02/02/17

Edge Detection

Magritte,
“Decalcomania”

|
Computer Vision (CS 543 / ECE 549)
University of Illinois

Derek Hoiem

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li

Last class

e How to use filters for

— Matching
— Compression

* Image representation with pyramids

e Texture and filter banks

Creating the Gaussian/Laplacian Pyramid

Image = G, Smooth, then downsample
Downsample Z Downsample
(Smooth(G,)) (Smooth(G,)) G3
> > - GN = LN

iSmooth(Upsany \ / \ ‘
- L,| L,

G5 - Smooth(Upsample(G,))

G, - Smooth(Upsample(G,))

Use same filter for smoothing in each step (e.g., Gaussian with o = 2)
Downsample/upsample with “nearest” interpolation

Reconstructing image from Laplacian pyramid

Image = L, + Smooth(Upsample(G,))

G, =L, + Smooth(Upsample(G,))
G, = L; + Smooth(Upsample(L,))

Use same filter for smoothing as in deconstruction
Upsample with “nearest” interpolation
Reconstruction will be lossless

Comments/questions from earlier

 Computational complexity of coarse-to-fine

search?

Image 1 Pyramid Image 2 Pyramid

Size N

Downsampling:

O(N+M)

O

Overall complexity: O(N+M)

Size M

—_

Repeated Local
— Neighborhood
Search O(M)

—

Low Resolution
Search O(N/M)

Original high-resolution full search: O(NM) or O(N logN)

* Why not use an ideal filter?

Answer: has infinite spatial extent, clipping results in ringing

Attempt to apply ideal filter in frequency domain

Median vs. Gaussian filtering

3x3 5x5

Gaussian

Other non-linear filters

* Weighted median (pixels further from center count less)

* Clipped mean (average, ignoring few brightest and darkest
pixels)

 Max or min filter (ordfilt2)

» Bilateral filtering (weight by spatial distance and intensity
difference)

r

Bilateral filtering

Image: http://vision.ai.uiuc.edu/?p=1455

http://vision.ai.uiuc.edu/?p=1455

Bilateral filters

Edge preserving: weights similar pixels more

spatial similarity (e.g., intensity)

IB = Vb ZCJE p—d|) Golllp —Iq|) I
qes
with Hf-’g = ZGJE P—dq|) G ([Ip — I4)
qes
Original Gaussian Bilateral

(a) (b) (c)

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Today’s class

* Detecting edges

* Finding straight lines

Origin of Edges

surface normal discontinuity

. < depth discontinuity
AO ‘/;\ surface color discontinuity
&___JZ illumination discontinuity
~—____

Edges are caused by a variety of factors

Source: Steve Seitz

Why finding edges is important

* Group pixels into objects
or parts

* Cues for 3D shape

* Guiding interactive image
editing

Closeup of edges

Closeup of edges

Closeup of edges

Closeup of edges

Characterizing edges

e An edge is a place of rapid change in the
image intensity function

image

intensity function
(along horizontal scanline)

first derivative

\

edges correspond to
extrema of derivative

Intensity profile

0.8

0.6

0.8

0.4

0.3

0.2r

0.4

0.3
0.2

0.1

O1r
02F

0.3
a

Intensity
W ™
A
Gradient
160 260 360 aﬁn 5&0 GO0

With a little Gaussian noise

|:|'|I‘1' T T T T T

0.3

0.2

0.1

0.2

0.3

a 16D zﬁu 360 460 560 R00
Gradient

Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(x)

i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(z)e

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz

Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: D. Forsyth

Solution: smooth first

Sigma = 50

—
Signal

(@]
Kernel

f*g

Convolution

d
—(f *
dx(9)

Differentiation

0 200 400 600

To find edges, look for peaks Iin &(f *)

Source: S. Seitz

Derivative theorem of convolution

e Differentiation is convolution, and convolution is
associative: —(f*g)=fx—qg

dx dx

e This saves us one operation:

Sigma = 50

...

—h
Signal

| 1 1 1 | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| 1 1 1 | I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

o
> o
Convolution

| 1 I I | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Source: S. Seitz

Derivative of Gaussian filter

iy
-.ll' ‘
'l! {'llll:l' * = i ;III'I;"::.:‘::::&S‘ S50
A 10-11= S
A SO
i -
i T

* |s this filter
separable?

Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

* Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth

Designing an edge detector

e Criteria for a good edge detector:

— Good detection: find all real edges, ignoring noise or other
artifacts

— Good localization
» detect edges as close as possible to the true edges
* return one point only for each true edge point

e Cues of edge detection

— Differences in color, intensity, or texture across the boundary
— Continuity and closure
— High-level knowledge

Source: L. Fei-Fei

Canny edge detector

e This is probably the most widely used edge
detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of

the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

input image (“Lena”)

Derivative of Gaussian filter

=
=

x-direction y-direction

Compute Gradients (DoG)

)
A b\

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel

e Threshold at minimum level

e Get orientation

theta = atan2(-gy, gx)

Non-maximum suppression for each

orientation

o ® ® o ®
P
e ® e

_ |

Gradlent/
® ® o @ ®

T

® o ® ®

Source: D. Forsyth

At g, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.

Bilinear Interpolation

0,0) f(0,1)][1—
flz,y) = [1 -z 2| [j:gl;nfj ;Ell?” y]_

E*E""z_.ﬁz ‘.E‘I‘EE
" . — | A

. =
jilbssss: LT Lo I o

;.ir'l x ;'rz

http://en.wikipedia.org/wiki/Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

* imx2 = imresize(im, 2, interpolation_type)

* ‘nearest’
— Copy value from nearest known
— Very fast but creates blocky edges

e ‘bilinear’
— Weighted average from four nearest known
pixels

— Fast and reasonable results

e ‘bicubic’ (default)
— Non-linear smoothing over larger area

— Slower, visually appealing, may create
negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

3 |..I N
l "'I._III. \II \\‘I r

Hysteresis thresholding

* Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
— Define two thresholds: low and high

— Use the high threshold to start edge curves and the low
threshold to continue them

* MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

Effect of o (Gaussian kernel spread/size)

original Canny with 0 = 1 Canny with 0 = 2

The choice of o depends on desired behavior

« large o detects large scale edges
« small o detects fine features

Source: S. Seitz

Learning to detect boundaries

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Texture Brightness

Martin, Fowlkes, Malik 2004: Learning to Detection
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

pB Boundary Detector

»EENE

oHEEE
{

» EEEE

~EENE

Boundaries

%WNM.
:
TRERE
. — 4 q

—— Non-Boundaries —

Figure from Fowlkes

Brightness

Color

Texture

Combined

Human

BG+CG+TG TG

Human
| M T

08

086

Results

Pb (0.88)

Results

Pb (0.88)

Human (0.96)

Pb (0.63)

bl
ks A

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects
/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Edge Detection with Structured Random Forests
(Dollar Zitnick ICCV 2013)

* Goal: quickly predict whether each pixel is an
edge

* Insights
— Predictions can be learned from training data
— Predictions for nearby pixels should not be =
independent . O
L\ 4
: 1 Q &
e Solution 4B Qo
— Train structured random forests to split data 5% | 0DS=0.72, 60Hz
into patches with similar boundaries based on
features
— Predict boundaries at patch level, rather than
pixel level, and aggregate (average votes) \
Boundaries
in patch

http://research.microsoft.com/pubs/202540/DollarlICCV13edges.pdf

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Edge Detection with Structured Random Forests

e Algorithm

1. Extract overlapping 32x32 patches
at three scales

2. Features are pixel values and
pairwise differences in feature
maps (LUV color, gradient
magnitude, oriented gradient)

3. Predict T boundary maps in the
central 16x16 region using T
trained decision trees S RG]
Q2.

4. Average predictions for each pixel RPN
across all patches WY el C

ODS = 0,72, 60Hz

Edge Detection with Structured Random Forests

Results
BSDS 500
ODS OIS AP FPS
Human 80 .80 -
Canny 60 .64 58 15
Felz-Hutt [11] 61 64 56 10
Hidayat-Green [1 6] 627 - 20
BEL [Y] 667 - 1/10
oPb + GPU [¢] Job 112}
ePb [1] 1 J4 .65 1/240
gPb-owt-ucm [1] g3 g6 73 1/240
Sketch tokens [1] a3 5 78 1
SCG[31] 74 Je 77 1/280
SE-5S, T=1 g2 g4 .77 60
» SE-S§8, T=4 T3 a5 T 30
SE-MS, T=4 74 J6 78 6

S

NYU Depth dataset edges

ODS OIS AP FPS
gPb [1] (rgb) S 52 37 1/240
SCG [1] (rgb) 23 57T 46 1/280
SE-SS (rgh) 58 59 53 30
SE-MS (rgb) .60 61 .56 6
gPb [1] (depth) A4 46 .28 1/240
SCG [71] (depth) 53 54 45 1/280
SE-SS (depth) 57 S8 54 30
SE-MS (depth) 58 59 .57 6
gPb [1] (rgbd) 53 54 40 1/240
SCG [71] (rgbd) 62 .63 54 1/280
SE-SS (rgbd) 62 .63 .59 25
SE-MS (rgbd) 64 65 .63 5

Edge Detection with Structured Random Forests

Crisp Boundary Detection using Pointwise
Mutual Information (Isola et al. ECCV 2014)

PMI(A,B)

-0.05

0 05) 1 0 05 ‘ 1
“Luminance A Luminance A

Pixel combinations that are unlikely to be together are edges

Algorithm: Kernel density estimation Spectral clustering

Sample color pairs Estimate density Cluster

' 4

p 2 Y SR, ‘ Samples PMI(A,B)
R : (SRl T F

0 05 1
Luminance A

http://web.mit.edu/phillipi/www/publications/crisp boundaries.pdf

http://web.mit.edu/phillipi/www/publications/crisp_boundaries.pdf

Crisp Boundary Detection using Pointwise
Mutual Information

Input image gPb SE Our method Human labelers

Algorithm ODS|OIS| AP =
Canny [14] 0.60 | 0.63|0.58

Mean Shift [36] 0.64 | 0.68{0.56

NCuts [37] 0.64 | 0.68]0.45

Felz-Hutt [38] 0.61 | 0.64{0.56

gPb [1] 0.71 10.74]0.65 ;
gPb-owt-ucm [1] 0.73 10.76|0.73 \

SCG [9] 0.740.76|0.77

Sketch Tokens [7] 0.73 10.75/0.78

SE [8] 0.740.76|0.78

Our method — SS, color only| 0.72 | 0.75]0.77

Our method — SS 0.73 10.7610.79 o
Our method — MS 0.74 0.77|0.78

Holistically nested edge detection

Input image X

-\ i
A €(“. ¢)1e

,.T R Y . ,‘ - ..
R RN " Q *p(3) ¢ 3 .
AL " es' 8 0.. . \t\iel‘o(l
B T AL R =7 X = o e wy b e - A
LN ! < :u:) o g 'L y 0‘ \\Qur
— — i h, . 5 et j g 5 ~th
Side-output 1 m 3 _ L -
o~ ' side o .
. . s g — e Table 4. Results on BSDS500. *BSDS300 results,fGPU time
o s e /. ODS OIS AP | FPS
5 - Human .80 .80 - -
Side-output 3 25 ! Canny 600 640 580 | 15
__.i.‘df_._l_ _ Y Felz-Hutt [V] 610 640 560 | 10
.] BEL [5] .660x - - 1/10
- . - 8 % gPb-owt-ucm [1] 260 757 696 | 1/240
Receptlve Fleld Size Sidé-dufpiitd - r Sketch Tokens [24] | .727 746 780 | 1
B/ T SCG [31] 739 758 773 | 17280
5 14 | |40 92| 1196 Side-output]5 | || | - SE-Var [0] 746 767 803 | 2.5
‘ n OEF [17] J49 972 B8I1T7 | -
. ' d 0 DeepNets [0 1] 738 739 758 | 1/51
<=eusensene Weighted-fusion layer Error Propagation Path _ | \ [N4-Fields [10] 53 769 784 | 1/6t
oo . . L ground truth| DeepEdge || 753 772 807 | 1/10%
r g Side-output layer Error Propagation Path CSCNN [10] 756 775 798 | -
DeepContour [34] J56 773 797 1/30F
) 251,
HED (ours) 782 .804 .833 12

https://arxiv.org/pdf/1504.06375.pdf

https://arxiv.org/pdf/1504.06375.pdf

State of edge detection

* Local edge detection is mostly solved
— Intensity gradient, color, texture
— HED on BSDS 500 is near human performance

 Some room for improvement by taking advantage
of higher-level knowledge (e.g., objects)

 Still hard to produce all objects within a small
number of regions

inding straight lines

F

|

W

\ |
Mw \ /
\ \

)\ \

A

et

i

o

«
AR

Finding line segments using connected
components

1. Compute canny edges
— Compute: gx, gy (DoG in x,y directions)
— Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:
— find connected components for edge pixels with directions in {d-1, d,
d+1}
4. Compute straightness and theta of edgelets using eig of x,y
2" moment matrix of their points

) Larger eigenvector
M — Z(X—ﬂx) Z(X—ﬂx)(y—ﬂy) [V, 2] = eig(M)

> Ny-n,) Dly-u,f 6 =atan2(v(2.2),v(1,2))
conf =4,/ 4,

5. Threshold on straightness, store segment

2. Canny lines =2 ... =2 straight edges

Homework 1

* Due Feb 13, but try to finish sooner (HW 2 will
take quite a bit more time)

https://courses.engr.illinois.edu/cs543/hws/hwl cs543 spl7.pdf

https://courses.engr.illinois.edu/cs543/hws/hw1_cs543_sp17.pdf

Things to remember

 Canny edge detector = smooth
— derivative = thin = threshold 2
link

* Pb: learns weighting of gradient, color,
texture differences

— More recent learning approaches give at
least as good accuracy and are faster

e Straight line detector =
gradient orientations = orientation

binning = linking = check for
straightness

Next classes: Correspondence and Alignment

* Detecting interest points

* Tracking points

* Object/image alighment and registration
— Aligning 3D or edge points
— Object instance recognition
— Image stitching

