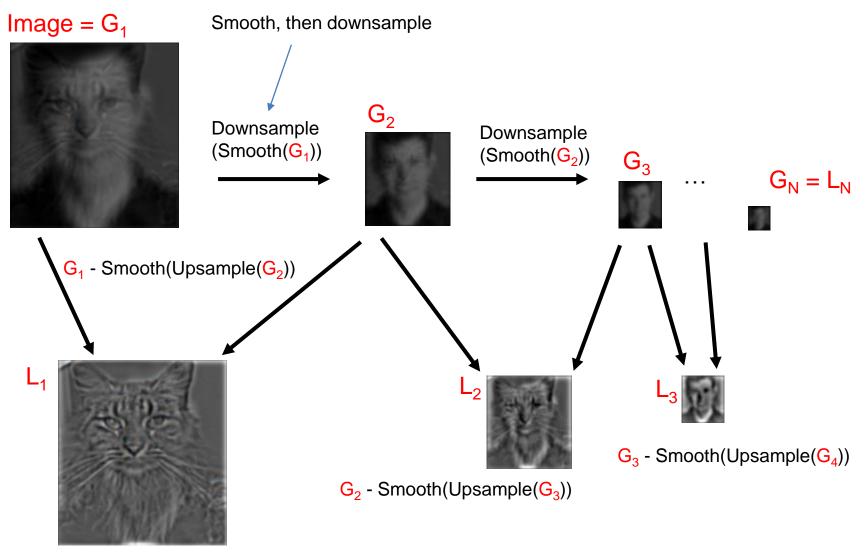
#### Last class

- How to use filters for
  - Matching
  - Compression

Image representation with pyramids

Texture and filter banks

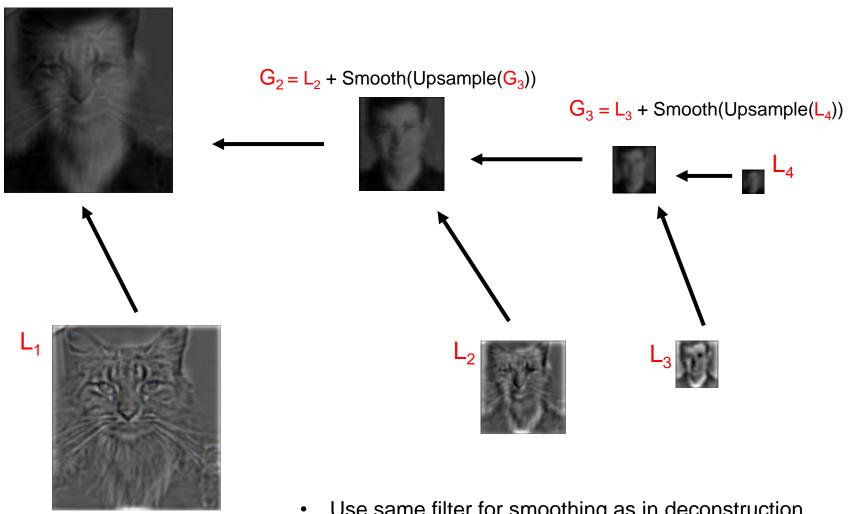
#### Creating the Gaussian/Laplacian Pyramid



- Use same filter for smoothing in each step (e.g., Gaussian with  $\sigma = 2$ )
- Downsample/upsample with "nearest" interpolation

#### Reconstructing image from Laplacian pyramid

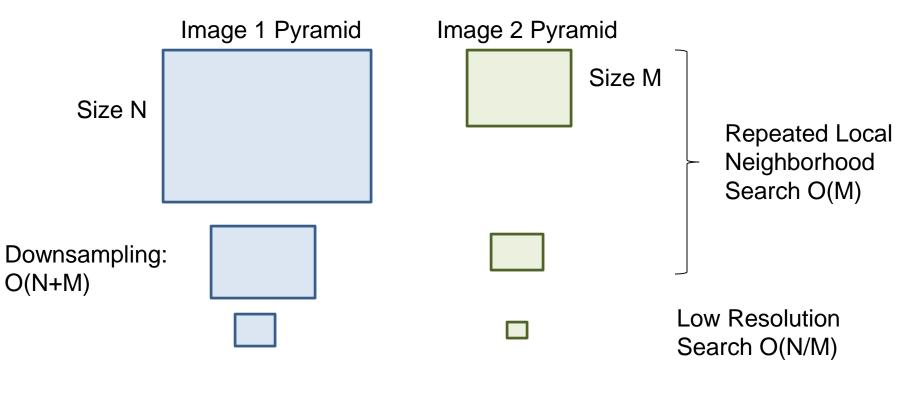
 $Image = L_1 + Smooth(Upsample(G_2))$ 



- Use same filter for smoothing as in deconstruction
- Upsample with "nearest" interpolation
- Reconstruction will be lossless

## Comments/questions from earlier

Computational complexity of coarse-to-fine search?



Overall complexity: O(N+M)

Original high-resolution full search: O(NM) or O(N logN)

#### Why not use an ideal filter?

Answer: has infinite spatial extent, clipping results in ringing





Attempt to apply ideal filter in frequency domain

## Median vs. Gaussian filtering

3x3 5x5 7x7 Gaussian Median

#### Other non-linear filters

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Max or min filter (ordfilt2)
- Bilateral filtering (weight by spatial distance and intensity difference)

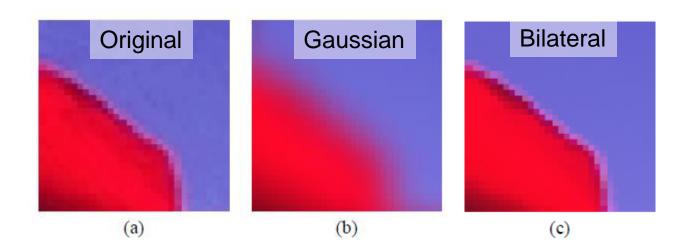


Bilateral filtering

#### Bilateral filters

Edge preserving: weights similar pixels more

$$I_{\mathbf{p}}^{\mathbf{b}} = \frac{1}{W_{\mathbf{p}}^{\mathbf{b}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
with  $W_{\mathbf{p}}^{\mathbf{b}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$ 



Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

## Today's class

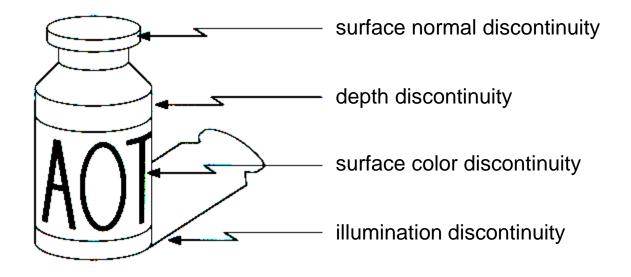
Detecting edges



Finding straight lines



## Origin of Edges



Edges are caused by a variety of factors

Source: Steve Seitz

## Why finding edges is important

 Group pixels into objects or parts

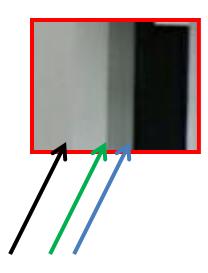
Cues for 3D shape

Guiding interactive image editing

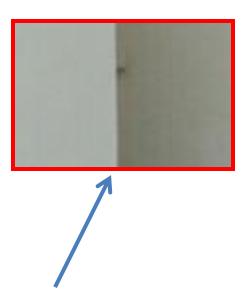




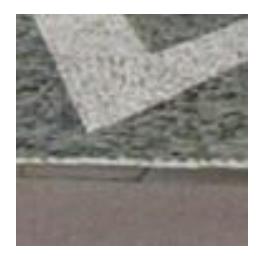






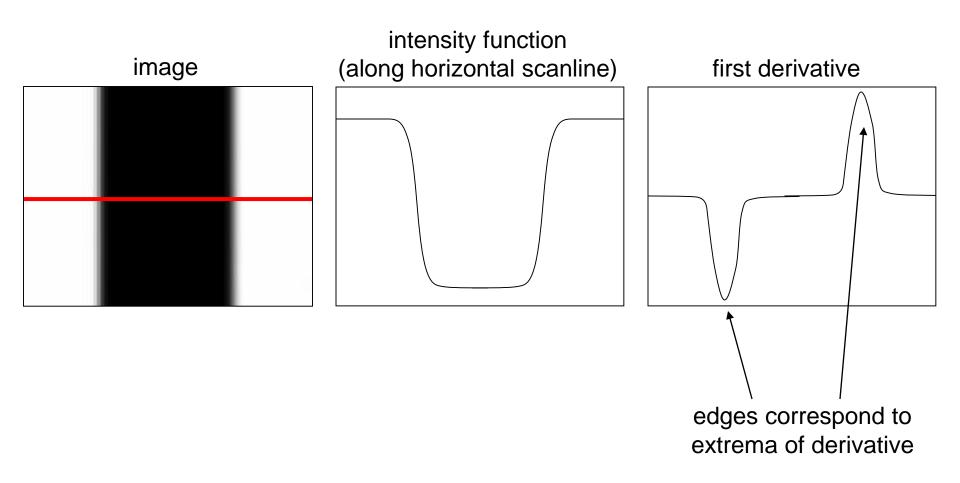




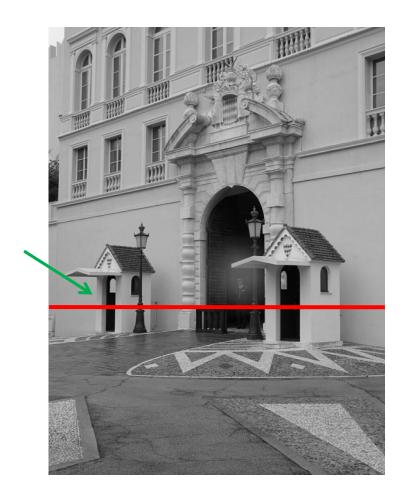


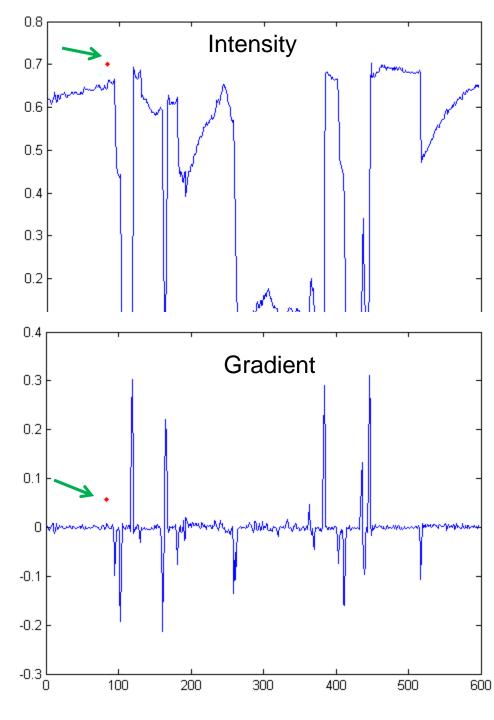
## Characterizing edges

An edge is a place of rapid change in the image intensity function



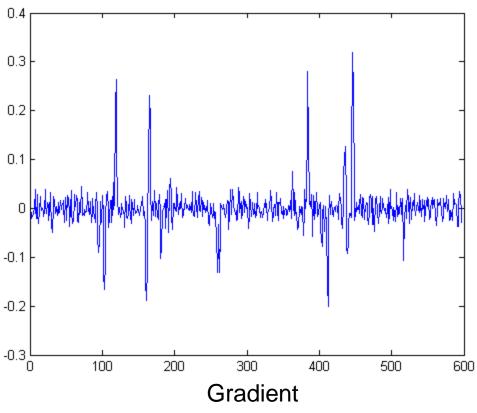
## Intensity profile





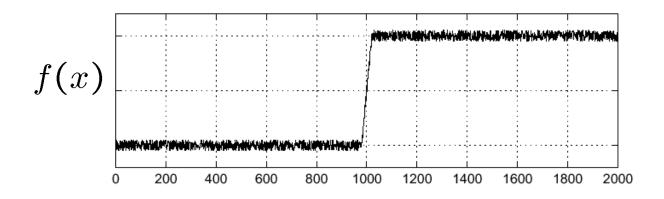
## With a little Gaussian noise

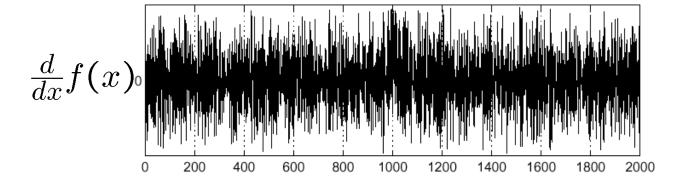




#### Effects of noise

- Consider a single row or column of the image
  - Plotting intensity as a function of position gives a signal



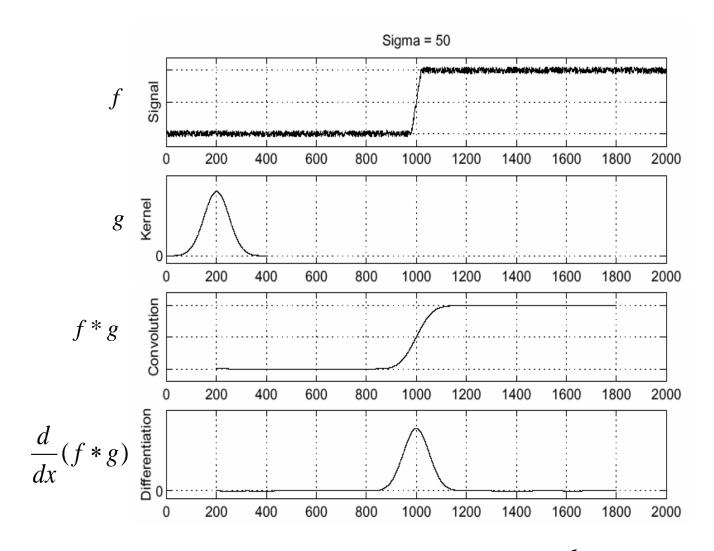


Where is the edge?

#### Effects of noise

- Difference filters respond strongly to noise
  - Image noise results in pixels that look very different from their neighbors
  - Generally, the larger the noise the stronger the response
- What can we do about it?

#### Solution: smooth first

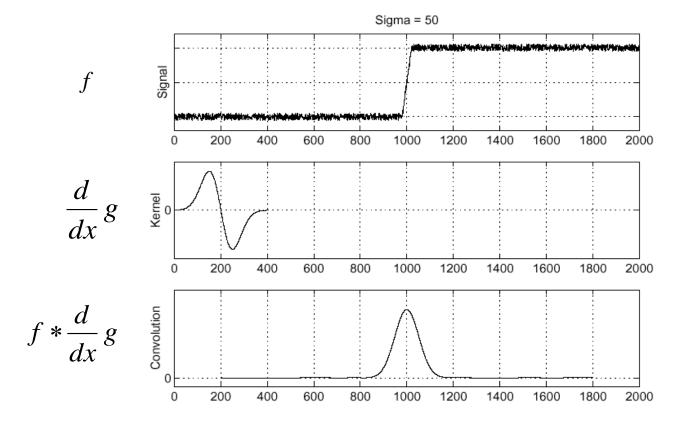


• To find edges, look for peaks in  $\frac{d}{dx}(f*g)$ 

Source: S. Seitz

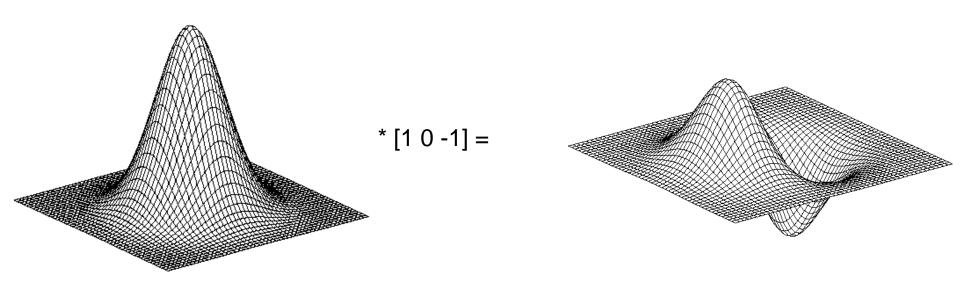
#### Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:  $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:



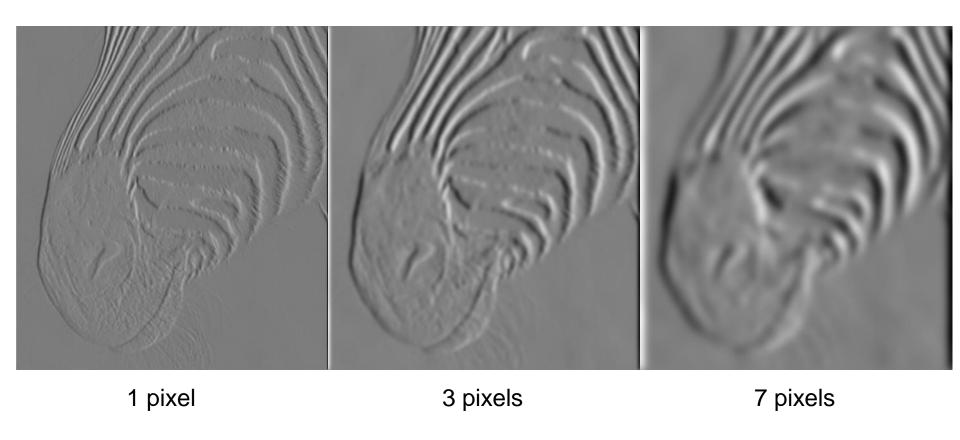
Source: S. Seitz

#### Derivative of Gaussian filter



• Is this filter separable?

#### Tradeoff between smoothing and localization



 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

## Designing an edge detector

- Criteria for a good edge detector:
  - Good detection: find all real edges, ignoring noise or other artifacts
  - Good localization
    - detect edges as close as possible to the true edges
    - return one point only for each true edge point

- Cues of edge detection
  - Differences in color, intensity, or texture across the boundary
  - Continuity and closure
  - High-level knowledge

## Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

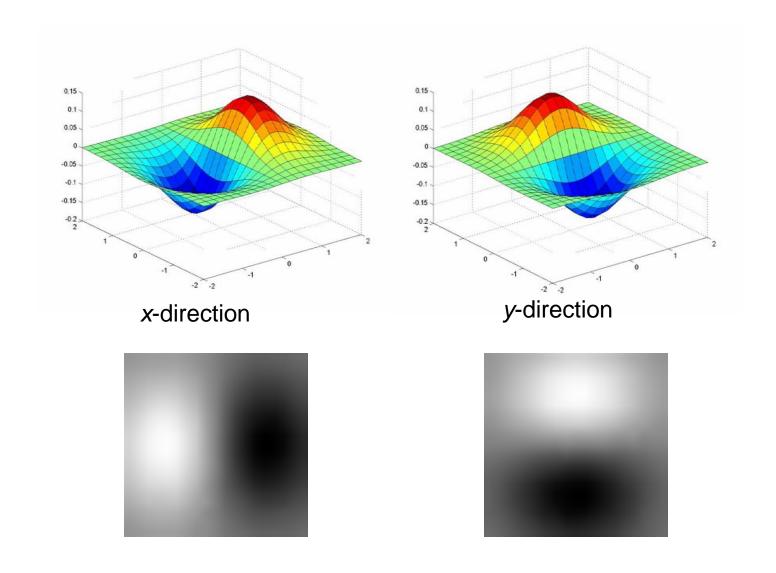
J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

# Example



input image ("Lena")

## Derivative of Gaussian filter



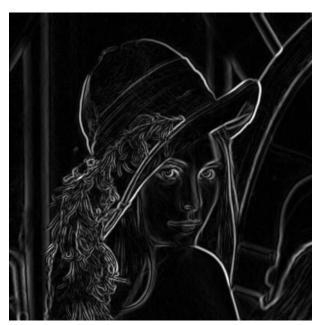
## Compute Gradients (DoG)



X-Derivative of Gaussian



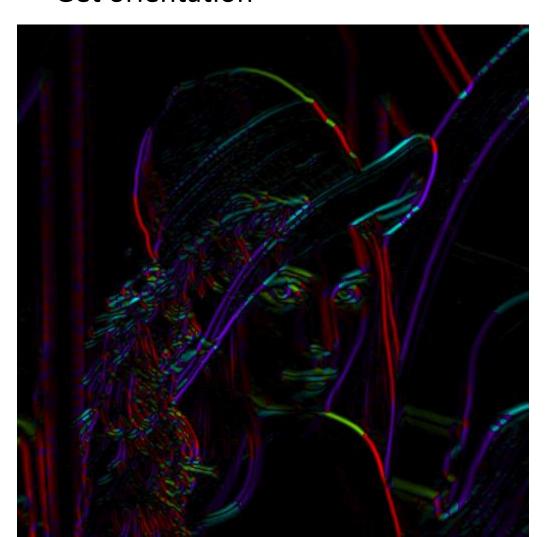
Y-Derivative of Gaussian



**Gradient Magnitude** 

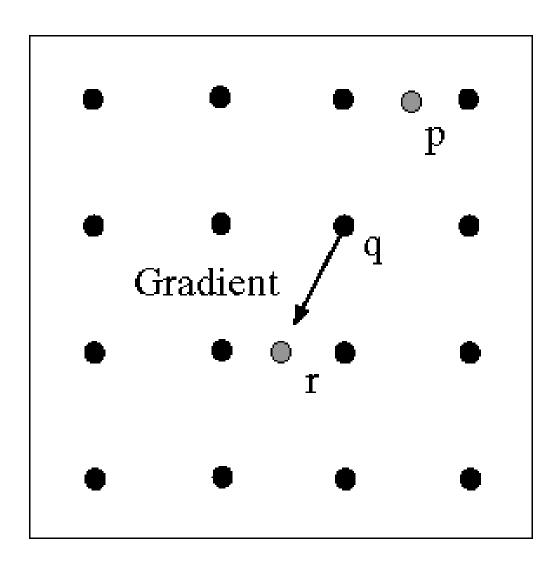
#### Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

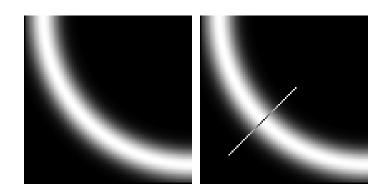


theta = atan2(-gy, gx)

# Non-maximum suppression for each orientation



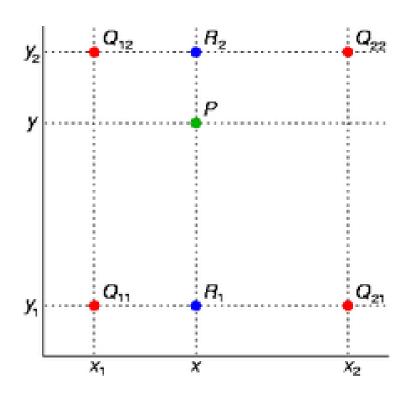
At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

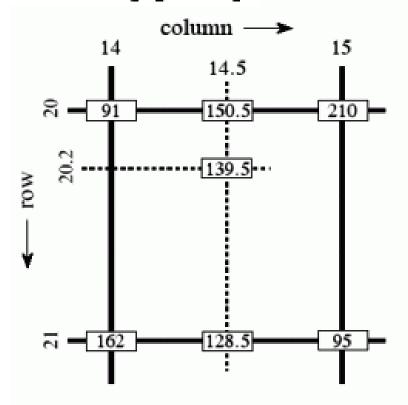


Source: D. Forsyth

## Bilinear Interpolation

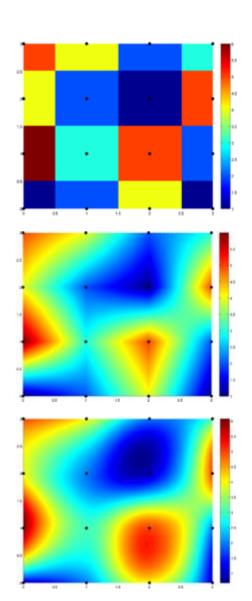
$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$$





## Sidebar: Interpolation options

- imx2 = imresize(im, 2, interpolation\_type)
- 'nearest'
  - Copy value from nearest known
  - Very fast but creates blocky edges
- 'bilinear'
  - Weighted average from four nearest known pixels
  - Fast and reasonable results
- 'bicubic' (default)
  - Non-linear smoothing over larger area
  - Slower, visually appealing, may create negative pixel values



## Before Non-max Suppression



## After non-max suppression



#### Hysteresis thresholding

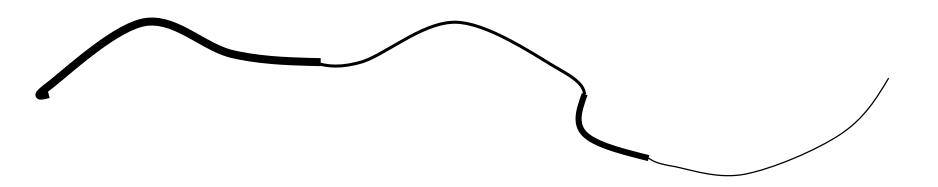
Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels



# Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
  - drop-outs? use hysteresis
    - use a high threshold to start edge curves and a low threshold to continue them.



# Final Canny Edges

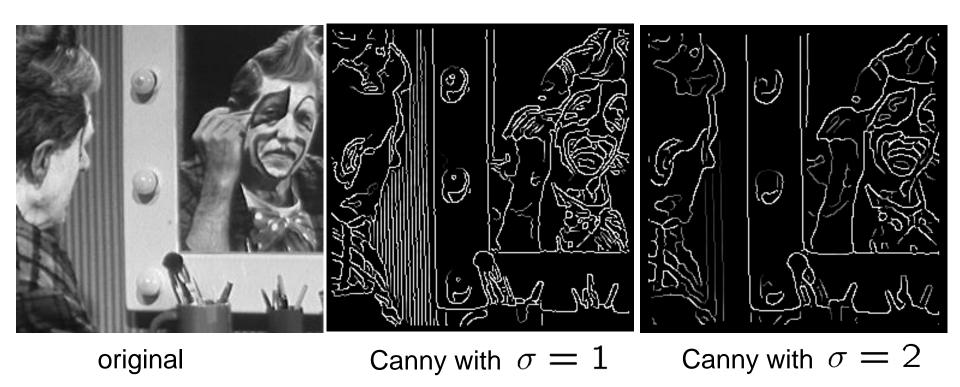


# Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
  - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

### Effect of σ (Gaussian kernel spread/size)



#### The choice of $\sigma$ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz

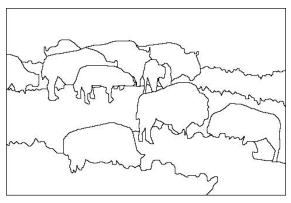
## Learning to detect boundaries

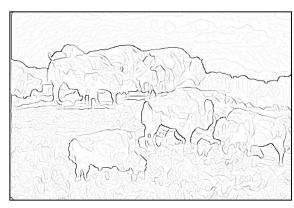
image

#### human segmentation

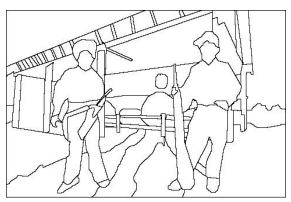
gradient magnitude









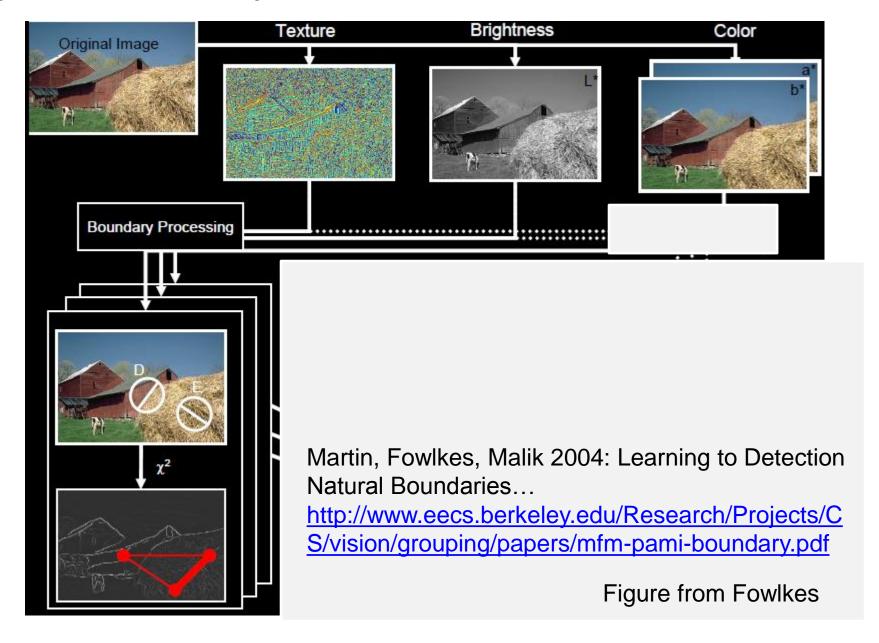




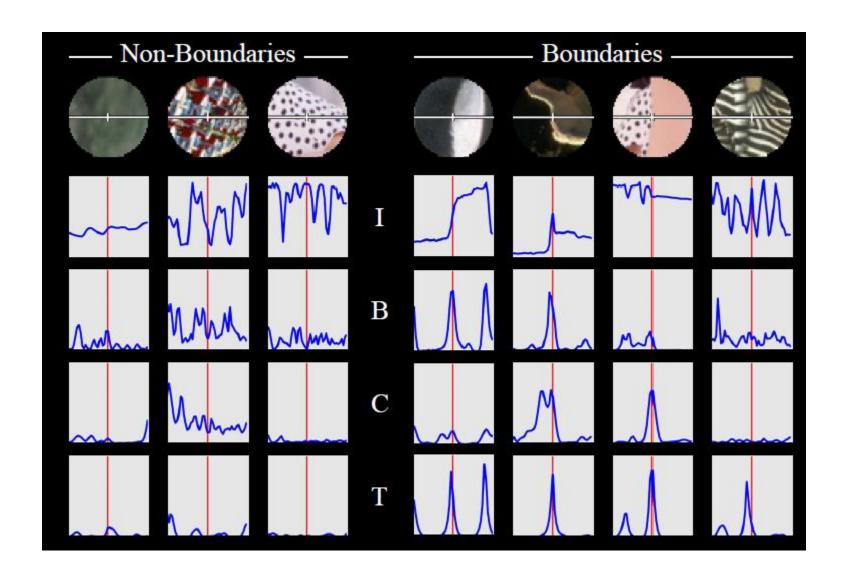
Berkeley segmentation database:

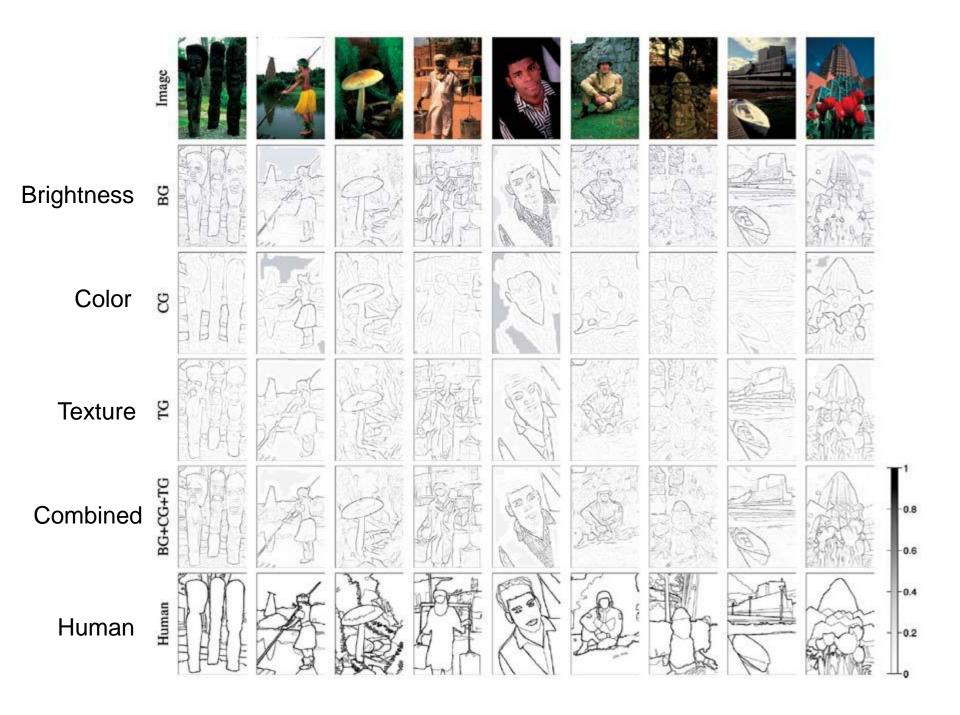
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

# pB boundary detector



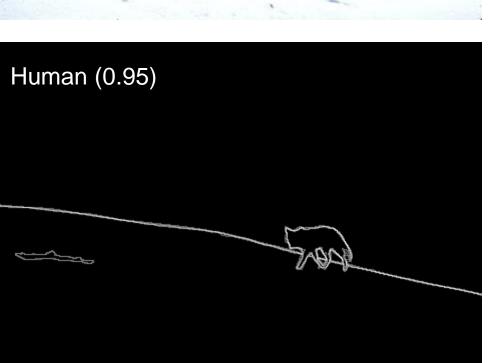
# pB Boundary Detector

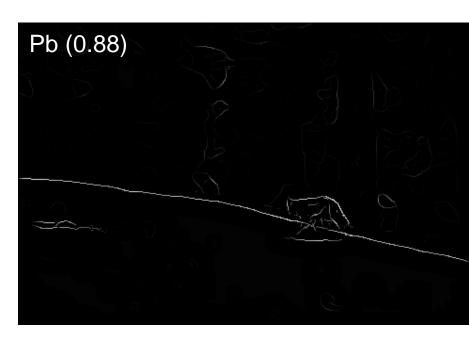




# Results





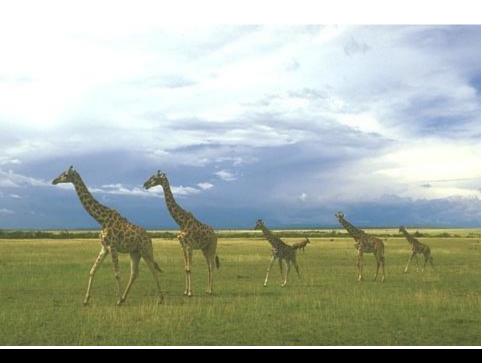


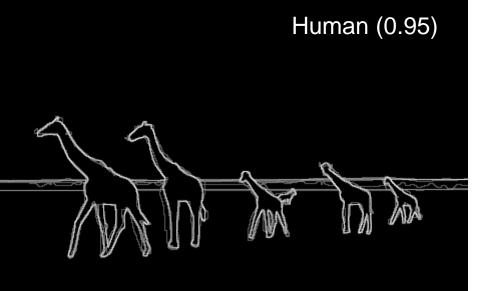
### Results





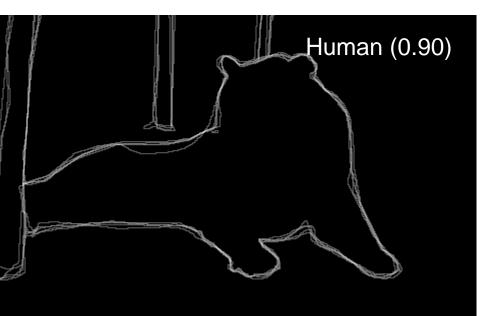














#### For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

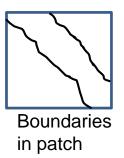
# Edge Detection with Structured Random Forests (Dollar Zitnick ICCV 2013)

- Goal: quickly predict whether each pixel is an edge
- Insights
  - Predictions can be learned from training data
  - Predictions for nearby pixels should not be independent
- Solution
  - Train structured random forests to split data into patches with similar boundaries based on features
  - Predict boundaries at patch level, rather than pixel level, and aggregate (average votes)





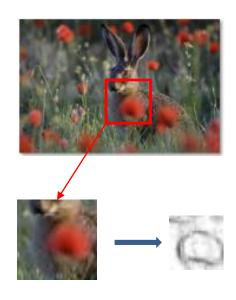




#### Edge Detection with Structured Random Forests

#### Algorithm

- Extract overlapping 32x32 patches at three scales
- Features are pixel values and pairwise differences in feature maps (LUV color, gradient magnitude, oriented gradient)
- 3. Predict *T* boundary maps in the central 16x16 region using *T* trained decision trees
- 4. Average predictions for each pixel across all patches





### Edge Detection with Structured Random Forests

#### Results

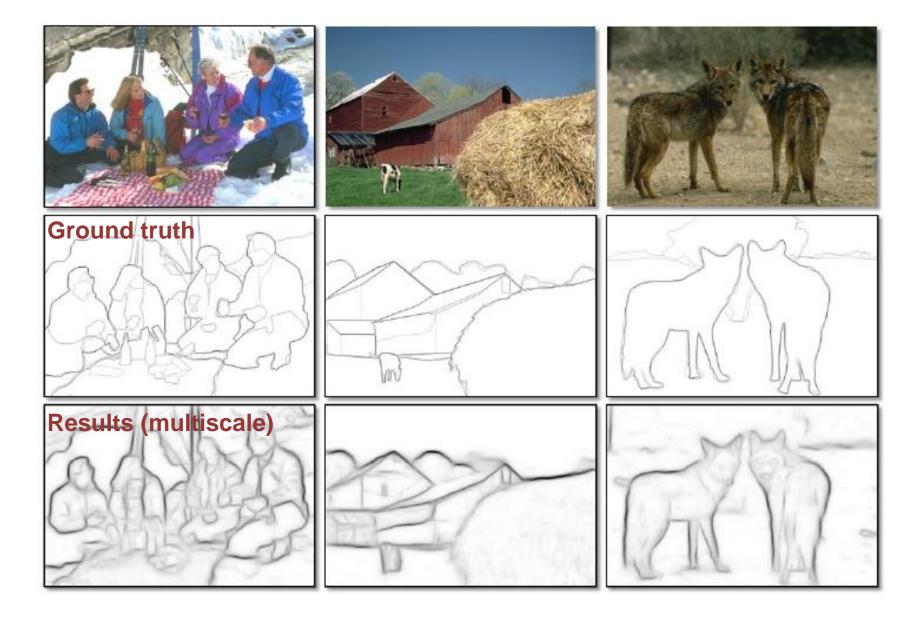
#### **BSDS** 500

#### NYU Depth dataset edges

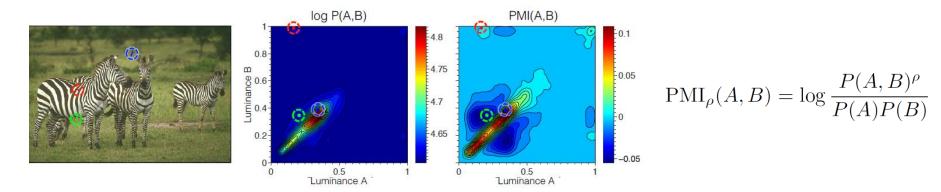
|                    | ODS              | OIS | AP  | FPS              |
|--------------------|------------------|-----|-----|------------------|
| Human              | .80              | .80 | -   | -                |
| Canny              | .60              | .64 | .58 | 15               |
| Felz-Hutt [11]     | .61              | .64 | .56 | 10               |
| Hidayat-Green [16] | .62 <sup>†</sup> | -   | -   | 20               |
| BEL [9]            | .66 <sup>†</sup> | -   | -   | 1/10             |
| gPb + GPU [6]      | .70 <sup>†</sup> | -   | -   | 1/2 <sup>‡</sup> |
| gPb [1]            | .71              | .74 | .65 | 1/240            |
| gPb-owt-ucm [1]    | .73              | .76 | .73 | 1/240            |
| Sketch tokens [21] | .73              | .75 | .78 | 1                |
| SCG [31]           | .74              | .76 | .77 | 1/280            |
| SE-SS, T=1         | .72              | .74 | .77 | 60               |
| SE-SS, T=4         | .73              | .75 | .77 | 30               |
| SE-MS, $T$ =4      | .74              | .76 | .78 | 6                |

|                  | ODS | OIS | AP  | FPS   |
|------------------|-----|-----|-----|-------|
| gPb [1] (rgb)    | .51 | .52 | .37 | 1/240 |
| SCG [31] (rgb)   | .55 | .57 | .46 | 1/280 |
| SE-SS (rgb)      | .58 | .59 | .53 | 30    |
| SE-MS (rgb)      | .60 | .61 | .56 | 6     |
| gPb [1] (depth)  | .44 | .46 | .28 | 1/240 |
| SCG [31] (depth) | .53 | .54 | .45 | 1/280 |
| SE-SS (depth)    | .57 | .58 | .54 | 30    |
| SE-MS (depth)    | .58 | .59 | .57 | 6     |
| gPb [1] (rgbd)   | .53 | .54 | .40 | 1/240 |
| SCG [31] (rgbd)  | .62 | .63 | .54 | 1/280 |
| SE-SS (rgbd)     | .62 | .63 | .59 | 25    |
| SE-MS (rgbd)     | .64 | .65 | .63 | 5     |

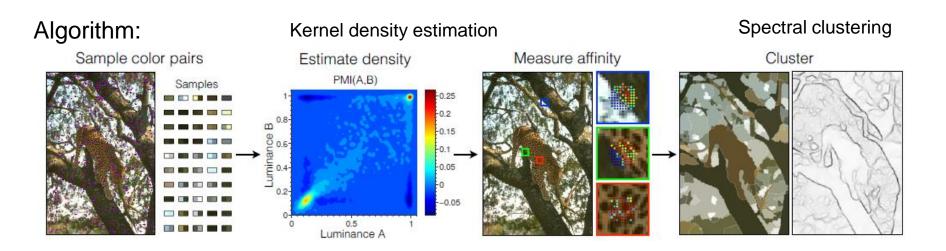
### Edge Detection with Structured Random Forests



# Crisp Boundary Detection using Pointwise Mutual Information (Isola et al. ECCV 2014)



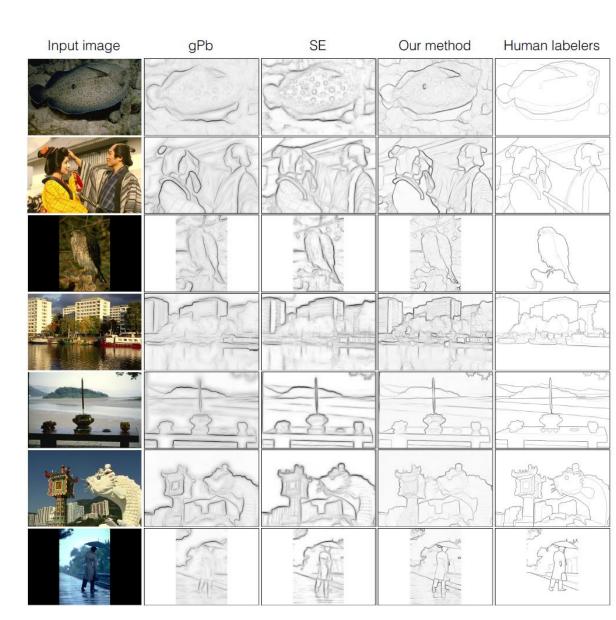
Pixel combinations that are unlikely to be together are edges



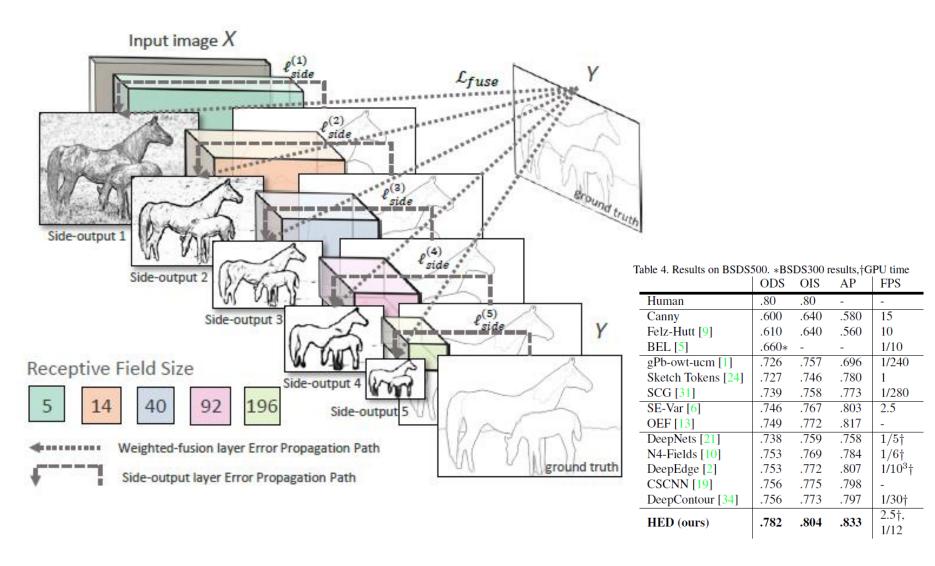
http://web.mit.edu/phillipi/www/publications/crisp\_boundaries.pdf

# Crisp Boundary Detection using Pointwise Mutual Information

| Algorithm                   | ODS  | OIS  | $\mathbf{AP}$ |
|-----------------------------|------|------|---------------|
| Canny [14]                  | 0.60 | 0.63 | 0.58          |
| Mean Shift [36]             | 0.64 | 0.68 | 0.56          |
| NCuts [37]                  | 0.64 | 0.68 | 0.45          |
| Felz-Hutt [38]              | 0.61 | 0.64 | 0.56          |
| gPb [1]                     | 0.71 | 0.74 | 0.65          |
| gPb-owt-ucm [1]             | 0.73 | 0.76 | 0.73          |
| SCG [9]                     | 0.74 | 0.76 | 0.77          |
| Sketch Tokens [7]           | 0.73 | 0.75 | 0.78          |
| SE [8]                      | 0.74 | 0.76 | 0.78          |
| Our method – SS, color only | 0.72 | 0.75 | 0.77          |
| Our method – SS             | 0.73 | 0.76 | 0.79          |
| Our method – MS             | 0.74 | 0.77 | 0.78          |



# Holistically nested edge detection



# State of edge detection

- Local edge detection is mostly solved
  - Intensity gradient, color, texture
  - HED on BSDS 500 is near human performance
- Some room for improvement by taking advantage of higher-level knowledge (e.g., objects)
- Still hard to produce all objects within a small number of regions

# Finding straight lines





# Finding line segments using connected components

- 1. Compute canny edges
  - Compute: gx, gy (DoG in x,y directions)
  - Compute: theta = atan(gy / gx)
- 2. Assign each edge to one of 8 directions
- 3. For each direction d, get edgelets:
  - find connected components for edge pixels with directions in {d-1, d, d+1}
- 4. Compute straightness and theta of edgelets using eig of x,y 2<sup>nd</sup> moment matrix of their points

$$\mathbf{M} = \begin{bmatrix} \sum (x - \mu_x)^2 & \sum (x - \mu_x)(y - \mu_y) \\ \sum (x - \mu_x)(y - \mu_y) & \sum (y - \mu_y)^2 \end{bmatrix} \quad [v, \lambda] = \text{eig}(\mathbf{M})$$

$$\theta = \text{atan } 2(v(2, 2), v(1, 2))$$

$$conf = \lambda_2 / \lambda_1$$

5. Threshold on straightness, store segment

# 2. Canny lines $\rightarrow$ ... $\rightarrow$ straight edges





#### Homework 1

 Due Feb 13, but try to finish sooner (HW 2 will take quite a bit more time)

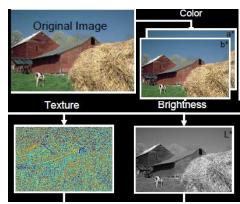
https://courses.engr.illinois.edu/cs543/hws/hw1 cs543 sp17.pdf

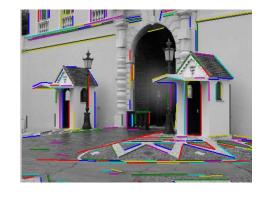
# Things to remember

Canny edge detector = smooth
 → derivative → thin → threshold → link



- Pb: learns weighting of gradient, color, texture differences
  - More recent learning approaches give at least as good accuracy and are faster
- Straight line detector = canny + gradient orientations → orientation binning → linking → check for straightness





Next classes: Correspondence and Alignment

Detecting interest points

Tracking points

- Object/image alignment and registration
  - Aligning 3D or edge points
  - Object instance recognition
  - Image stitching