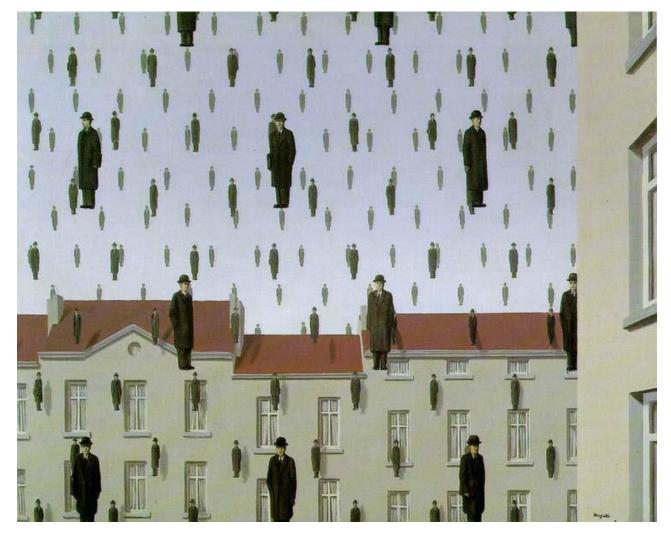
Templates, Image Pyramids, and Filter Banks

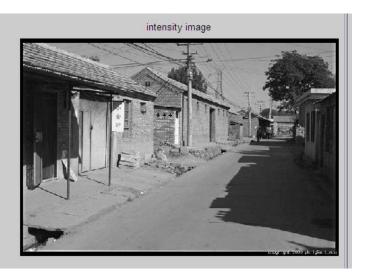


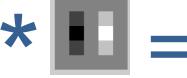
Computer Vision

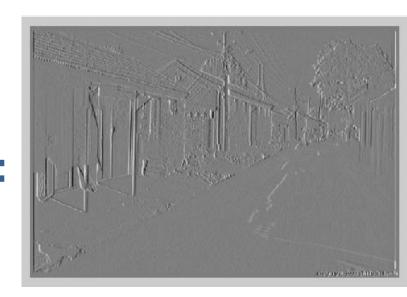
Derek Hoiem, University of Illinois

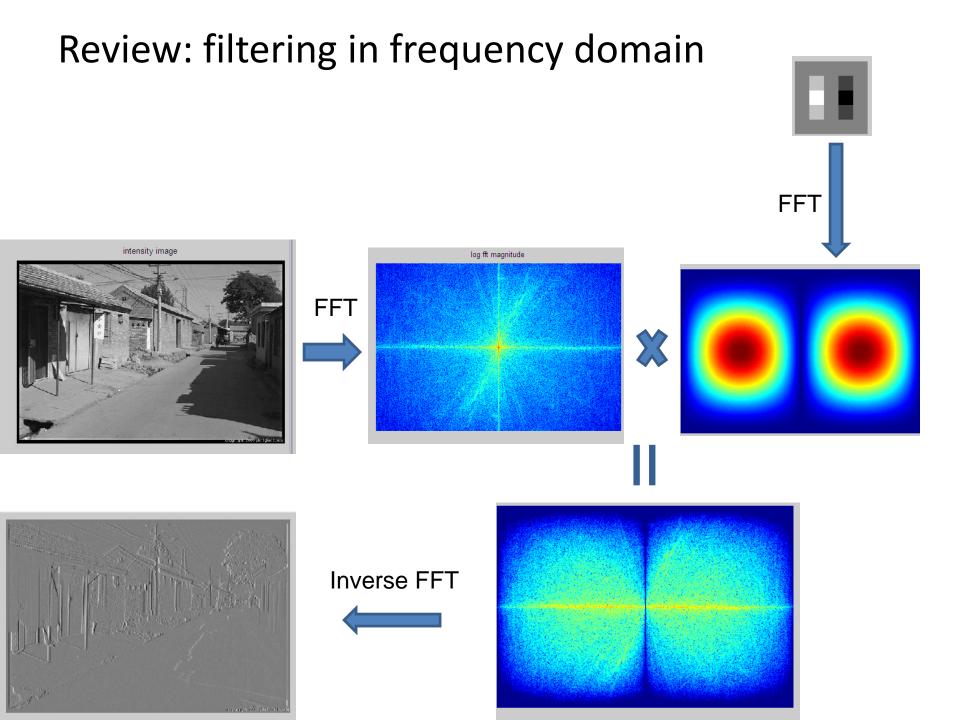
Review: filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1



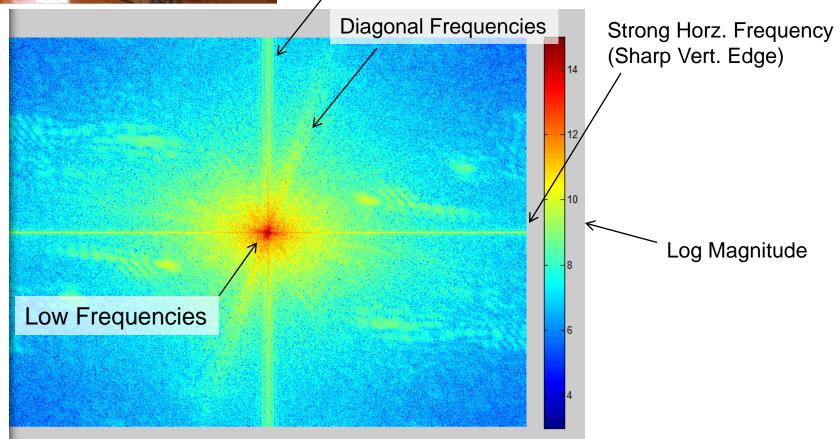






Review

Strong Vertical Frequency (Sharp Horizontal Edge)



Today's class

Template matching

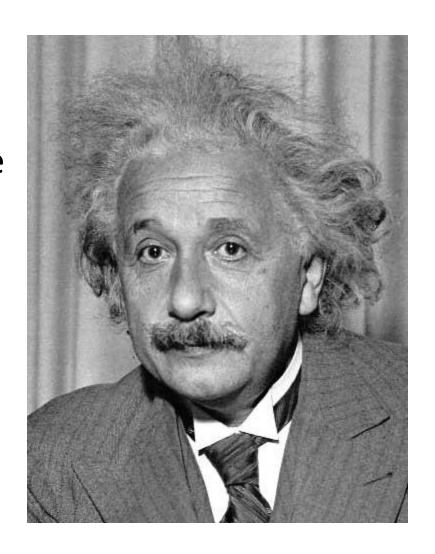
Image Pyramids

Filter banks and texture

Denoising, Compression

Template matching

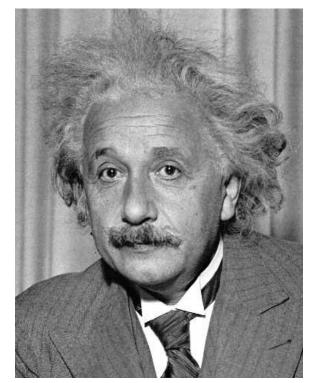
- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized CrossCorrelation



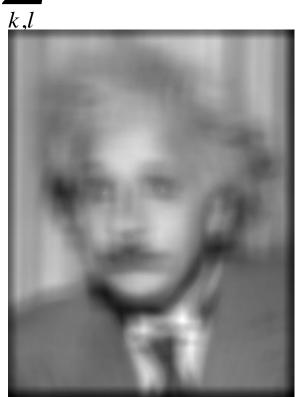
Goal: find in image

Method 0: filter the image with eye patch

$$h[m,n] = \sum g[k,l] f[m+k,n+l]$$



Input



Filtered Image

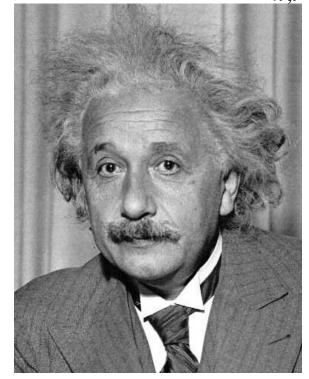
g = filter

f = image

What went wrong?

- Goal: find in image
- Method 1: filter the image with zero-mean eye

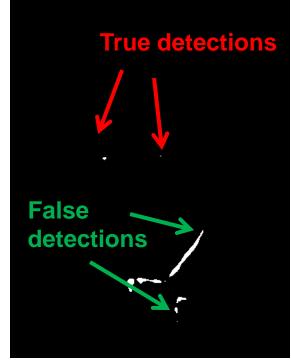
$$h[m,n] = \sum_{k,l} (g[k,l] - \overline{g}) \underbrace{(f[m+k,n+l])}_{\text{mean of template g}}$$



Input



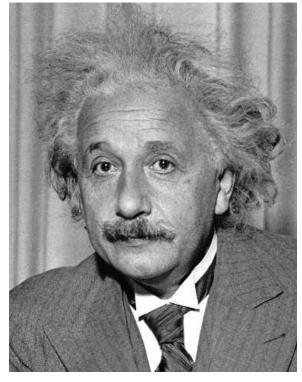
Filtered Image (scaled)

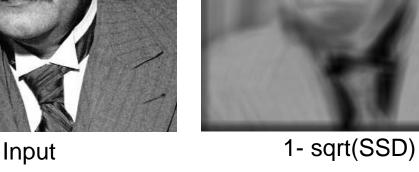


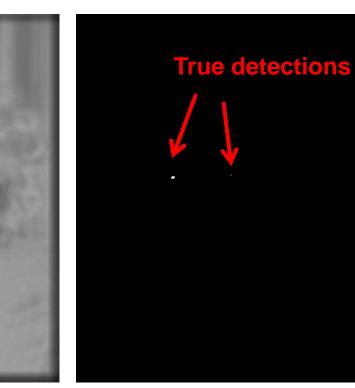
Thresholded Image

- Goal: find in image
- Method 2: SSD

$$h[m,n] = \sum_{l=1}^{n} (g[k,l] - f[m+k,n+l])^{2}$$







Thresholded Image

Can SSD be implemented with linear filters?

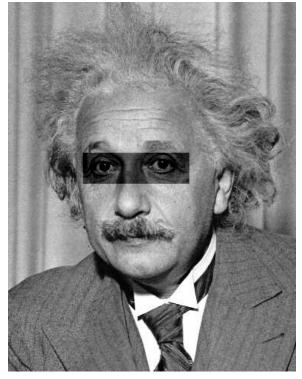
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$

Goal: find in image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



Input

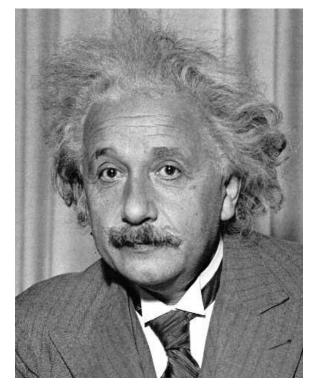
1- sqrt(SSD)

- Goal: find in image
- Method 3: Normalized cross-correlation

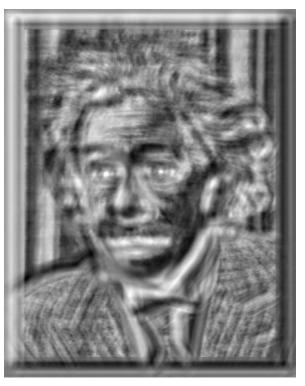
$$h[m,n] = \frac{\displaystyle\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\displaystyle\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2 (template, im)

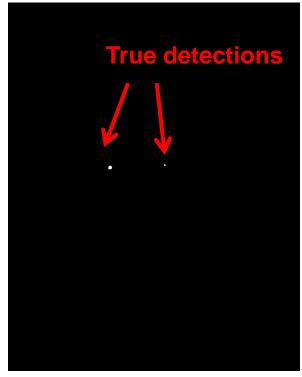
- Goal: find in image
- Method 3: Normalized cross-correlation



Input

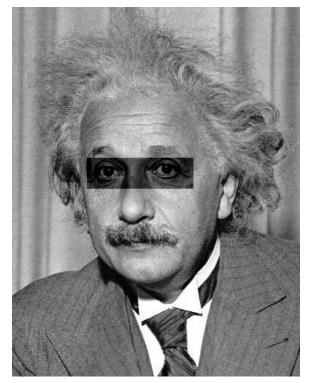


Normalized X-Correlation



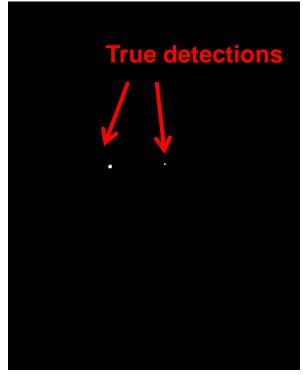
Thresholded Image

- Goal: find in image
- Method 3: Normalized cross-correlation



Input

Normalized X-Correlation



Thresholded Image

Q: What is the best method to use?

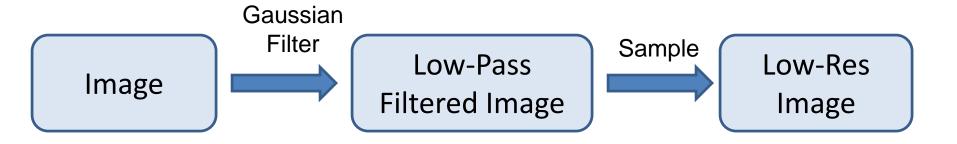
A: Depends

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

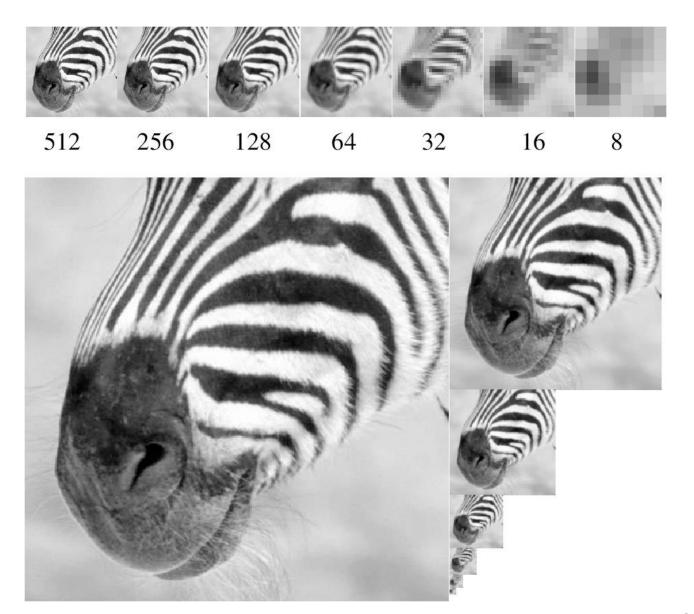
Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling



Gaussian pyramid



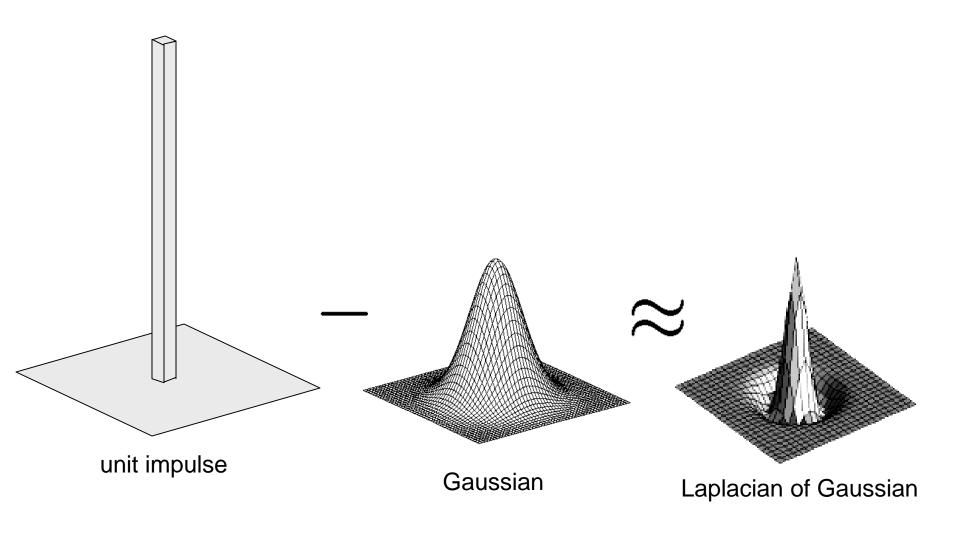
Source: Forsyth

Template Matching with Image Pyramids

Input: Image, Template

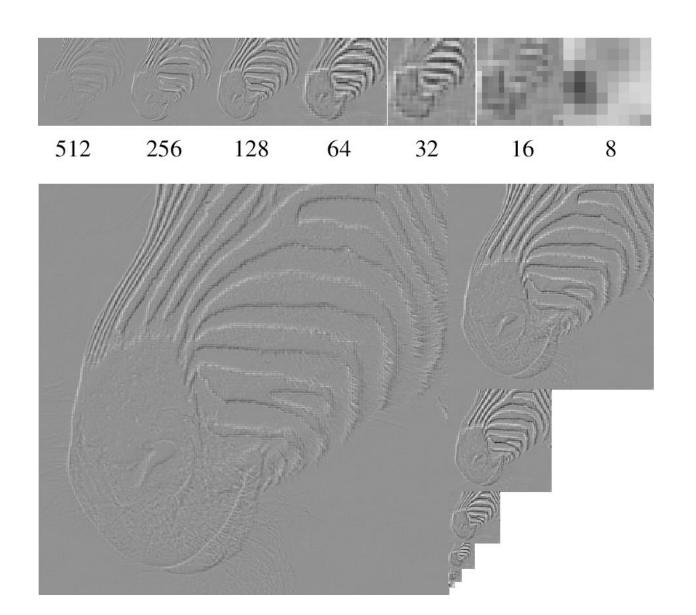
- 1. Match template at current scale
- 2. Downsample image
 - In practice, scale step of 1.1 to 1.2
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Laplacian filter



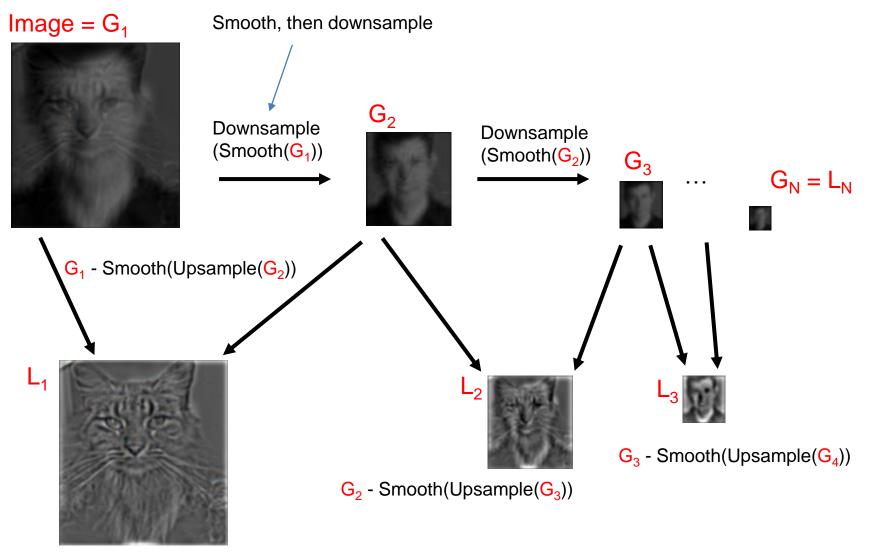
Source: Lazebnik

Laplacian pyramid



Source: Forsyth

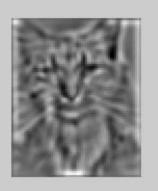
Creating the Gaussian/Laplacian Pyramid

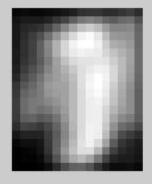


- Use same filter for smoothing in each step (e.g., Gaussian with $\sigma = 2$)
- Downsample/upsample with "nearest" interpolation

Hybrid Image in Laplacian Pyramid

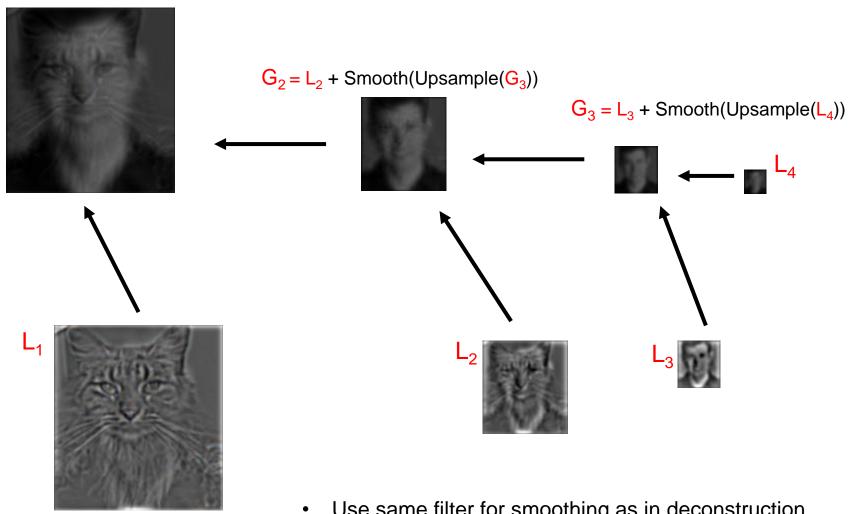
High frequency → Low frequency





Reconstructing image from Laplacian pyramid

 $Image = L_1 + Smooth(Upsample(G_2))$



- Use same filter for smoothing as in deconstruction
- Upsample with "nearest" interpolation
- Reconstruction will be nearly lossless

Major uses of image pyramids

- Compression
- Object detection
 - Scale search
 - Features
- Detecting stable interest points

- Registration
 - Course-to-fine

Coarse-to-fine Image Registration

- 1. Compute Gaussian pyramid
- Align with coarse pyramid
- Successively align with finer pyramids
 - Search smaller range

coarse l=2medium l=1

Why is this faster?

Are we guaranteed to get the same result?

Image representation

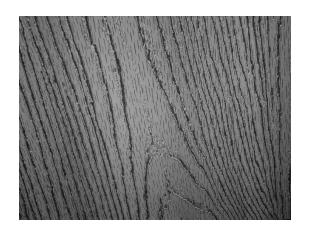
 Pixels: great for spatial resolution, poor access to frequency

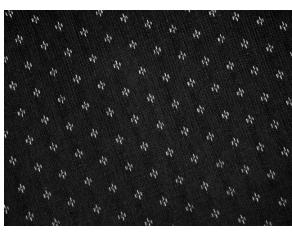
Fourier transform: great for frequency, not for spatial info

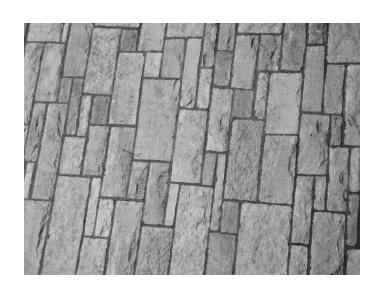
Pyramids/filter banks: balance between spatial and frequency information

Application: Representing Texture

Texture and Material

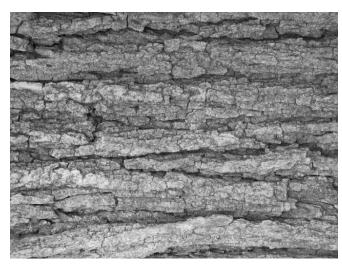






http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation



http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

What is texture?

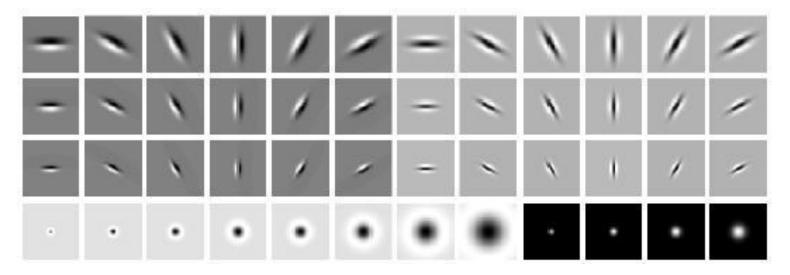
Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

 Compute responses of blobs and edges at various orientations and scales

Overcomplete representation: filter banks

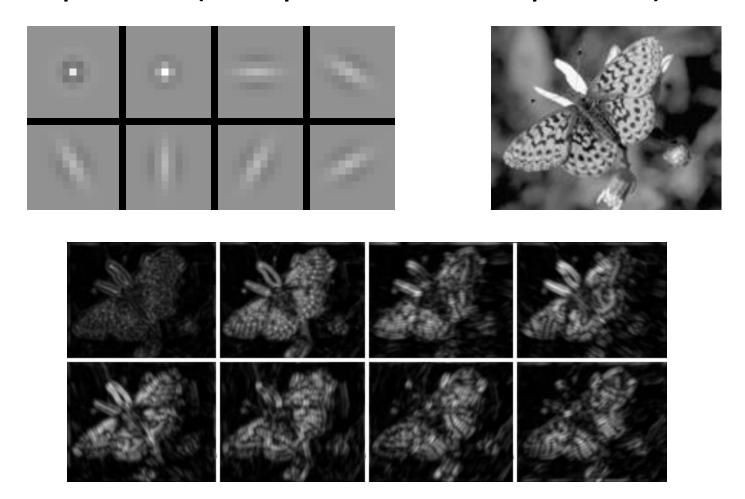
LM Filter Bank



Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

 Process image with each filter and keep responses (or squared/abs responses)

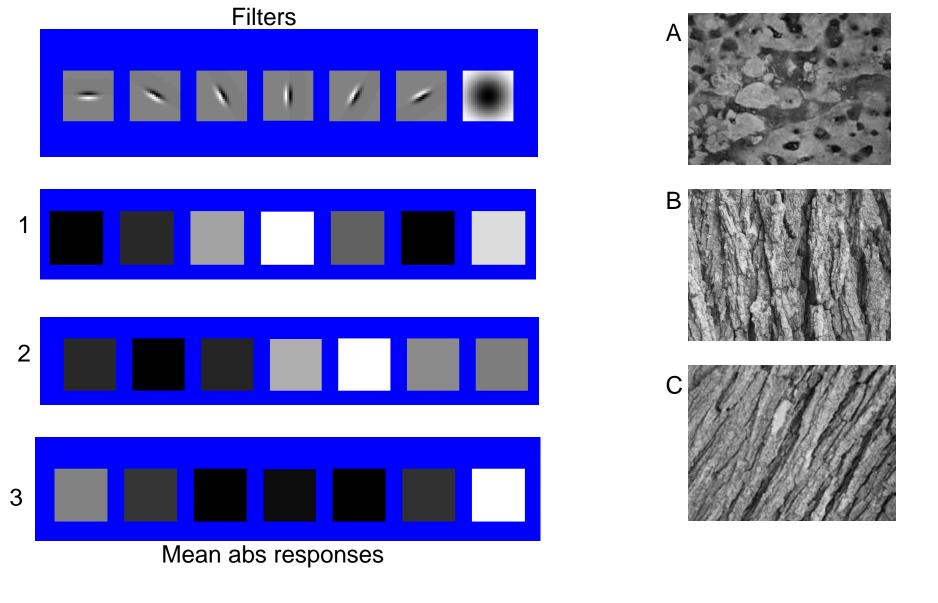


How can we represent texture?

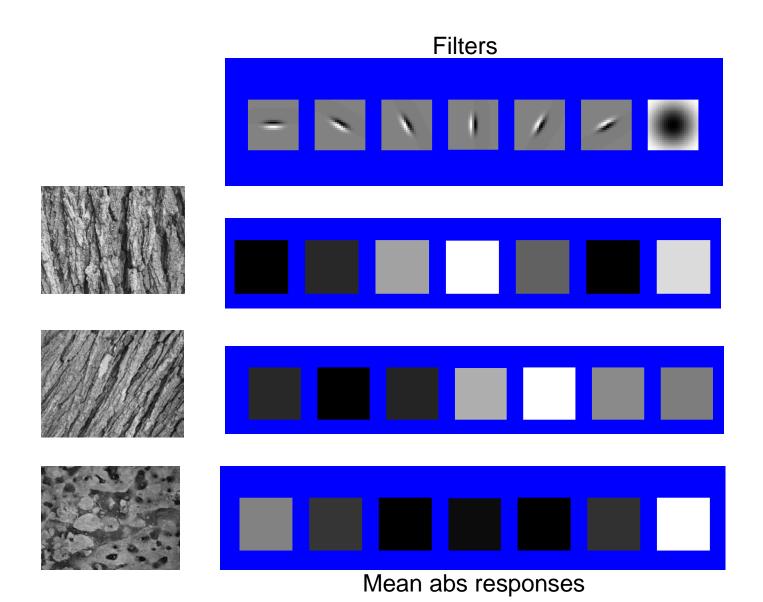
 Measure responses of blobs and edges at various orientations and scales

 Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Can you match the texture to the response?

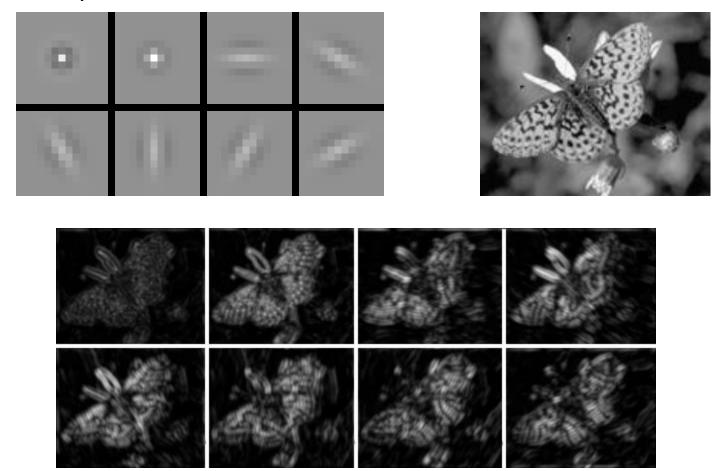


Representing texture by mean abs response



Representing texture

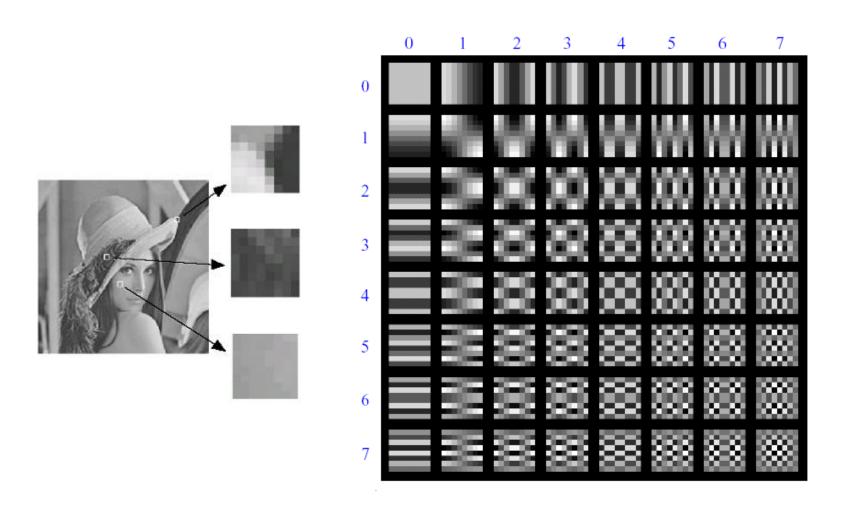
 Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms (more on this in coming weeks)



Compression

How is it that a 4MP image (12000KB) can be compressed to 400KB without a noticeable change?

Lossy Image Compression (JPEG)

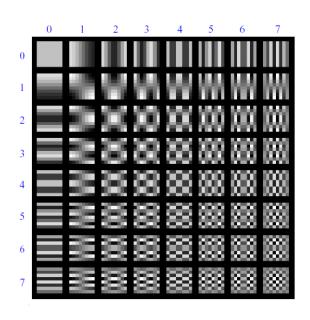


Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies,
 the bottom right high frequencies



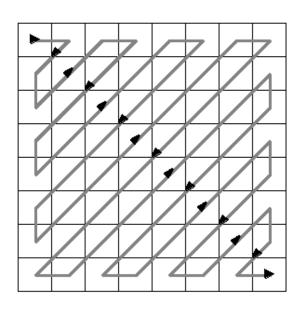


Image compression using DCT

Quantize

- More coarsely for high frequencies (which also tend to have smaller values)
- Many quantized high frequency values will be zero

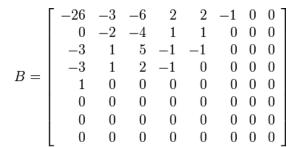
Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values



Quantization table

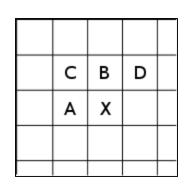
$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - Color is interpolated anyway, and people have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (e.g., with Huffman coding)

Lossless compression (PNG)

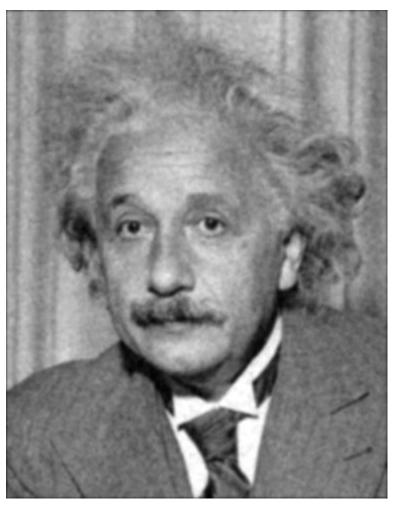
1. Predict that a pixel's value based on its upper-left neighborhood



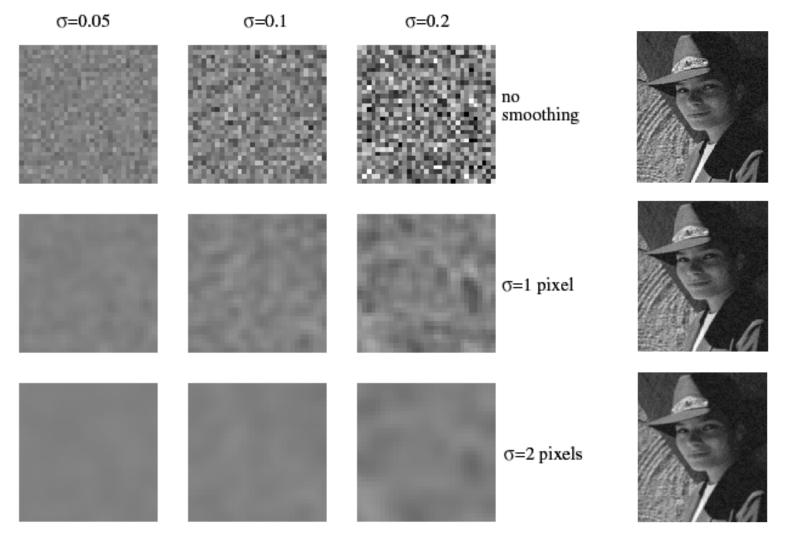
- 2. Store difference of predicted and actual value
- 3. Pkzip it (DEFLATE algorithm)

Denoising





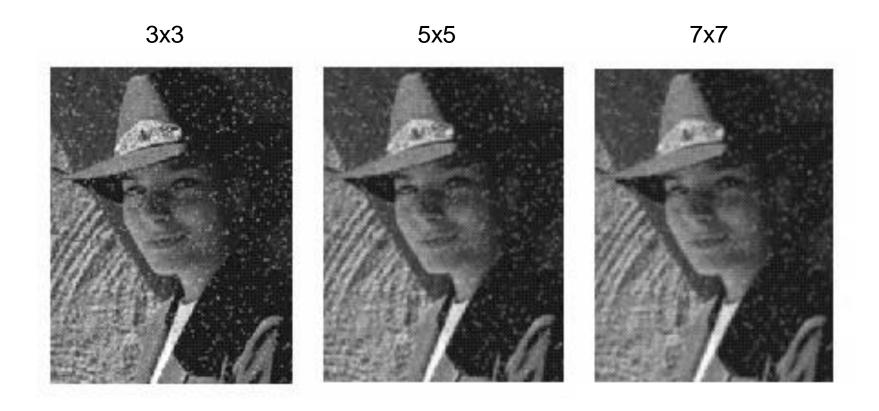
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

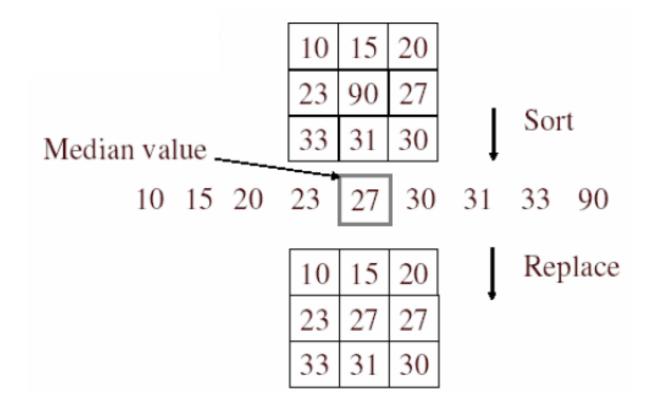
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

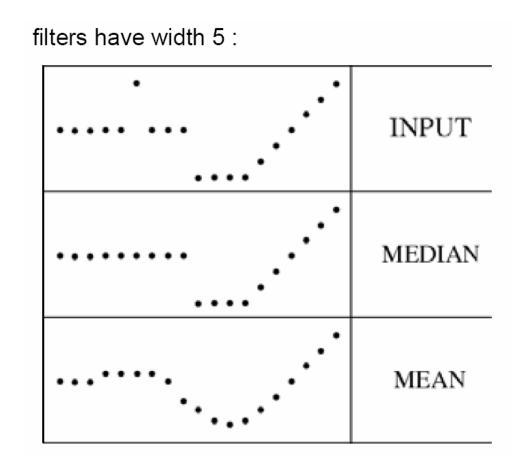
 A median filter operates over a window by selecting the median intensity in the window



Is median filtering linear?

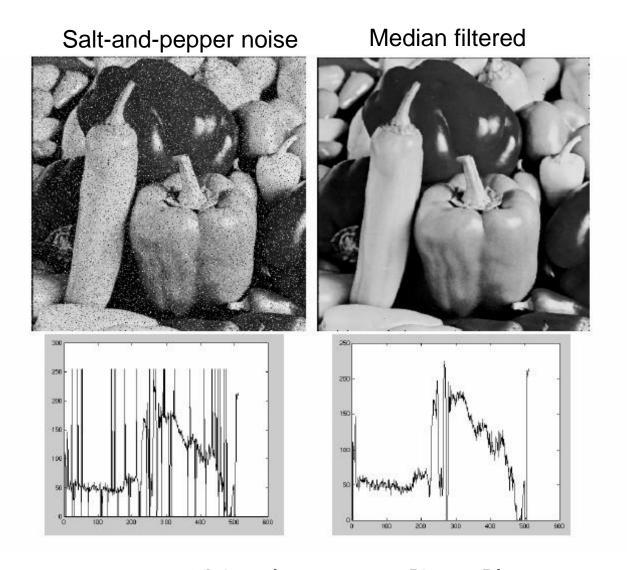
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers



Source: K. Grauman

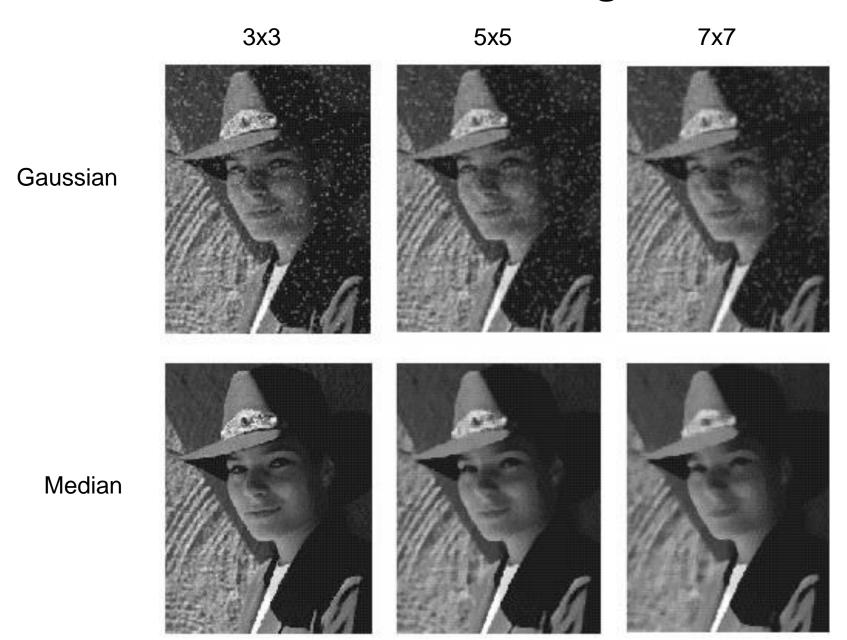
Median filter



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering



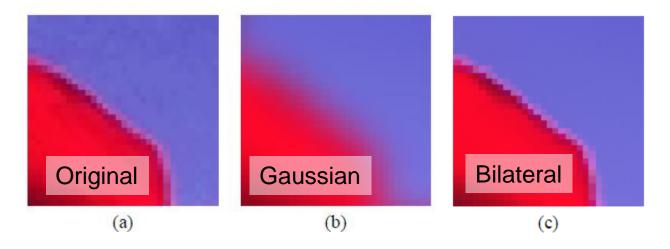
Other non-linear filters

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance and intensity difference)

Bilateral filtering

Bilateral filters

Edge preserving: weights similar pixels more



$$I_{\mathbf{p}}^{\mathbf{b}} = \frac{1}{W_{\mathbf{p}}^{\mathbf{b}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
with $W_{\mathbf{p}}^{\mathbf{b}} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathbf{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathbf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)$

Carlo Tomasi, Roberto Manduchi, Bilateral Filtering for Gray and Color Images, ICCV, 1998.

Summary

- Applications of filters
 - Template matching (SSD or Normxcorr2)
 - SSD can be done with linear filters, is sensitive to overall intensity
 - Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
 - Laplacian pyramid
 - More compact image representation
 - Can be used for compositing in graphics
 - Compression
 - In JPEG, coarsely quantize high frequencies
 - Filter banks for representing texture
 - Denoising

Next class: edge detection

